101
|
Webb TR, Rajendran D. Myofascial techniques: What are their effects on joint range of motion and pain? - A systematic review and meta-analysis of randomised controlled trials. J Bodyw Mov Ther 2016; 20:682-99. [PMID: 27634094 DOI: 10.1016/j.jbmt.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND This systematic review aimed to determine the evidence for the effect of a single manually applied myofascial technique (MFT) on joint range of motion (JROM) and pain in non-pathological symptomatic subjects. METHODS Authors independently searched the following databases: PEDro; Cochrane Library; NLM PubMed; EMBASE; Academic Search Premier; MEDLINE; Psychology and Behavioural Sciences Collection; PsycINFO; SPORTSDiscus; CINAHL Plus from 2003 to 2015. All randomised controlled trials (RCTs) that used JROM as an outcome measure were identified. RCT quality was independently evaluated using PEDro and Cochrane Risk of Bias tools and all reported outcome data were independently abstracted and presented. If post-intervention central tendencies and variance were reported, these were assessed for heterogeneity with a view to performing a meta-analysis. RESULTS Nine RCTs (n = 534) were systematically reviewed and outcome data presented; all trials concluded that MFT increased JROM and reduced pain levels in symptomatic patients. Two RCTs (n = 161) were judged 'moderately' heterogeneous (I(2) = 47.2%; Cochran's Q = 5.69; p = 0.128, df = 3) and meta-analysis using a fixed effects model suggested a 'moderate' effect size of MFTs on jaw opening (ES = 0.578; 95%CI 0.302 to 0.853). CONCLUSION Although results reported by each RCT indicate that MFT increases JROM and reduces pain scores, there are a number of threats that challenge the statistical inferences underpinning these findings. Only two trials could be meta-analysed, the results of which suggest that applying MFTs to symptomatic patients diagnosed with latent trigger-points in masseter muscle can increase jaw JROM.
Collapse
Affiliation(s)
- Tamsyn R Webb
- Research Department, European School of Osteopathy, Boxley House, Boxley, Maidstone, Kent, ME14 3DZ, UK.
| | - Dévan Rajendran
- Research Department, European School of Osteopathy, Boxley House, Boxley, Maidstone, Kent, ME14 3DZ, UK.
| |
Collapse
|
102
|
Suppression of α Smooth Muscle Actin Accumulation by Bovine Fetal Dermal Collagen Matrix in Full Thickness Skin Wounds. Ann Plast Surg 2016; 74 Suppl 4:S255-8. [PMID: 25695450 PMCID: PMC4890835 DOI: 10.1097/sap.0000000000000449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The suppression of elements associated with wound contracture and unfavorable scarring is a potentially important strategy in clinical wound management. In this study, the presence of α smooth muscle actin (αSMA), a protein involved in wound contraction, was analyzed in a series of wounds in which bovine fetal collagen (BFC) acellular dermal matrix (PriMatrix) was used in staged split thickness skin graft procedures. The results obtained through histological and quantitative image analyses of incidental biopsies from these wounds demonstrated a suppression of αSMA in the wound regions occupied by assimilated BFC relative to increased levels of αSMA found in other areas of the wound. The αSMA levels found in assimilated BFC were similar to αSMA levels in uninjured human dermis. These findings suggest a mechanism by which application of BFC could decrease contraction of full thickness skin wounds.
Collapse
|
103
|
De Jesus AM, Aghvami M, Sander EA. A Combined In Vitro Imaging and Multi-Scale Modeling System for Studying the Role of Cell Matrix Interactions in Cutaneous Wound Healing. PLoS One 2016; 11:e0148254. [PMID: 26840835 PMCID: PMC4739727 DOI: 10.1371/journal.pone.0148254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/15/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell types remodel the extracellular matrix of the tissues they inhabit in response to a wide range of environmental stimuli, including mechanical cues. Such is the case in dermal wound healing, where fibroblast migrate into and remodel the provisional fibrin matrix in a complex manner that depends in part on the local mechanical environment and the evolving multi-scale mechanical interactions of the system. In this study, we report on the development of an image-based multi-scale mechanical model that predicts the short-term (24 hours), structural reorganization of a fibrin gel by fibroblasts. These predictive models are based on an in vitro experimental system where clusters of fibroblasts (i.e., explants) were spatially arranged into a triangular geometry onto the surface of fibrin gels that were subjected to either Fixed or Free in-plane mechanical constraints. Experimentally, regional differences in short-term structural remodeling and cell migration were observed for the two gel boundary conditions. A pilot experiment indicated that these small differences in the short-term remodeling of the fibrin gel translate into substantial differences in long-term (4 weeks) remodeling, particularly in terms of collagen production. The multi-scale models were able to predict some regional differences in remodeling and qualitatively similar reorganization patterns for the two boundary conditions. However, other aspects of the model, such as the magnitudes and rates of deformation of gel, did not match the experiments. These discrepancies between model and experiment provide fertile ground for challenging model assumptions and devising new experiments to enhance our understanding of how this multi-scale system functions. These efforts will ultimately improve the predictions of the remodeling process, particularly as it relates to dermal wound healing and the reduction of patient scarring. Such models could be used to recommend patient-specific mechanical-based treatment dependent on parameters such as wound geometry, location, age, and health.
Collapse
Affiliation(s)
- Aribet M. De Jesus
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Maziar Aghvami
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Edward A. Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
104
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
105
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
106
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
107
|
UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. J Transl Med 2016; 96:168-76. [PMID: 26658451 DOI: 10.1038/labinvest.2015.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Modulation of Wnt/Frizzled signaling with UM206 reduced infarct expansion and prevented heart failure development in mice, an effect that was accompanied by increased myofibroblast presence in the infarct, suggesting that Wnt/Frizzled signaling has a key role in cardiac remodeling following myocardial infarction (MI). This study investigated the effects of modulation of Wnt/Frizzled signaling with UM206 in a swine model of reperfused MI. For this purpose, seven swine with MI were treated with continuous infusion of UM206 for 5 weeks. Six control swine were treated with vehicle. Another eight swine were sham-operated. Cardiac function was determined by echo in awake swine. Infarct mass was estimated at baseline by heart-specific fatty acid-binding protein ELISA and at follow-up using planimetry. Components of Wnt/Frizzled signaling, myofibroblast presence, and extracellular matrix were measured at follow-up with qPCR and/or histology. Results show that UM206 treatment resulted in a significant decrease in infarct mass compared with baseline (-41±10%), whereas infarct mass remained stable in the Control-MI group (+3±17%). Progressive dilation of the left ventricle occurred in the Control-MI group between 3 and 5 weeks after MI, while adverse remodeling was halted in the UM206-treated group. mRNA expression for Frizzled-4 and the Frizzled co-receptor LRP5 was increased in UM206-treated swine as compared with Control-MI swine. Myofibroblast presence was significantly lower in infarcted tissue of the UM206-treated animals (1.53±0.43% vs 3.38±0.61%) at 5 weeks follow-up. This study demonstrates that UM206 treatment attenuates adverse remodeling in a swine model of reperfused MI, indicating that Wnt/Frizzled signaling is a promising target to improve infarct healing and limit post-MI remodeling.
