101
|
Hu WW, Wang Z, Hollister SJ, Krebsbach PH. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther 2007; 14:891-901. [PMID: 17344901 DOI: 10.1038/sj.gt.3302940] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A lyophilization method was developed to locally release adenoviral vectors directly from biomaterials for in situ regenerative gene therapy. Adenovirus expressing a beta-galactosidase reporter gene (AdLacZ) was mixed with different excipient formulations and lyophilized on hydroxyapatite (HA) disks followed by fibroblasts culturing and 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining, suggesting 1 M sucrose in phosphate-buffered saline had best viability. Adenovirus release studies showed that greater than 30% virus remained on the material surface up to 16 h. Lyophilized adenovirus could be precisely localized in defined patterns and the transduction efficiency was also improved. To determine if the lyophilization formulations could preserve viral bioactivity, the lyophilized AdLacZ was tested after being stored at varying temperatures. Bioactivity of adenovirus lyophilized on HA was maintained for greater than 6 months when stored at -80 degrees C. In vivo studies were performed using an adenovirus encoding BMP-2 (AdBMP-2). AdBMP-2 was lyophilized in gelatin sponges and placed into rat critical-size calvarial defects for 5 weeks. Micro-computed tomography (micro-CT) analysis demonstrated that free-form delivery of AdBMP-2 had only modest effects on bone formation. In contrast, AdBMP-2 lyophilized in gelatin sponges led to more than 80% regeneration of critical-size calvarial defects.
Collapse
Affiliation(s)
- W-W Hu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
102
|
Leung S, Gironella A, Trigo C, Bhushan A, Daniels CK, Lai JCK. Cationic surfactants and other factors that affect enzymatic activities and transport. Proc Inst Mech Eng H 2007; 221:153-60. [PMID: 17385569 DOI: 10.1243/09544119jeim211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surfactants influence functions of proteins in cell signalling. Because molecular mechanisms of surfactants are poorly understood, the cationic surfactant effect on three metabolically important enzymes - L-glutamate dehydrogenase, L-lactate dehydrogenase, and L-malate dehydrogenase - were investigated at a physiologically relevant pH range (6.5-7.4). How a cationic, a non-ionic, and an anionic surfactant could differentially influence these enzymes, and how these surfactants could influence the interfacial mass transport of these enzymes across a polycarbonate membrane in a separation cell were also investigated. Provided the charge density was the same, cationic surfactants affected enzymatic activities similarly, regardless of their molecular masses. Hence, a cationic surfactant behaved similarly to a hydrophilic anionic surfactant; however, the cationic surfactant also enhanced enzymatic activity at pH 6.5 and a moderately high concentration (150 ppm). The hydrophilic surfactant enhanced enzymatic activity and the hydrophobic surfactant depressed enzymatic activity. Addition of 0.1 ppm of the hydrophilic anionic surfactant decreased the amount of enzyme permeation through the membrane, but 0.1 ppm of the non-ionic surfactant had no effect, whereas 0.1 ppm of the hydrophobic surfactant increased enzyme permeation. These results have physiological and signalling implications in nanobiotechnology.
Collapse
Affiliation(s)
- S Leung
- College of Engineering, Idaho State University, 833 S. 8th Ave, Pocatello, Idaho, 83209-8060, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Lee JS, Go DH, Bae JW, Lee SJ, Park KD. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J Control Release 2007; 117:204-9. [PMID: 17196698 DOI: 10.1016/j.jconrel.2006.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/31/2006] [Accepted: 11/09/2006] [Indexed: 11/23/2022]
Abstract
Heparin conjugated amphiphilic block copolymer, Tetronic-PCL-heparin (TCH), was developed and its polymeric micelles (PMs) were prepared as an injectable vehicle for long-term delivery of bFGF, which is one of the heparin-binding growth factors (HBGF). TCH PMs were fabricated by a single emulsion and solvent evaporation method. The structural properties of TCH were confirmed by (1)H NMR, FT-IR and GPC. The contents of bound heparin were 0.44 micro g/micro g and the heparin activity by APTT assay was 43.6% when compared to free heparin. The critical micelle concentration (CMC) of TCH PMs was approximately 0.11 g/l. The diameter of TC micelle was approximately 25 nm and its size after conjugation of heparin was increased to 114 nm due to the heparin molecules on the shell of the micelle. The bFGF loading amount of TCH PMs was considerably higher than that of TC, caused by specific interactions between heparin and bFGF. In vitro study, bFGF was released from TCH PMs in a controlled manner over 2 months. The results demonstrated that TCH PMs become a novel candidate for the long-term delivery of various growth factors with heparin-binding domain in tissue engineering.
