101
|
Ferraroni M, Carta F, Scozzafava A, Supuran CT. Thioxocoumarins Show an Alternative Carbonic Anhydrase Inhibition Mechanism Compared to Coumarins. J Med Chem 2015; 59:462-73. [DOI: 10.1021/acs.jmedchem.5b01720] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marta Ferraroni
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- NEUROFARBA
Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
102
|
Arnason T, Harkness T. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1. Cancers (Basel) 2015; 7:2063-82. [PMID: 26501324 PMCID: PMC4695877 DOI: 10.3390/cancers7040877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer.
Collapse
Affiliation(s)
- Terra Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Correspondence: ; Tel.:+1-306-844-1119; Fax: +1-306-844-1512
| | - Troy Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
103
|
Lewis CA, Brault C, Peck B, Bensaad K, Griffiths B, Mitter R, Chakravarty P, East P, Dankworth B, Alibhai D, Harris AL, Schulze A. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme. Oncogene 2015; 34:5128-40. [PMID: 25619842 DOI: 10.1038/onc.2014.439] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 11/04/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022]
Abstract
Oxygen and nutrient limitation are common features of the tumor microenvironment and are associated with cancer progression and induction of metastasis. The inefficient vascularization of tumor tissue also limits the penetration of other serum-derived factors, such as lipids and lipoproteins, which can be rate limiting for cell proliferation and survival. Here we have investigated the effect of hypoxia and serum deprivation on sterol regulatory element-binding protein (SREBP) activity and the expression of lipid metabolism genes in human glioblastoma multiforme (GBM) cancer cells. We found that SREBP transcriptional activity was induced by serum depletion both in normoxic and hypoxic cells and that activation of SREBP was required to maintain the expression of fatty acid and cholesterol metabolism genes under hypoxic conditions. Moreover, expression of stearoyl-CoA desaturase, the enzyme required for the generation of mono-unsaturated fatty acids, and fatty acid-binding protein 7, a regulator of glioma stem cell function, was strongly dependent on SREBP function. Inhibition of SREBP function blocked lipid biosynthesis in hypoxic cancer cells and impaired cell survival under hypoxia and in a three-dimensional spheroid model. Finally, gene expression analysis revealed that SREBP defines a gene signature that is associated with poor survival in glioblastoma.
Collapse
Affiliation(s)
- C A Lewis
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | - C Brault
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - B Peck
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | - K Bensaad
- CRUK Growth Factor Group, The Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| | - B Griffiths
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | - R Mitter
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - P Chakravarty
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - P East
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - B Dankworth
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - D Alibhai
- Light Microscopy Core, Cancer Research UK London Research Institute, London, UK
| | - A L Harris
- CRUK Growth Factor Group, The Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| | - A Schulze
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
- Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken Würzburg, Germany
| |
Collapse
|
104
|
Technical innovation in adjuvant radiotherapy: Evolution and evaluation of new treatments for today and tomorrow. Breast 2015; 24 Suppl 2:S114-9. [PMID: 26429399 DOI: 10.1016/j.breast.2015.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent innovations in breast cancer radiotherapy include intensity modulated radiotherapy, brachytherapy and intraoperative radiotherapy and current trials are seeking to evaluate their value in optimizing local control while maintaining cosmetic effects. Future clinical dividends in local control and survival may come from the identification of molecular signatures of breast cancer radiosensitivity, the development of predictive signatures and identification of immunohistochemical markers of risk of local recurrence. The importance of tumour heterogeneity is being increasingly recognized as an important factor in determining radiotherapy response and an improved understanding of the biology of the tumour microenvironment may identify targets that allow enhanced radiosensitisation or reversal of radioresistance when inhibited. This review describes recent developments in these areas.
Collapse
|
105
|
Rankin GM, Vullo D, Supuran CT, Poulsen SA. Phosphate Chemical Probes Designed for Location Specific Inhibition of Intracellular Carbonic Anhydrases. J Med Chem 2015; 58:7580-90. [DOI: 10.1021/acs.jmedchem.5b01228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Daniela Vullo
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Laboratorio di Chimica Bioinorganica,Università degli Studi di Firenze, Via della Lastruccia 3, Rm. 188, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
106
|
Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci Rep 2015; 5:13605. [PMID: 26337752 PMCID: PMC4559800 DOI: 10.1038/srep13605] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
The most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells. Under hypoxia, expression of MCT1 and MCT4 remained unchanged, while expression of carbonic anhydrase IX (CAIX) was greatly enhanced. Our results show that CAIX augments MCT1 transport activity by a non-catalytic interaction. Mutation studies in Xenopus oocytes indicate that CAIX, via its intramolecular H+-shuttle His200, functions as a “proton-collecting/distributing antenna” to facilitate rapid lactate flux via MCT1. Knockdown of CAIX significantly reduced proliferation of cancer cells, suggesting that rapid efflux of lactate and H+, as enhanced by CAIX, contributes to cancer cell survival under hypoxic conditions.