Collapse
|
108
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
109
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
110
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
111
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar – Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016. [DOI: 10.1016/j.molmed.2015.12.006 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
112
|
Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar--Cardiac Fibroblasts and the Injured Heart. Trends Mol Med 2016; 22:99-114. [PMID: 26776094 DOI: 10.1016/j.molmed.2015.12.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Cardiac scars, often dubbed 'dead tissue', are very much alive, with heterocellular activity contributing to the maintenance of structural and mechanical integrity following heart injury. To form a scar, non-myocytes such as fibroblasts are recruited from intra- and extra-cardiac sources. Fibroblasts perform important autocrine and paracrine signaling functions. They also establish mechanical and, as is increasingly evident, electrical junctions with other cells. While fibroblasts were previously thought to act simply as electrical insulators, they may be electrically connected among themselves and, under some circumstances, to other cells including cardiomyocytes. A better understanding of these biophysical interactions will help to target scar structure and function, and will facilitate the development of novel therapies aimed at modifying scar properties for patient benefit.
Collapse
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Roger Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
113
|
Brugmans MM, Soekhradj-Soechit RS, van Geemen D, Cox M, Bouten CV, Baaijens FP, Driessen-Mol A. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Tissue Eng Part A 2016; 22:123-32. [DOI: 10.1089/ten.tea.2015.0203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Marieke M.C.P. Brugmans
- Xeltis B.V., Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Daphne van Geemen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
114
|
Mishra PJ, Mishra PJ, Banerjee D. Keratinocyte Induced Differentiation of Mesenchymal Stem Cells into Dermal Myofibroblasts: A Role in Effective Wound Healing. ACTA ACUST UNITED AC 2016; 2016:5-32. [PMID: 27294075 DOI: 10.13052/ijts2246-8765.2016.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously demonstrated that human mesenchymal stem cells (hMSCs) migrate toward human keratinocytes as well as toward conditioned medium from cultured human keratinocytes (KCM) indicating that the hMSCs respond to signals from keratinocytes [1]. Using fluorescently labeled cells we now show that in vitro hMSCs appear to surround keratinocytes, and this organization is recapitulated in vivo. Incubation of hMSCs with KCM induced dermal myofibroblast like differentiation characterized by expression of cytoskeletal markers and increased expression of cytokines including SDF-1, IL-8, IL-6 and CXCL5. Interaction of keratinocytes with hMSCs appears to be important in the wound healing process. Therapeutic efficacy of hMSCs in wound healing was examined in two animal models representing normal and chronic wound healing. Accelerated wound healing was observed when hMSCs and KCM exposed hMSCs (KCMSCs) were injected near wound site in nude and NOD/SCID mice. Long term follow up of wound healing revealed that in the hMSC treated wounds there was little evidence of residual scarring. These dermal myofibroblast like hMSCs add to the wound healing process. Together, the keratinocyte and hMSCs morphed dermal myofibroblast like cells as well as the factors secreted by these cells support wound healing with minimal scarring. The ability of hMSCs to support wound healing process represents another striking example of the importance of keratinocyte and hMSCs interplay in the wound microenvironment resulting in effective wound healing with minimal scarring.
Collapse
Affiliation(s)
- Pravin J Mishra
- Intermountain Precision Genomics, Intermountain Healthcare, Dixie Regional Medical Center 292 South 1470 East, Suite 201 & 301, St. George, UT 84770, USA
| | - Prasun J Mishra
- Department of Biochemical and Cellular Pharmacology, Genentech, 1, DNA Way, South San Francisco, California 94080, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, New Brunswick-Piscataway, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854. USA
| |
Collapse
|
115
|
Xu H, Bai D, Ruest LB, Feng JQ, Guo YW, Tian Y, Jing Y, He Y, Han XL. Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture. Int J Oral Sci 2015; 7:232-41. [PMID: 26674425 PMCID: PMC5153592 DOI: 10.1038/ijos.2015.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 02/05/2023] Open
Abstract
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L-Bruno Ruest
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Yong-Wen Guo
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang-Long Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| |
Collapse
|
116
|
Cremers NAJ, Suttorp M, Gerritsen MM, Wong RJ, van Run-van Breda C, van Dam GM, Brouwer KM, Kuijpers-Jagtman AM, Carels CEL, Lundvig DMS, Wagener FADTG. Mechanical Stress Changes the Complex Interplay Between HO-1, Inflammation and Fibrosis, During Excisional Wound Repair. Front Med (Lausanne) 2015; 2:86. [PMID: 26697429 PMCID: PMC4678194 DOI: 10.3389/fmed.2015.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/24/2015] [Indexed: 01/11/2023] Open
Abstract
Mechanical stress following surgery or injury can promote pathological wound healing and fibrosis, and lead to functional loss and esthetic problems. Splinted excisional wounds can be used as a model for inducing mechanical stress. The cytoprotective enzyme heme oxygenase-1 (HO-1) is thought to orchestrate the defense against inflammatory and oxidative insults that drive fibrosis. Here, we investigated the activation of the HO-1 system in a splinted and non-splinted full-thickness excisional wound model using HO-1-luc transgenic mice. Effects of splinting on wound closure, HO-1 promoter activity, and markers of inflammation and fibrosis were assessed. After seven days, splinted wounds were more than three times larger than non-splinted wounds, demonstrating a delay in wound closure. HO-1 promoter activity rapidly decreased following removal of the (epi)dermis, but was induced in both splinted and non-splinted wounds during skin repair. Splinting induced more HO-1 gene expression in 7-day wounds; however, HO-1 protein expression remained lower in the epidermis, likely due to lower numbers of keratinocytes in the re-epithelialization tissue. Higher numbers of F4/80-positive macrophages, αSMA-positive myofibroblasts, and increased levels of the inflammatory genes IL-1β, TNF-α, and COX-2 were present in 7-day splinted wounds. Surprisingly, mRNA expression of newly formed collagen (type III) was lower in 7-day wounds after splinting, whereas, VEGF and MMP-9 were increased. In summary, these data demonstrate that splinting delays cutaneous wound closure and HO-1 protein induction. The pro-inflammatory environment following splinting may facilitate higher myofibroblast numbers and increase the risk of fibrosis and scar formation. Therefore, inducing HO-1 activity against mechanical stress-induced inflammation and fibrosis may be an interesting strategy to prevent negative effects of surgery on growth and function in patients with orofacial clefts or in patients with burns.