Collapse
Affiliation(s)
- Jung Seok Lee
- Department of Molecular Science and Technology, Ajou University, 5 Wonchon, Yeoungtong, Suwon, South Korea
| | | | | | | | | |
Collapse
|
104
|
Popelka S, Machová L, Rypácek F. Adsorption of poly(ethylene oxide)-block-polylactide copolymers on polylactide as studied by ATR-FTIR spectroscopy. J Colloid Interface Sci 2007; 308:291-9. [PMID: 17266980 DOI: 10.1016/j.jcis.2006.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/06/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
In this study, the adsorption of amphiphilic poly(ethylene oxide)-block-polylactide (mPEO-PLA) copolymers from a selective solvent onto a polylactide surface was studied as a method of polylactide surface modification and its effect on nonspecific protein adsorption was evaluated. A series of well defined mPEO-PLA copolymers was prepared to investigate the effect of copolymer composition on the resulting PEO chain density and on the surface resistance to protein adsorption. The copolymers contained PEO blocks with molecular weights ranging between 5600 and 23,800 and with 16-47 wt% of PLA. The adsorption of both the copolymers and bovine serum albumin was quantified by attenuated total reflection FTIR spectroscopy (ATR-FTIR). In addition to the adsorbed copolymer amount, its actual composition was determined. The PEO chain density on the surface was found to decrease with the molecular weight of the PEO block and to increase with the molecular weight of the PLA block. The adsorbed copolymers displayed the ability to reduce protein adsorption. The maximum reduction within the tested series (by 80%) was achieved with the copolymer containing PEO of MW 5600 and a PLA block of the same MW.
Collapse
Affiliation(s)
- Stepán Popelka
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czech Republic.
| | | | | |
Collapse
|
105
|
Ma L, Zhou J, Gao C, Shen J. Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. J Biomed Mater Res B Appl Biomater 2007; 83:285-92. [PMID: 17385225 DOI: 10.1002/jbm.b.30794] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Basic fibroblast growth factor (bFGF) was immobilized onto quartz slides and collagen films by assembly with chondroitin sulfate (CS) in a layer-by-layer (LBL) manner. First, the LBL-deposition process on the amino-silanized quartz slides was monitored by UV-vis spectroscopy and water contact angle measurement. By substituting the normal bFGF with rhodamine-labeled one (Rd-bFGF), a linear increase of the absorbance versus bilayer number was recorded. The water contact angle oscillated between the odd CS and the even bFGF layers, demonstrating the alternating change of the surface chemistry. Scanning force microscopy (SFM) revealed that the surface topography was altered slightly after multilayer assembly. In vitro incubation of the CS/bFGF multilayers in PBS showed that approximately 30% of the incorporated bFGF was released within 8 days. In vitro cell culture found that the fibroblasts showed star-like morphology with plenty of pseudopods on the bFGF-incorporated collagen film after cultured for 1 day, and the collagen films assembled with bFGF possess improved bioactivity than that of the virgin one and the bFGF control. Since the immobilized growth factors can maximally retain their bioactivity, the LBL assembly would be a potential approach to construct a bioactive substrate for biomedical applications.
Collapse
Affiliation(s)
- Lie Ma
- Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | |
Collapse
|
106
|
Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation. Pharm Res 2006; 24:258-64. [PMID: 17191092 DOI: 10.1007/s11095-006-9173-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Biological mechanisms of tissue regeneration are often complex, involving the tightly coordinated spatial and temporal presentation of multiple factors. We investigated whether spatially compartmentalized and sequential delivery of factors can be used to pattern new blood vessel formation. MATERIALS AND METHODS A porous bi-layered poly(lactide-co-glycolide) (PLG) scaffold system was used to locally present vascular endothelial growth factor (VEGF) alone in one spatial region, and sequentially deliver VEGF and platelet-derived growth factor (PDGF) in an adjacent region. Scaffolds were implanted in severely ischemic hindlimbs of SCID mice for 2 and 6 weeks, and new vessel formation was quantified within the scaffolds. RESULTS In the compartment delivering a high dose of VEGF alone, a high density of small, immature blood vessels was observed at 2 weeks. Sequential delivery of VEGF and PDGF led to a slightly lower blood vessel density, but vessel size and maturity were significantly enhanced. Results were similar at 6 weeks, with continued remodeling of vessels in the VEGF and PDGF layer towards increased size and maturation. CONCLUSIONS Spatially localizing and temporally controlling growth factor presentation for angiogenesis can create spatially organized tissues.