Collapse
Affiliation(s)
- Niels A J Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands ; Experimental Rheumatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Maarten Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Marlous M Gerritsen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| | - Coby van Run-van Breda
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen , Groningen , Netherlands
| | - Katrien M Brouwer
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, MOVE Research Institute Amsterdam , Amsterdam , Netherlands ; Association of Dutch Burn Centers , Beverwijk , Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Cleft Palate Craniofacial Center, Radboud University Medical Center , Nijmegen , Netherlands
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen , Netherlands
| |
Collapse
|
117
|
A novel 3D high-content assay identifies compounds that prevent fibroblast invasion into tissue surrogates. Exp Cell Res 2015; 339:35-43. [PMID: 26475730 DOI: 10.1016/j.yexcr.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/23/2022]
Abstract
Invasion processes underlie or accompany several pathological processes but only a limited number of high-throughput capable phenotypic models exist to test anti-invasive compounds in vitro. We here evaluated 3D co-cultures as a high-content phenotypic screening system for fibrotic invasive processes. 3D multicellular spheroids were used as living tissue surrogates in co-culture with fluorescently labeled lung fibroblasts to monitor invasion processes by automated microscopy. This setup was used to screen a compound library containing 480 known bioactive substances. Identified hits prevented fibroblast invasion and could be subdivided into two hit classes. First, Prostaglandins were shown to prevent fibroblast invasion, most likely mediated by the prostaglandin EP2 receptor and generation of cAMP. Additionally, Rho-associated protein kinase (ROCK) inhibitors prevented fibroblast invasion, possibly by inactivation of myosin II. Importantly, both Prostaglandins and ROCK inhibitors are potential treatment options shown to be effective in in vitro and in vivo models of fibrotic diseases. This validates the presented novel phenotypic screening approach for the evaluation of potential inhibitors and the identification of novel compounds with activity in diseases that are associated with fibroblast invasion.
Collapse
|
118
|
Rizzo S, Basso C, Lazzarini E, Celeghin R, Paolin A, Gerosa G, Valente M, Thiene G, Pilichou K. TGF-beta1 pathway activation and adherens junction molecular pattern in nonsyndromic mitral valve prolapse. Cardiovasc Pathol 2015; 24:359-67. [PMID: 26345253 DOI: 10.1016/j.carpath.2015.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
AIMS Dysregulation of the transforming growth factor beta (TGF-β) 1 pathway has been associated with either syndromic or isolated mitral valve (MV) prolapse due to myxoid degeneration (floppy MV). The activation of Smad receptor-mediated intracellular TGF-β pathway and its effect on adherens junction (AJ) molecular pattern of activated valvular interstitial cells (VICs) in MV prolapse are herein investigated. METHODS Floppy MV leaflets were obtained from 30 patients (24 males, mean age 55.5±12.7 years) who underwent surgical repair, and 10 age- and sex-matched Homograft Tissue Bank samples served as controls. MV leaflet cellular and extracellular matrix composition, including collagen I and III, was evaluated by histology and transmission electron microscopy. Smad2 active phosphorylated form (p-Smad2), α-smooth muscle actin (α-SMA), and junctional proteins (N-cadherin, cadherin-11, β-catenin, plakoglobin, plakophilin-2) in VICs were assessed by immunohistochemistry and immunofluorescence and confirmed by immunoblotting. Quantitative real-time polymerase chain reaction was carried out for components of TGF-β pathway cascade and filamin A (FLN-A). RESULTS Floppy MV leaflets were thicker (P<.001) and had higher α-SMA+ cell density (P=.002) and collagen III expression (P<.001) than controls. Enhanced p-Smad2 nuclear immunoreactivity (P<.001) and TGF-β1 gene (P=.045), TIMP1 (P=.020), and CTGF (P=.047) expression but no differences in FLN-A and total Smad2 gene expression levels were found between floppy MV and controls. Higher expression of cadherin-11, either exclusively or in colocalization with N-cadherin, and aberrant presence of plakophilin-2 at the AJ were found in floppy MV vs. CONCLUSIONS TGF-β1 pathway activation in nonsyndromic MV prolapse induces VICs differentiation into contractile myofibroblasts and is associated with changes in the molecular pattern of the AJ, with increased cadherin-11 and aberrant plakophilin-2 expression. AJ reinforcement might promote latent TGF-β1 activation leading to extracellular matrix remodeling in floppy MV.
Collapse
Affiliation(s)
- Stefania Rizzo
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Elisabetta Lazzarini
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Rudy Celeghin
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Adolfo Paolin
- Tissue Bank of Veneto Region, Civil Hospital, Treviso, Italy.
| | - Gino Gerosa
- Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Italy.
| | - Marialuisa Valente
- Pathological Anatomy, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Gaetano Thiene
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | - Kalliopi Pilichou
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
119
|
Huang SU, Yoon JJ, Ismail S, McGhee JJ, Sherwin T. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury. Cell Biol Int 2015; 39:1274-87. [PMID: 26094955 DOI: 10.1002/cbin.10501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 12/13/2022]
Abstract
The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue.
Collapse
Affiliation(s)
- Stephanie U Huang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jinny J Yoon
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Salim Ismail
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jennifer J McGhee
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Trevor Sherwin
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
120
|
Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. BIOMED RESEARCH INTERNATIONAL 2015; 2015:798768. [PMID: 26229964 PMCID: PMC4502285 DOI: 10.1155/2015/798768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) associated with fibrosis is characterized by the appearance of interstitial myofibroblasts. These cells are responsible for the uncontrolled deposition of the extracellular matrix, which pathologically separate cardiomyocyte bundles. The enhanced fibrosis is thought to contribute to arrhythmias “indirectly” because a collagenous septum is a passive substrate for propagation, resulting in impulse conduction block and/or zigzag conduction. However, the emerging results demonstrate that myofibroblasts in vitro also promote arrhythmogenesis due to direct implications upon cardiomyocyte electrophysiology. This electrical interference may be considered beneficial as it resolves any conduction blocks; however, the passive properties of myofibroblasts might cause a delay in impulse propagation, thus promoting AF due to discontinuous slow conduction. Moreover, low-polarized myofibroblasts reduce, via cell-density dependence, the fast driving inward current for cardiac impulse conduction, therefore resulting in arrhythmogenic uniformly slow propagation. Critically, the subsequent reduction in cardiomyocytes resting membrane potential in vitro significantly increases the likelihood of ectopic activity. Myofibroblast densities and the degree of coupling at cellular border zones also impact upon this likelihood. By considering future in vivo studies, which identify myofibroblasts “per se” as a novel targets for cardiac arrhythmias, this review aims to describe the implications of noncardiomyocyte view in the context of AF.
Collapse
|
121
|
Hermanns-Lê T, Piérard GE, Jennes S, Piérard-Franchimont C. Protomyofibroblast Pathway in Early Thermal Burn Healing. Skin Pharmacol Physiol 2015; 28:250-4. [PMID: 25998853 DOI: 10.1159/000430102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Wound healing following partial thickness thermal burns is commonly hampered by the risk of hypertrophic scarring. Skin myofibroblast (MF) density is commonly increased in postburn healing. The transition between fibroblast-like cells and α-smooth muscle actin (SMA)+ MF possibly begins with CD14+ monocytes, evolving to CD14+ CD34+ fibrocytes, followed by β-SMA+ protomyofibroblast (PMF) maturation. Skin biopsies from 25 burn patients were collected about 1 and 4 weeks after injury. Immunohistochemistry was performed using monoclonal antibodies to α-SMA, β-SMA, factor XIIIa, lysozyme, Mac 387, CD14, CD117 and Ulex europaeus agglutinin-1 (UEA-1). The set of Mac 387+ and CD14+ monocytes was accompanied by both CD34+ fibrocytes and factor XIIIa+ dendrocytes. By contrast, β-SMA+ PMF were rare. Of note, α-SMA+ MF were more abundant at week 4 than at week 1 (p < 0.01). The UEA-1+ endothelial cells showed marked variations in their dermal distribution, irrespective of the densities in the other scrutinized cells. In conclusion, healing of partial thickness thermal burns involves a diversity of cell types including PMF. In the present samples, the PMF density remained low. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Trinh Hermanns-Lê
- Department of Dermatopathology, University Hospital of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
122
|
MA XIAOYAN, YANG FAN, YANG SHULI, RASUL AZHAR, LI TING, LIU LIANLIAN, KONG MIN, GUO DONGMEI, MA TONGHUI. Number and distribution of myofibroblasts and α-smooth muscle actin expression levels in fetal membranes with and without gestational complications. Mol Med Rep 2015; 12:2784-92. [DOI: 10.3892/mmr.2015.3719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
|
123
|
Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 2015; 14:270-82. [PMID: 25771201 DOI: 10.1016/j.scr.2015.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
124
|
|
125
|
A unifying neuro-fasciagenic model of somatic dysfunction - underlying mechanisms and treatment - Part I. J Bodyw Mov Ther 2015; 19:310-26. [PMID: 25892388 DOI: 10.1016/j.jbmt.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
This paper offers an extensive review of the main fascia-mediated mechanisms underlying various dysfunctional and pathophysiological processes of clinical relevance for manual therapy. The concept of somatic dysfunction is revisited in light of the diverse fascial influences that may come into play in its genesis and maintenance. A change in perspective is thus proposed: from a nociceptive model that for decades has viewed somatic dysfunction as a neurologically-mediated phenomenon, to a unifying fascial model that integrates neural influences into a multifactorial and multidimensional interpretation of dysfunctional process as being partially, if not entirely, mediated by the fascia.
Collapse
|
126
|
Fairweather M, Heit YI, Buie J, Rosenberg LM, Briggs A, Orgill DP, Bertagnolli MM. Celecoxib inhibits early cutaneous wound healing. J Surg Res 2014; 194:717-724. [PMID: 25588948 DOI: 10.1016/j.jss.2014.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is an inducible enzyme that is rapidly upregulated in response to injury, resulting in the production of prostaglandin E2 (PGE2), a primary mediator of inflammation and wound healing. The selective COX-2 inhibitor, celecoxib, is was used to treat pain and inflammation. When used to treat injuries, we postulated that loss of PGE2 activity by COX-2 inhibition would have detrimental effects on wound healing. Our objective was to study the effect of selective COX-2 inhibition with celecoxib on cutaneous wound healing. MATERIALS AND METHODS C57BL/6J mice with uniform full-thickness wounds (1 cm(2)) to their dorsum were fed diet with or without celecoxib (1500 ppm). Wound closure analysis measured wound contraction, reepithelialization, and open wound as a percentage of the initial wound area, and was quantified by planimetry. Wounds were excised en bloc at day 7 to examine cellular proliferation, angiogenesis, cytokine production, and extracellular matrix (ECM) formation. RESULTS Celecoxib-induced reduction in wound PGE2 levels was documented by enzyme-linked immunosorbent assay on day 7 after wounding. Wound contraction and reepithelialization were significantly reduced by celecoxib treatment, resulting in a 20% greater open wound area at day 7 (P < 0.05). In response to celecoxib treatment, immunohistochemistry analysis showed epithelial cell proliferation, angiogenesis, and ECM components including collagen and myofibroblasts were significantly decreased. CONCLUSIONS Wound healing is significantly delayed by celecoxib treatment. These data indicate that COX-2 and its downstream product PGE2 modulate the activity of multiple essential functions of the inflammatory stroma, including epithelial proliferation, angiogenesis, and ECM production. As a result, reepithelialization and wound closure are delayed by celecoxib treatment. These findings have potential clinical implications in postoperative wound management.