Collapse
Affiliation(s)
- Ruth R Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
107
|
Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR. The surface functionalization of 45S5 Bioglass-based glass-ceramic scaffolds and its impact on bioactivity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:979-87. [PMID: 17122908 DOI: 10.1007/s10856-006-0433-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/27/2006] [Indexed: 05/12/2023]
Abstract
The first and foremost function of a tissue engineering scaffold is its role as a substrate for cell attachment, and their subsequent growth and proliferation. However, cells do not attach directly to the culture substrate; rather they bind to proteins that are adsorbed to the scaffold's surface. Like standard tissue culture plates, tissue engineering scaffolds can be chemically treated to couple proteins without losing the conformational functionality; a process called surface functionalization. In this work, novel highly porous 45S5 Bioglass-based scaffolds have been functionalized applying 3-AminoPropyl-TriethoxySilane (APTS) and glutaraldehyde (GA) without the use of organic solvents. The efficiency and stability of the surface modification was assessed by X-ray photoemission spectroscopy (XPS). The bioactivity of the functionalized scaffolds was investigated using simulated body fluid (SBF) and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It was found that the aqueous heat-treatment applied at 80 degrees C for 4 hrs during the surface functionalization procedure accelerated the structural transition of the crystalline Na2Ca2Si3O9 phase, present in the original scaffold structure as a result of the sintering process used for fabrication, to an amorphous phase during SBF immersion. The surface functionalized scaffolds exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF caused by ion leaching and the increased surface roughness induced during the heat treatment step. The possible mechanisms behind this phenomenon are discussed.
Collapse
Affiliation(s)
- Q Z Chen
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP, UK
| | | | | | | | | |
Collapse
|
108
|
Blomeier H, Zhang X, Rives C, Brissova M, Hughes E, Baker M, Powers AC, Kaufman DB, Shea LD, Lowe WL. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation 2006; 82:452-9. [PMID: 16926587 PMCID: PMC2648394 DOI: 10.1097/01.tp.0000231708.19937.21] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Problems associated with the hepatic transplantation of islets may preclude the broad application of islet transplantation. Thus, we sought to develop an approach to the extrahepatic transplantation of islets using a synthetic biodegradable polymer scaffold. METHODS Microporous polymer scaffolds that allow vascular ingrowth and nutrient diffusion from host tissues were fabricated from copolymers of lactide and glycolide. Murine islets were transplanted without or with a scaffold onto intraperitoneal fat of syngeneic diabetic recipients. Bioluminescence imaging using a cooled charge-coupled device camera, immunohistochemistry, and glycemia were used to assess islet engraftment and function posttransplant. RESULTS By bioluminescence imaging, islets transplanted on a polymer scaffold remain localized to the transplant site and survive for an extended period of time. Islets transplanted on scaffolds retained the architecture of native islets and developed a functional islet vasculature. Transplantation of marginal masses of islets on the polymer scaffold demonstrated improved islet function compared to transplantation without a scaffold as assessed by the effectiveness of diabetes reversal, including mean time required to achieve euglycemia, weight gain, and glucose levels during an intraperitoneal glucose tolerance test. CONCLUSION These findings indicate that a synthetic polymer scaffold can serve as a platform for islet transplantation and improves the function of extrahepatically transplanted islets compared to islets transplanted without a scaffold. The scaffold may also be useful to deliver bioactive molecules to modify the microenvironment surrounding the transplanted islets and, thus, enhance islet survival and function.