Collapse
Affiliation(s)
- Mark Fairweather
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yvonne I Heit
- Department of Plastic, Aesthetic and Hand Surgery, University of Magdeburg, Germany
| | - Justin Buie
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laura M Rosenberg
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra Briggs
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Monica M Bertagnolli
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
127
|
Challenges in the Modeling of Wound Healing Mechanisms in Soft Biological Tissues. Ann Biomed Eng 2014; 43:1654-65. [DOI: 10.1007/s10439-014-1200-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/19/2014] [Indexed: 02/03/2023]
|
128
|
Montani C, Steimberg N, Boniotti J, Biasiotto G, Zanella I, Diafera G, Biunno I, Caimi L, Mazzoleni G, Di Lorenzo D. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicol Appl Pharmacol 2014; 280:421-33. [DOI: 10.1016/j.taap.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
|
129
|
Bohnsack RN, Warejcka DJ, Wang L, Gillespie SR, Bernstein AM, Twining SS, Dahms NM. Expression of insulin-like growth factor 2 receptor in corneal keratocytes during differentiation and in response to wound healing. Invest Ophthalmol Vis Sci 2014; 55:7697-708. [PMID: 25358730 DOI: 10.1167/iovs.14-15179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Insulin-like growth factor 2 receptor (IGF2R) associates with ligands that influence wound healing outcomes. However, the expression pattern of IGF2R and its role in the cornea is unknown. METHODS Human keratocytes were isolated from donor corneas. Fibroblasts (fibroblast growth factor 2 [FGF2]-treated) or myofibroblasts (TGF-β1-treated) were analyzed for IGF2R and α-smooth muscle actin (α-SMA) expression by Western blotting and immunolocalization. Mouse corneas were wounded in vivo and porcine corneas ex vivo. The IGF2R and α-SMA protein expression were visualized and quantified by immunohistochemistry. The IGF2R gene expression in human corneal fibroblasts was knocked-down with targeted lentiviral shRNA. RESULTS The IGF2R is expressed in epithelial and stromal cells of normal human, mouse, and porcine corneas. The IGF2R increases (11.2 ± 0.4-fold) in the epithelial and (11.7 ± 0.9-fold) stromal layers of in vivo wounded mouse corneas. Double-staining with α-SMA- and IGF2R-specific antibodies reveals that IGF2R protein expression is increased in stromal myofibroblasts in the wounded cornea relative to keratocytes in the normal cornea (11.2 ± 0.8-fold). Human primary stromal keratocytes incubated with FGF2 or TGF-β1 in vitro demonstrate increased expression (2.0 ± 0.4-fold) of IGF2R in myofibroblasts relative to fibroblasts. Conversion of IGF2R shRNA-lentiviral particle transduced corneal fibroblasts to myofibroblasts reveals a dependence on IGF2R expression, as only 40% ± 10% of cells transduced converted to myofibroblasts compared to 86% ± 3% in control cells. CONCLUSIONS The IGF2R protein expression is increased during corneal wound healing and IGF2R regulates human corneal fibroblast to myofibroblast differentiation.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Debra J Warejcka
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lingyan Wang
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | | | - Audrey M Bernstein
- Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sally S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
130
|
Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 2014; 21:768-85. [PMID: 24279926 DOI: 10.1089/ars.2013.5724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Myofibroblasts are prototypical fibrotic cells, which are involved in a number of more or less pathological conditions, from foreign body reactions to scarring, from liver, kidney, or lung fibrosis to neoplastic phenomena. The differentiation of precursor cells (not only of fibroblastic nature) is characterized by a complex interplay between soluble factors (growth factors such as transforming growth factor β1, reactive oxygen species [ROS]) and material properties (matrix stiffness). RECENT ADVANCES The last 15 years have seen very significant advances in the identification of appropriate differentiation markers, in the understanding of the differentiation mechanism, and above all, the involvement of ROS as causative and persistence factors. CRITICAL ISSUES The specific mechanisms of action of ROS remain largely unknown, although evidence suggests that both intracellular and extracellular phenomena play a role. FUTURE DIRECTIONS Approaches based on antioxidant (ROS-scavenging) principles and on the potentiation of nitric oxide signaling hold much promise in view of a pharmacological therapy of fibrotic phenomena. However, how to make the active principles available at the target sites is yet a largely neglected issue.
Collapse
Affiliation(s)
- Alessandro Siani
- 1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester , Manchester, United Kingdom
| | | |
Collapse
|
131
|
Sun X, Kim YH, Phan TN, Yang BS. Topical application of ALK5 inhibitor A-83-01 reduces burn wound contraction in rats by suppressing myofibroblast population. Biosci Biotechnol Biochem 2014; 78:1805-12. [PMID: 25351330 DOI: 10.1080/09168451.2014.932666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Burn scar contracture that follows the healing of deep dermal burns causes severe deformation and functional impairment. However, its current therapeutic interventions are limited with unsatisfactory outcomes. When we treated deep second-degree burns in rat skin with activin-like kinase 5 (ALK5) inhibitor A-83-01, it reduced wound contraction and enhanced the area of re-epithelialization so that the overall time for wound closing was not altered. In addition, it reduced myofibroblast population in the dermis of burn scar with a diminished deposition of its biomarker proteins such as α-SMA and collagen. Treatment of rat dermal fibroblast with A-83-01 inhibited transforming growth factor-β1 (TGF-β1)-dependent induction of α-SMA and collagen type I. Taken together, these results suggest that topical application of ALK5 inhibitor A-83-01 could be effective in preventing the contraction of burn wound without delaying the wound closure by virtue of its inhibitory activity against the TGF-β-induced increase of myofibroblast population.
Collapse
Affiliation(s)
- Xiaoyan Sun
- a Chemical Kinomics Research Center , Korea Institute of Science and Technology , Seoul , Korea
| | | | | | | |
Collapse
|
132
|
Abstract
Myofibroblasts (MFs) are modified fibroblasts that express features of smooth muscle differentiation and were first observed in granulation tissue during wound healing. These cells play a key role in physiologic and pathologic processes like wound healing and tumorigenesis. The presence of MFs has been reported in normal oral tissues and pathologic conditions like reactive lesions, benign tumors, locally aggressive tumors and malignancies affecting the oral cavity. This article briefly reviews the important hallmarks related to the discovery, characterization and tissue distribution of MFs in oral health and disease.
Collapse
Affiliation(s)
- Soujanya Pinisetti
- Department of Oral and Maxillofacial Pathology, Drs Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Gannavaram, Krishna District, Andhra Pradesh, India
| | - Ravikanth Manyam
- Vishnu Dental College, Bhimavaram, West Godavari, Andhra Pradesh, India
| | - Babburi Suresh
- Department of Oral and Maxillofacial Pathology, Drs Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Gannavaram, Krishna District, Andhra Pradesh, India
| | - V Aparna
- Department of Oral and Maxillofacial Pathology, Drs Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Gannavaram, Krishna District, Andhra Pradesh, India
| |
Collapse
|
133
|
Uysal CA, Tobita M, Hyakusoku H, Mizuno H. The Effect of Bone-Marrow-Derived Stem Cells and Adipose-Derived Stem Cells on Wound Contraction and Epithelization. Adv Wound Care (New Rochelle) 2014; 3:405-413. [PMID: 24940554 DOI: 10.1089/wound.2014.0539] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023] Open
Abstract
Objective: The relationship between the wound contraction and levels of α-smooth muscle actin (α-SMA) has been revealed in different studies. We aimed to investigate the effects of mesenchymal stem cells (MSCs), mainly bone-marrow-derived stem cells (BSCs) and adipose-derived stem cells (ASCs), and find out the α-SMA, fibroblast growth factor (FGF), transforming growth factor beta, and vascular endothelial growth factor (VEGF) levels on an in vivo acute wound healing model after the application of MSCs. Approach: Four circular skin defects were formed on the dorsum of Fisher rats (n=20). The defects were applied phosphate-buffered saline (PBS), ASCs, BSCs, and patchy skin graft, respectively. The healing time and scar area were noted. Results: There was a statistical decrease in the healing time in ASC, BSC, and skin graft groups (p<0.05). However, the scar was smaller in the PBS group (p<0.05). The α-SMA levels were statistically lower in ASC, BSC, and graft groups (p<0.05). The FGF levels were statistically higher in ASC and BSC groups (p<0.05). The differentiation of the injected MSCs to endothelial cells and keratinocytes was observed. Innovation and Conclusion: MSCs decrease the healing time and contraction of the wound while increasing the epithelization rate by increasing angiogenesis.
Collapse
Affiliation(s)
- Cagri A. Uysal
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Morikuni Tobita
- Department of Plastic and Reconstructive Surgery, Juntendo University, Tokyo, Japan
| | - Hiko Hyakusoku
- Department of Plastic and Reconstructive Surgery, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University, Tokyo, Japan
| |
Collapse
|
134
|
Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ. Nonlinear finite element simulations of injuries with free boundaries: application to surgical wounds. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:616-633. [PMID: 24443355 PMCID: PMC4531308 DOI: 10.1002/cnm.2621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds.
Collapse
Affiliation(s)
- C. Valero
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - E. Javierre
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
| | - J. M. García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - M. J. Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
135
|
Abstract
Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations – cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells, measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.
Collapse
|
136
|
Nakayama KH, Hou L, Huang NF. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering. Adv Healthc Mater 2014; 3:628-41. [PMID: 24443420 PMCID: PMC4031033 DOI: 10.1002/adhm.201300620] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Indexed: 01/01/2023]
Abstract
It is generally agreed that engineered cardiovascular tissues require cellular interactions with the local milieu. Within the microenvironment, the extracellular matrix (ECM) is an important support structure that provides dynamic signaling cues in part through its chemical, physical, and mechanical properties. In response to ECM factors, cells activate biochemical and mechanotransduction pathways that modulate their survival, growth, migration, differentiation, and function. This Review describes the role of ECM chemical composition, spatial patterning, and mechanical stimulation in the specification of cardiovascular lineages, with a focus on stem cell differentiation, direct transdifferentiation, and endothelial-to-mesenchymal transition. The translational application of ECMs is discussed in the context of cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Stanford, CA, 94305, USA; Cardiovascular Institute, Stanford University, 265 Campus Drive, G1120, MC-5454, Stanford, CA, 94305, USA; Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Mail Code 153, Palo Alto, CA, 94304 60031l, 650-493-5000, USA
| | | | | |
Collapse
|
137
|
Liu S, Herault Y, Pavlovic G, Leask A. Skin progenitor cells contribute to bleomycin-induced skin fibrosis. Arthritis Rheumatol 2014; 66:707-13. [PMID: 24574231 DOI: 10.1002/art.38276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/07/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The origin of the cells that contribute to skin fibrosis is unclear. We undertook the present study to assess the contribution of Sox2-expressing skin progenitor cells to bleomycin-induced scleroderma. METHODS Scleroderma was induced, by bleomycin administration, in wild-type mice and in mice in which CCN2 was deleted from Sox2-expressing cells. Lineage tracing analysis was performed to assess whether cells expressing Sox2 are recruited to fibrotic lesions in response to bleomycin-induced scleroderma. RESULTS In response to bleomycin, Sox2-positive/α-smooth muscle actin-positive cells were recruited to fibrotic tissue. CCN2-conditional knockout mice in which CCN2 was deleted from Sox2-expressing cells exhibited resistance to bleomycin-induced skin fibrosis. Collectively, these results indicate that CCN2 is required for the recruitment of progenitor cells and that CCN2-expressing progenitor cells are essential for bleomycin-induced skin fibrosis. Lineage tracing analysis using mice in which a tamoxifen-dependent Cre recombinase was expressed under the control of the Sox2 promoter confirmed that progenitor cells were recruited to the fibrotic lesion in response to bleomycin, and that this did not occur in CCN2-knockout mice. The ability of serum to induce α-smooth muscle actin expression in skin progenitor cells required the presence of CCN2. CONCLUSION Sox2-positive skin progenitor cells are required in order for bleomycin-induced skin fibrosis to occur, and CCN2 is required for the recruitment of these cells to the fibrotic lesion. Targeting stem cell recruitment or CCN2 may therefore represent a useful therapeutic approach in combating fibrotic skin disease.
Collapse
Affiliation(s)
- Shangxi Liu
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
138
|
Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2014; 2:634-650. [PMID: 25379176 PMCID: PMC4217222 DOI: 10.1039/c3bm60319a] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Wound healing results from complex signaling between cells and their environment in response to injury. Fibroblasts residing within the extracellular matrix (ECM) of various connective tissues are critical for matrix synthesis and repair. Upon injury or chronic insult, these cells activate into wound-healing cells, called myofibroblasts, and repair the damaged tissue through enzyme and protein secretion. However, misregulation and persistence of myofibroblasts can lead to uncontrolled accumulation of matrix proteins, tissue stiffening, and ultimately disease. Extracellular cues are important regulators of fibroblast activation and have been implicated in their persistence. Hydrogel-based culture models have emerged as useful tools to examine fibroblast response to ECM cues presented during these complex processes. In this Mini-Review, we will provide an overview of these model systems, which are built upon naturally-derived or synthetic materials, and mimic relevant biophysical and biochemical properties of the native ECM with different levels of control. Additionally, we will discuss the application of these hydrogel-based systems for the examination of fibroblast function and fate, including adhesion, migration, and activation, as well as approaches for mimicking both static and temporal aspects of extracellular environments. Specifically, we will highlight hydrogels that have been used to investigate the effects of matrix rigidity, protein binding, and cytokine signaling on fibroblast activation. Last, we will describe future directions for the design of hydrogels to develop improved synthetic models that mimic the complex extracellular environment.
Collapse
Affiliation(s)
- Megan E. Smithmyer
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Lisa A. Sawicki
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Chemical & Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
- Materials Science & Engineering , University of Delaware , Newark , DE 19716 , USA .
| |
Collapse
|
139
|
Magin CM, Alge DL, Gould ST, Anseth KS. Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv Healthc Mater 2014; 3:649-57. [PMID: 24459068 DOI: 10.1002/adhm.201300288] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/26/2013] [Indexed: 11/06/2022]
Abstract
Biophysical cues are widely recognized to influence cell phenotype. While this evidence was established using static substrates, there is growing interest in creating stimulus-responsive biomaterials that better recapitulate the dynamic extracellular matrix. Here, a clickable, photodegradable hydrogel substrate that allows the user to precisely control substrate elasticity and topography in situ is presented. The hydrogels are synthesized by reacting an 8-arm poly(ethylene glycol) alkyne with an azide-functionalized photodegradable crosslinker. The utility of this platform by exploiting its photoresponsive properties to modulate the phenotype of porcine aortic valvular interstitial cells (VICs) is demonstrated. First, VIC phenotype is monitored, in response to initial substratum modulus and static topographic cues. Higher modulus (E ≈ 15 kPa) substrates induce higher levels of activation (≈70% myofibroblasts) versus soft (E ≈ 3 kPa) substrates (≈20% myofibroblasts). Microtopographies that induce VIC alignment and elongation on low modulus substrates also stimulate activation. Finally, VIC phenotype is monitored in response to sequential in situ manipulations. The results illustrate that VIC activation on stiff surfaces (≈70% myofibroblasts) can be partially reversed by reducing surface modulus (≈30% myofibroblats) and subsequently re-activated by anisotropic topographies (≈60% myofibroblasts). Such dynamic substrates afford unique opportunities to decipher the complex role of matrix cues on the plasticity of VIC activation.