Collapse
Affiliation(s)
- Herman Blomeier
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiaomin Zhang
- Department of Surgery, Division of Transplant Surgery, Northwestern, University Feinberg School of Medicine, Chicago, IL
| | - Christopher Rives
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Elizabeth Hughes
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marshall Baker
- Department of Surgery, Division of Transplant Surgery, Northwestern, University Feinberg School of Medicine, Chicago, IL
| | - Alvin C. Powers
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Dixon B. Kaufman
- Department of Surgery, Division of Transplant Surgery, Northwestern, University Feinberg School of Medicine, Chicago, IL
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - William L. Lowe
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
- Address correspondence to: William L. Lowe, Jr., M.D., Center for Endocrinology, Metabolism, and Molecular Medicine, Tarry 15-703, Northwestern University Feinberg School of Medicine, 303 East Chicago Ave., Chicago, IL 60611. E-mail:
| |
Collapse
|
109
|
Abstract
Bony defects as a result of injury or disease can be caused by a variety of conditions such as acute injury, fall fractures in osteoporotic patients or tumours and congenital malformations of the musculoskeletal system which necessitate the resection of affected parts of the bone. This results in a multitude of defects concerning localisation and specificity as well as a number of conditions involving both hard and soft tissue structures and various situations of different patients. A reasonable classification of defects which is relevant for practical purposes includes four basic types: defects of the spine, metaphyseal defects as well as partial and complete diaphyseal defects of long bones. A variety of options exists for the treatment of these conditions. The aim of all efforts is to reinstall the integrity of affected structures long-lastingly and dependably and at the same time guarantee the normal function of joints involved. In addition to classical treatment strategies which involve the use of autogenous and allogenous corticocancellous bone grafts a great number of bone substitute materials can also be used. Further options lie in complex reconstructive methods such as the transport of whole segments or the transplantation of vascularised bone grafts. The field of new regenerative strategies including tissue engineering as well as stem cell and gene therapy holds great promise for the future. The aim of this review is to derive a ranking from the evaluation of biological and mechanical characteristics for the treatment of posttraumatic defects.
Collapse
Affiliation(s)
- M Schieker
- Experimentelle Chirurgie und Regenerative Medizin, Chirurgische Klinik Innenstadt Klinikum der Universität, Nussbaumstrasse 20, 80336 München. Deutschland.
| | | |
Collapse
|
110
|
Bartold PM, Xiao Y, Lyngstaadas SP, Paine ML, Snead ML. Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000 2006; 41:123-35. [PMID: 16686930 DOI: 10.1111/j.1600-0757.2006.00156.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- P Mark Bartold
- Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
111
|
Ungaro F, Biondi M, d'Angelo I, Indolfi L, Quaglia F, Netti PA, La Rotonda MI. Microsphere-integrated collagen scaffolds for tissue engineering: Effect of microsphere formulation and scaffold properties on protein release kinetics. J Control Release 2006; 113:128-36. [PMID: 16787679 DOI: 10.1016/j.jconrel.2006.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/11/2006] [Accepted: 04/14/2006] [Indexed: 11/18/2022]
Abstract
A promising approach to control the time and space distribution of signalling molecules inside tissue engineering scaffolds consists in entrapping biodegradable microspheres releasing the protein locally for long time frames. However, a rational design of microsphere-integrated scaffolds requires the knowledge of protein release profiles directly within the polymeric template. In this work, PLGA microspheres encapsulating rhodamine-labelled bovine serum albumin (BSA-Rhod) as a model protein were produced in different formulation conditions and tested for their release features in solution and in collagen and collagen/hyaluronic acid (HA) scaffolds. BSA-Rhod release profiles from single microspheres in solution and within the scaffold were assessed by using a confocal laser scanning microscopy (CLSM)-assisted method. Results suggest that the same diffusion-erosion process controls BSA-Rhod release from microspheres in solution and collagen. Nonetheless, two main factors contribute protein release within the scaffold, that is water activity in the release environment and transport properties of the protein in the gel. While microsphere formulation mainly controls the induction time necessary to activate protein release, polymer scaffold composition governs the release rate. Thus, the fine regulation of a tissue engineering construct may be obtained by an appropriate combination of microspheres and scaffolds, providing a spatial and temporal control over signalling molecule delivery.