Collapse
Affiliation(s)
- Chelsea M. Magin
- Department of Chemical and Biological Engineering and the BioFrontiers Institute University of Colorado 596 UCB Boulder CO 80303舑0596 USA
| | - Daniel L. Alge
- Department of Chemical and Biological Engineering and the BioFrontiers Institute University of Colorado 596 UCB Boulder CO 80303舑0596 USA
- The Howard Hughes Medical Institute University of Colorado 596 UCB Boulder CO 80303舑1904 USA
| | - Sarah T. Gould
- Department of Chemical and Biological Engineering and the BioFrontiers Institute University of Colorado 596 UCB Boulder CO 80303舑0596 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute University of Colorado 596 UCB Boulder CO 80303舑0596 USA
- The Howard Hughes Medical Institute University of Colorado 596 UCB Boulder CO 80303舑1904 USA
| |
Collapse
|
140
|
Alimperti S, You H, George T, Agarwal SK, Andreadis ST. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo. J Cell Sci 2014; 127:2627-38. [PMID: 24741067 DOI: 10.1242/jcs.134833] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although soluble factors, such as transforming growth factor β1 (TGF-β1), induce mesenchymal stem cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage, the role of adherens junctions in this process is not well understood. In this study, we found that cadherin-11 but not cadherin-2 was necessary for MSC differentiation into SMCs. Cadherin-11 regulated the expression of TGF-β1 and affected SMC differentiation through a pathway that was dependent on TGF-β receptor II (TGFβRII) but independent of SMAD2 or SMAD3. In addition, cadherin-11 activated the expression of serum response factor (SRF) and SMC proteins through the Rho-associated protein kinase (ROCK) pathway. Engagement of cadherin-11 increased its own expression through SRF, indicative of the presence of an autoregulatory feedback loop that committed MSCs to the SMC fate. Notably, SMC-containing tissues (such as aorta and bladder) from cadherin-11-null (Cdh11(-/-)) mice showed significantly reduced levels of SMC proteins and exhibited diminished contractility compared with controls. This is the first report implicating cadherin-11 in SMC differentiation and contractile function in vitro as well as in vivo.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Hui You
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Teresa George
- Baylor College of Medicine, Department of Medicine, Section of Allergy, Immunology, and Rheumatology, Biology of Inflammation Center, One Baylor Plaza, Suite 672E, MS, BCM285, Houston, TX 77030, USA
| | - Sandeep K Agarwal
- Baylor College of Medicine, Department of Medicine, Section of Allergy, Immunology, and Rheumatology, Biology of Inflammation Center, One Baylor Plaza, Suite 672E, MS, BCM285, Houston, TX 77030, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
141
|
Valero C, Javierre E, García-Aznar JM, Gómez-Benito MJ. A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression. PLoS One 2014; 9:e92774. [PMID: 24681636 PMCID: PMC3969377 DOI: 10.1371/journal.pone.0092774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Wound healing is a process driven by cells. The ability of cells to sense mechanical stimuli from the extracellular matrix that surrounds them is used to regulate the forces that cells exert on the tissue. Stresses exerted by cells play a central role in wound contraction and have been broadly modelled. Traditionally, these stresses are assumed to be dependent on variables such as the extracellular matrix and cell or collagen densities. However, we postulate that cells are able to regulate the healing process through a mechanosensing mechanism regulated by the contraction that they exert. We propose that cells adjust the contraction level to determine the tissue functions regulating all main activities, such as proliferation, differentiation and matrix production. Hence, a closed-regulatory feedback loop is proposed between contraction and tissue formation. The model consists of a system of partial differential equations that simulates the evolution of fibroblasts, myofibroblasts, collagen and a generic growth factor, as well as the deformation of the extracellular matrix. This model is able to predict the wound healing outcome without requiring the addition of phenomenological laws to describe the time-dependent contraction evolution. We have reproduced two in vivo experiments to evaluate the predictive capacity of the model, and we conclude that there is feedback between the level of cell contraction and the tissue regenerated in the wound.
Collapse
Affiliation(s)
- Clara Valero
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Etelvina Javierre
- Centro Universitario de la Defensa de Zaragoza, Academia General Militar, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
142
|
Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol 2014; 70:47-55. [PMID: 24625635 DOI: 10.1016/j.yjmcc.2014.02.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/14/2023]
Abstract
Cardiac fibroblasts are the most abundant cell type in the mammalian heart and comprise approximately two-thirds of the total number of cardiac cell types. During development, epicardial cells undergo epithelial-mesenchymal-transition to generate cardiac fibroblasts that subsequently migrate into the developing myocardium to become resident cardiac fibroblasts. Fibroblasts form a structural scaffold for the attachment of cardiac cell types during development, express growth factors and cytokines and regulate proliferation of embryonic cardiomyocytes. In post natal life, cardiac fibroblasts play a critical role in orchestrating an injury response. Fibroblast activation and proliferation early after cardiac injury are critical for maintaining cardiac integrity and function, while the persistence of fibroblasts long after injury leads to chronic scarring and adverse ventricular remodeling. In this review, we discuss the physiologic function of the fibroblast during cardiac development and wound healing, molecular mediators of activation that could be possible targets for drug development for fibrosis and finally the use of reprogramming technologies for reversing scar. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
- Arjun Deb
- Division of Cardiology, Department of Medicine, Cardiovascular Research Laboratory, David Geffen School of Medicine at University of California, Los Angeles, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at University of California, Los Angeles, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, USA; Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, USA; Program in Molecular Cellular & Integrative Physiology, David Geffen School of Medicine at University of California, Los Angeles, USA.
| | - Eric Ubil
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
143
|
Nyp MF, Navarro A, Rezaiekhaligh MH, Perez RE, Mabry SM, Ekekezie II. TRIP-1 via AKT modulation drives lung fibroblast/myofibroblast trans-differentiation. Respir Res 2014; 15:19. [PMID: 24528651 PMCID: PMC3946032 DOI: 10.1186/1465-9921-15-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/11/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Myofibroblasts are the critical effector cells in the pathogenesis of pulmonary fibrosis which carries a high degree of morbidity and mortality. We have previously identified Type II TGFβ receptor interacting protein 1 (TRIP-1), through proteomic analysis, as a key regulator of collagen contraction in primary human lung fibroblasts--a functional characteristic of myofibroblasts, and the last, but critical step in the process of fibrosis. However, whether or not TRIP-1 modulates fibroblast trans-differentiation to myofibroblasts is not known. METHODS TRIP-1 expression was altered in primary human lung fibroblasts by siRNA and plasmid transfection. Transfected fibroblasts were then analyzed for myofibroblast features and function such as α-SMA expression, collagen contraction ability, and resistance to apoptosis. RESULTS The down-regulation of TRIP-1 expression in primary human lung fibroblasts induces α-SMA expression and enhances resistance to apoptosis and collagen contraction ability. In contrast, TRIP-1 over-expression inhibits α-SMA expression. Remarkably, the effects of the loss of TRIP-1 are not abrogated by blockage of TGFβ ligand activation of the Smad3 pathway or by Smad3 knockdown. Rather, a TRIP-1 mediated enhancement of AKT phosphorylation is the implicated pathway. In TRIP-1 knockdown fibroblasts, AKT inhibition prevents α-SMA induction, and transfection with a constitutively active AKT construct drives collagen contraction and decreases apoptosis. CONCLUSIONS TRIP-1 regulates fibroblast acquisition of phenotype and function associated with myofibroblasts. The importance of this finding is it suggests TRIP-1 expression could be a potential target in therapeutic strategy aimed against pathological fibrosis.
Collapse
Affiliation(s)
- Michael F Nyp
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Angels Navarro
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Mohammad H Rezaiekhaligh
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Ricardo E Perez
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Sherry M Mabry
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Ikechukwu I Ekekezie
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Children’s Mercy Hospitals & Clinics, 2401 Gillham Road, 64108 Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
144
|
Romana-Souza B, Assis de Brito TL, Pereira GR, Monte-Alto-Costa A. Gonadal hormones differently modulate cutaneous wound healing of chronically stressed mice. Brain Behav Immun 2014; 36:101-10. [PMID: 24157428 DOI: 10.1016/j.bbi.2013.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022] Open
Abstract
Gonadal hormones influence physiological responses to stress and cutaneous wound healing. The aim of this study was to investigate the role of gonadal hormones on cutaneous wound healing in chronically stressed mice. Male and female mice were gonadectomized, and after 25 days, they were spun daily at 115 rpm for 15 min every hour until euthanasia. Twenty-eight days after the gonadectomy, an excisional lesion was created. The animals were killed 7 or 14 days after wounding, and the lesions were collected. Myofibroblast density, macrophage number, catecholamine level, collagen deposition, and blood vessel number were evaluated. In the intact and gonadectomized groups, stress increased the plasma catecholamine levels in both genders. In intact groups, stress impaired wound contraction and re-epithelialization and increased the macrophage number in males but not in females. In addition, stress compromised myofibroblastic differentiation and blood vessel formation and decreased collagen deposition in males but not in females. In contrast to intact mice, wound healing in ovariectomized female mice was affected by stress, while wound healing in castrated male mice was not. In conclusion, gender differences contribute to the cutaneous wound healing of chronically stressed mice. In addition, androgens contribute to the stress-induced impairment of the healing of cutaneous wounds but estrogens inhibit it.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Animal Biology, Rural Federal University of Rio de Janeiro, Seropédica, Brazil; Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Gabriela R Pereira
- Department of Animal Biology, Rural Federal University of Rio de Janeiro, Seropédica, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
145
|
Mol A, Smits AIPM, Bouten CVC, Baaijens FPT. Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices 2014; 6:259-75. [DOI: 10.1586/erd.09.12] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
146
|
Gardner A, Borthwick LA, Fisher AJ. Lung epithelial wound healing in health and disease. Expert Rev Respir Med 2014; 4:647-60. [DOI: 10.1586/ers.10.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
147
|
Cheing GLY, Li X, Huang L, Kwan RLC, Cheung KK. Pulsed electromagnetic fields (PEMF) promote early wound healing and myofibroblast proliferation in diabetic rats. Bioelectromagnetics 2014; 35:161-9. [DOI: 10.1002/bem.21832] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Gladys Lai-Ying Cheing
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hong Kong Special Administrative Region; Hong Kong China
| | - Xiaohui Li
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hong Kong Special Administrative Region; Hong Kong China
- Department of Endocrinology; First Affiliated Hospital of Xi'an Jiaotong University College of Medicine; Xi'an China
| | - Lin Huang
- Department of Surgery; Division of Plastic; Reconstructive and Aesthetic Surgery; The Chinese University of Hong Kong; Prince of Wales Hospital; Hong Kong Special Administrative Region; Hong Kong China
| | - Rachel Lai-Chu Kwan
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hong Kong Special Administrative Region; Hong Kong China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences; The Hong Kong Polytechnic University; Hong Kong Special Administrative Region; Hong Kong China
| |
Collapse
|
148
|
Abdalla M, Goc A, Segar L, Somanath PR. Akt1 mediates α-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J Biol Chem 2013; 288:33483-93. [PMID: 24106278 DOI: 10.1074/jbc.m113.504290] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblast (MF) differentiation, marked by the de novo expression of smooth muscle α-actin (αSMA) stress fibers, plays a central role in wound healing and its persistence is a hallmark of fibrotic diseases. We have previously shown that Akt1 is necessary for wound healing through matrix regulation. However, the role of Akt1 in regulating MF differentiation with implications in fibrosis remains poorly defined. Here, we show that sustained activation of Akt1 was associated with a 6-fold increase in αSMA expression and assembly; an effect that is blunted in cells expressing inactive Akt1 despite TGFβ stimulation. Mechanistically, Akt1 mediated TGFβ-induced αSMA synthesis through the contractile gene transcription factors myocardin and serum response factor (SRF), independent of mammalian target of rapamycin in mouse embryonic fibroblasts and fibroblasts overexpressing active Akt1. Akt1 deficiency was associated with decreased myocardin, SRF, and αSMA expressions in vivo. Furthermore, sustained Akt1-induced αSMA synthesis markedly decreased upon RNA silencing of SRF and myocardin. In addition to its integral role in αSMA synthesis, we also show that Akt1 mediates fibronectin splice variant expression, which is required for MF differentiation, as well as total fibronectin, which generates the contractile force that promotes MF differentiation. In summary, our results constitute evidence that sustained Akt1 activation is crucial for TGFβ-induced MF formation and persistent differentiation. These findings highlight Akt1 as a novel potential therapeutic target for fibrotic diseases.
Collapse
Affiliation(s)
- Maha Abdalla
- From the Center for Pharmacy and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912
| | | | | | | |
Collapse
|
149
|
de Jonge N, Muylaert DEP, Fioretta ES, Baaijens FPT, Fledderus JO, Verhaar MC, Bouten CVC. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs. PLoS One 2013; 8:e73161. [PMID: 24023827 PMCID: PMC3759389 DOI: 10.1371/journal.pone.0073161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/18/2013] [Indexed: 01/22/2023] Open
Abstract
Aims Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs) are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT). We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1). Methods and Results A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. Conclusions Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Nicky de Jonge
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dimitri E. P. Muylaert
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emanuela S. Fioretta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P. T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- * E-mail:
| |
Collapse
|
150
|
Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 2013; 28:904-16. [DOI: 10.1038/leu.2013.254] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022]
|