Collapse
Affiliation(s)
- Francesca Ungaro
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
112
|
Cehreli MC, Comert A, Akkocaoglu M, Tekdemir I, Akca K. Towards the limit of quantifying low-amplitude strains on bone and in coagulum around immediately loaded oral implants in extraction sockets. Med Biol Eng Comput 2006; 44:86-94. [PMID: 16929925 DOI: 10.1007/s11517-005-0010-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to quantify strains in coagulum around immediately loaded oral implants in extraction sockets at the ex vivo level. Bilateral maxillary premolar teeth of two fresh human cadavers were extracted and psi 4.1 x 12 mm Straumann TE implants were placed in the sockets of first and second premolars by utilizing mesio-distal and palatal anchorage, respectively. Installation torque value (ITV) of each implant was measured by a custom-made torque wrench and resonance frequency analyses (RFAs) were undertaken to determine intraosseous stability. Upon abutment connection, a gold coping allowing the placement of a miniature load cell to contact the underlying solid abutment was fabricated. A linear strain gauge was connected to the coping at a distance for strain measurements in coagulum around the implant neck in the extraction socket. Linear strain gauges were also bonded on the labial marginal bone of each extraction socket. Strain measurements were performed at a sample rate of 10 kHz simultaneously monitored from a computer connected to data acquisition system and under a maximum load of 100 N on each implant with or without human coagulum in the extraction socket. Low-amplitude strains were measured around immediate implants. The increase in load increased strains on labial marginal cortical bone around implants (P < 0.05). Bone strains were higher on the implant loaded, when coagulum was present in the bone defects (P < 0.05). Strains within coagulum around mesiodistally anchored implants were higher than palatally anchored implants (P < 0.05). The type of implant on anchorage and presence of coagulum has an impact mechanotransduction to buccal marginal bone around immediate implants.
Collapse
Affiliation(s)
- Murat Cavit Cehreli
- CosmORAL Oral and Dental Health Policlinics, Cinnah 7/5, 06680 Kavaklidere, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
113
|
Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol 2006; 24:4-8. [PMID: 16289395 DOI: 10.1016/j.tibtech.2005.10.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 09/08/2005] [Accepted: 10/27/2005] [Indexed: 11/26/2022]
Abstract
Tissue engineering is a radically different approach to reconstruction of the body following degenerative diseases, trauma or chronic debilitating conditions. Although there have been some successes, tissue engineering is not yet delivering significant progress in terms of clinical outcomes and commercialization. Part of the problem is that we have failed to understand what tissue engineering really means and to appreciate that engineering is synonymous with creation. These processes involve many different phases and there has been minimal integration of these phases within tissue-engineering paradigms. The conventional concept, based upon a temporal sequence from sourcing cells through to the incorporation of generated tissue into a host, has to be transformed by a systems engineering approach in which all biological and technological phases, and the inter-relationships between them, are fully integrated. It might be that real success will not be achieved until systems biology is superimposed onto this systems engineering paradigm.
Collapse
Affiliation(s)
- David F Williams
- UK Centre for Tissue Engineering, University of Liverpool, Liverpool, UK.
| |
Collapse
|
114
|
Velema J, Kaplan D. Biopolymer-based biomaterials as scaffolds for tissue engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 102:187-238. [PMID: 17089791 DOI: 10.1007/10_013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biopolymers as biomaterials and matrices in tissue engineering offer important options in control of structure, morphology and chemistry as reasonable substitutes or mimics of extracellular matrix systems. These features also provide for control of material functions such as mechanical properties in gel, fiber and porous scaffold formats. The inherent biodegradability of biopolymers is important to help regulate the rate and extent of cell and tissue remodeling in vitro or in vivo. The ability to genetically redesign these polymer systems to bioengineer appropriate features to regulate cell responses and interactions is another important feature that offers both fundamental insight into chemistry-structure-function relationships as well as direct utility as biomaterials. Biopolymer matrices for biomaterials and tissue engineering can directly influence the functional attributes of tissues formed on these materials and suggest they will continue play an increasingly important role in the field.
Collapse
Affiliation(s)
- James Velema
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
115
|
Salvay DM, Shea LD. Inductive tissue engineering with protein and DNA-releasing scaffolds. MOLECULAR BIOSYSTEMS 2005; 2:36-48. [PMID: 16880921 PMCID: PMC2657198 DOI: 10.1039/b514174p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cellular differentiation, organization, proliferation and apoptosis are determined by a combination of an intrinsic genetic program, matrix/substrate interactions, and extracellular cues received from the local microenvironment. These molecular cues come in the form of soluble (e.g. cytokines) and insoluble (e.g. ECM proteins) factors, as well as signals from surrounding cells that can promote specific cellular processes leading to tissue formation or regeneration. Recent developments in the field of tissue engineering have employed biomaterials to present these cues, providing powerful tools to investigate the cellular processes involved in tissue development, or to devise therapeutic strategies based on cell replacement or tissue regeneration. These inductive scaffolds utilize natural and/or synthetic biomaterials fabricated into three-dimensional structures. This review summarizes the use of scaffolds in the dual role of structural support for cell growth and vehicle for controlled release of tissue inductive factors, or DNA encoding for these factors. The confluence of molecular and cell biology, materials science and engineering provides the tools to create controllable microenvironments that mimic natural developmental processes and direct tissue formation for experimental and therapeutic applications.
Collapse
Affiliation(s)
- David M. Salvay
- Department of Chemical and Biological Engineering, 2145 Sheridan Rd E156 Evanston, IL 60208-3120. E-mail: ; Fax: 847-491-3728; Tel: 847-491-7043
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, 2145 Sheridan Rd E156 Evanston, IL 60208-3120. E-mail: ; Fax: 847-491-3728; Tel: 847-491-7043
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd E156 Evanston, IL 60208-3120
| |
Collapse
|
116
|
Abstract
OBJECTIVES Tissue engineering has the potential to make a significant impact on improving tissue repair in the craniofacial system. The general strategy for tissue engineering includes seeding cells on a biomaterial scaffold. The number of scaffold and cell choices for tissue engineering systems is continually increasing and will be reviewed. DESIGN Multilayered hydrogel systems were developed to coculture different cell types and develop osteochondral tissues for applications including the temporomandibular joint. EXPERIMENTAL VARIABLE Hydrogels are one form of scaffold that can be applied to cartilage and bone repair using fully differentiated cells, adult and embryonic stem cells. OUTCOME MEASURE Case studies represent an overview of our laboratory's investigations. RESULTS Bilayered scaffolds to promote tissue development and the formation of more complex osteochondral tissues were developed and proved to be effective. CONCLUSION Tissue engineering provides a venue to investigate tissue development of mutant or diseased cells and potential therapeutics.
Collapse
Affiliation(s)
- J Elisseeff
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
117
|
Edlund U, Källrot M, Albertsson AC. Nano patterned covalent surface modification of poly(e-caprolactone). Isr J Chem 2005. [DOI: 10.1560/by1j-cghn-7mf4-qx85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
118
|
Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 2005; 16:329-45. [PMID: 15936978 DOI: 10.1016/j.cytogfr.2005.05.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carriers for bone morphogenetic proteins (BMPs) are used to increase retention of these factors at orthopedic treatment sites for a sufficient period of time to allow regenerative tissue forming cells to migrate to the area of injury and to proliferate and differentiate. Carriers can also serve as a matrix for cell infiltration while maintaining the volume in which repair tissue can form. Carriers have to be biocompatible and are often required to be bioresorbable. Carriers also have to be easily, and cost-effectively, manufactured for large-scale production, conveniently sterilized and have appropriate storage requirements and stability. All of these processes have to be approvable by regulatory agencies. The four major categories of BMP carrier materials include natural polymers, inorganic materials, synthetic polymers, composites of these materials. Autograft or allograft carriers have also used. Carrier configurations range from simple depot delivery systems to more complex systems mimicking the extracellular matrix structure and function. Bone regenerative carriers include depot delivery systems for fracture repair, three-dimensional polymer or ceramic composites for segmental repairs and spine fusion and metal or metal/ceramic composites for augmenting implant integration. Tendon/ligament regenerative carriers range from depot delivery systems to three-dimensional carriers that are either randomly oriented or linearly oriented to improve regenerative tissue alignment. Cartilage regenerative systems generally require three-dimensional matrices and often incorporate cells in addition to factors to augment the repair. Alternative BMP delivery systems include viral vectors, genetically altered cells, conjugated factors and small molecules.
Collapse
Affiliation(s)
- Howard Seeherman
- Women's Health and Bone, Wyeth Discovery Research, 200 CambridgePark Drive, Cambridge, MA 02140, USA.
| | | |
Collapse
|
119
|
DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 2005; 26:3227-34. [PMID: 15603817 DOI: 10.1016/j.biomaterials.2004.09.021] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/08/2004] [Indexed: 12/01/2022]
Abstract
Basic fibroblast growth factor (bFGF) was immobilized to hydrogel scaffolds with retention of mitogenic and chemotactic activity. The bFGF was functionalized in order to incorporate it covalently within polyethylene glycol (PEG) hydrogel scaffolds by reaction with acryloyl-PEG-NHS. Hydrogels were formed by exposing aqueous solutions of PEG diacrylate, acryloyl-PEG-RGDS, and acryloyl-PEG-bFGF to long-wavelength ultraviolet light in the presence of a photoinitiator. These bFGF-modified hydrogels with RGD adhesion sites were evaluated for their effect on vascular smooth muscle cell (SMC) behavior, increasing SMC proliferation by approximately 41% and migration by approximately 15%. A covalently immobilized bFGF gradient was formed using a gradient maker to pour the hydrogel precursor solutions and then photopolymerizing to lock in the concentration gradient. Silver staining was used to detect the bFGF gradient, which increased linearly along the hydrogel's length. Cells were observed to align on hydrogels modified with a bFGF gradient in the direction of increasing tethered bFGF concentration as early as 24 h after seeding. SMCs also migrated differentially, up the concentration gradient, on bFGF-gradient hydrogels compared to control hydrogels with and without a constant bFGF concentration. These hydrogel scaffolds may be useful for studying protein gradient effects on cell behavior and for directing cell migration in tissue-engineering applications.
Collapse
Affiliation(s)
- Solitaire A DeLong
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX 77005, USA
| | | | | |
Collapse
|
120
|
Behanna HA, Donners JJJM, Gordon AC, Stupp SI. Coassembly of Amphiphiles with Opposite Peptide Polarities into Nanofibers. J Am Chem Soc 2005; 127:1193-200. [PMID: 15669858 DOI: 10.1021/ja044863u] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The design, synthesis, and characterization of "reverse" peptide amphiphiles (PAs) with free N-termini is described. Use of an unnatural amino acid modified with a fatty acid tail allows for the synthesis of this new class of PA molecules. The mixing of these molecules with complementary ones containing a free C-terminus results in coassembled structures, as demonstrated by circular dichroism and NOE/NMR spectroscopy. These assemblies show unusual thermal stability when compared to assemblies composed of only one type of PA molecule. This class of reverse PAs has made it possible to create biologically significant assemblies with free N-terminal peptide sequences, which were previously inaccessible, including those derived from phage display methodologies.
Collapse
Affiliation(s)
- Heather A Behanna
- Department of Chemistry, Institute for BioNanotechnology in Medicine, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
121
|
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47-55. [PMID: 15637621 DOI: 10.1038/nbt1055] [Citation(s) in RCA: 3039] [Impact Index Per Article: 159.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New generations of synthetic biomaterials are being developed at a rapid pace for use as three-dimensional extracellular microenvironments to mimic the regulatory characteristics of natural extracellular matrices (ECMs) and ECM-bound growth factors, both for therapeutic applications and basic biological studies. Recent advances include nanofibrillar networks formed by self-assembly of small building blocks, artificial ECM networks from protein polymers or peptide-conjugated synthetic polymers that present bioactive ligands and respond to cell-secreted signals to enable proteolytic remodeling. These materials have already found application in differentiating stem cells into neurons, repairing bone and inducing angiogenesis. Although modern synthetic biomaterials represent oversimplified mimics of natural ECMs lacking the essential natural temporal and spatial complexity, a growing symbiosis of materials engineering and cell biology may ultimately result in synthetic materials that contain the necessary signals to recapitulate developmental processes in tissue- and organ-specific differentiation and morphogenesis.
Collapse
Affiliation(s)
- M P Lutolf
- Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Building AA-B 039, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
122
|
Sittinger M, Hutmacher DW, Risbud MV. Current strategies for cell delivery in cartilage and bone regeneration. Curr Opin Biotechnol 2004; 15:411-8. [PMID: 15464370 DOI: 10.1016/j.copbio.2004.08.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several cell-based tissue-engineering therapies are emerging to regenerate damaged tissues. These strategies use autologous cells in combination with bioresorbable delivery materials. Major functions of a delivery scaffold are to provide initial mechanical stability, homogenous three-dimensional cell distribution, improved tissue differentiation, suitable handling and properties for delivery and fixation into patients. Delivery of cells can be achieved using injectable matrices, soft scaffolds, membranes, solid load-bearing scaffolds or immunoprotective macroencapsulation. Thus, to expand the clinical potential, next generation therapies will depend on smart delivery concepts that make use of the regenerative potential of stem cells, morphogenetic growth factors and biomimetic materials.
Collapse
Affiliation(s)
- Michael Sittinger
- Tissue Engineering Laboratory, Charité University Medicine Berlin, Germany.
| | | | | |
Collapse
|