Collapse
|
107
|
Exploring new Probenecid-based carbonic anhydrase inhibitors: Synthesis, biological evaluation and docking studies. Bioorg Med Chem 2015; 23:5311-8. [DOI: 10.1016/j.bmc.2015.07.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
|
108
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
109
|
De Luca V, Del Prete S, Vullo D, Carginale V, Di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. J Enzyme Inhib Med Chem 2015. [DOI: 10.3109/14756366.2015.1069289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy,
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | | | | | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
110
|
Taslimi P, Gülçin İ, Öztaşkın N, Çetinkaya Y, Göksu S, Alwasel SH, Supuran CT. The effects of some bromophenols on human carbonic anhydrase isoenzymes. J Enzyme Inhib Med Chem 2015; 31:603-7. [DOI: 10.3109/14756366.2015.1054820] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Parham Taslimi
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey,
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey,
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia,
| | - Necla Öztaşkın
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey,
| | - Yasin Çetinkaya
- Department of Food Technology, Oltu Vocational School, Atatürk University, Oltu, Erzurum, Turkey,
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey,
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia,
| | - Claudiu T. Supuran
- Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy, and
- Section of Pharmaceutical and Nutriceutical Sciences, Neurofarba Department, Universita Degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
111
|
Loss of fatty acid synthase suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway. J Cancer Res Clin Oncol 2015; 142:59-72. [PMID: 26109148 DOI: 10.1007/s00432-015-2000-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023]
Abstract
PURPOSE Altered cellular metabolism has received increased attention as an important hallmark of cancer. Activation of FASN has been found to be involved in many human tumors. Despite extensive research in FASN function on cancer, the underlying mechanism is not entirely understood yet. METHODS Cerulenin was used to suppress the FASN expression in human colorectal cancer cell lines (HT29 and LoVo). Expression of PI3K, Akt, p-Akt, mTOR, p-mTOR, FASN, and AZGP1 was measured using western blotting and qPCR. ATP and lactic acid were assessed to investigate the activation of energy metabolism. Cell cytotoxicity assay was studied by cell counting kit-8 assay. The capacity of cell proliferation and migration was investigated by clonogenic and invasion assay. Analysis of apoptosis and the cell cycle was detected by flow cytometry. RESULTS We found that the expression of FASN was down-regulated, while the expression of PI3K, p-Akt, p-mTOR, and AZGP1 was down-regulated in HT29 and LoVo cells treated with FASN inhibitor. Proliferation was reduced in FASN inhibitor-treated cells, which is consistent with an increased apoptosis rate. Furthermore, the migration of FASN inhibitor-treated cells was decreased and the content of ATP and lactic acid was also dropped. CONCLUSION These findings suggest that inhibited FASN suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway. The results have paved the way to understand the relations of FASN, mTOR signaling pathway, and energy metabolism in colorectal cancer cells.
Collapse
|
112
|
Baenke F, Dubuis S, Brault C, Weigelt B, Dankworth B, Griffiths B, Jiang M, Mackay A, Saunders B, Spencer-Dene B, Ros S, Stamp G, Reis-Filho JS, Howell M, Zamboni N, Schulze A. Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. J Pathol 2015; 237:152-65. [DOI: 10.1002/path.4562] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/23/2015] [Accepted: 05/04/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Franziska Baenke
- Gene Expression Analysis Laboratory; Cancer Research UK London Research Institute; UK
| | | | - Charlene Brault
- Department of Biochemistry and Molecular Biology; Theodor-Boveri-Institute; Biocentre Am Hubland Würzburg Germany
| | - Britta Weigelt
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York NY, USA
| | - Beatrice Dankworth
- Department of Biochemistry and Molecular Biology; Theodor-Boveri-Institute; Biocentre Am Hubland Würzburg Germany
| | - Beatrice Griffiths
- Gene Expression Analysis Laboratory; Cancer Research UK London Research Institute; UK
| | - Ming Jiang
- High Throughput Screening Facility; Cancer Research UK London Research Institute; UK
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics; Institute of Cancer Research; Sutton Surrey UK
| | - Becky Saunders
- High Throughput Screening Facility; Cancer Research UK London Research Institute; UK
| | | | - Susana Ros
- Gene Expression Analysis Laboratory; Cancer Research UK London Research Institute; UK
| | - Gordon Stamp
- Experimental Histopathology; Cancer Research UK London Research Institute; UK
| | - Jorge S Reis-Filho
- Department of Pathology; Memorial Sloan Kettering Cancer Center; New York NY, USA
| | - Michael Howell
- High Throughput Screening Facility; Cancer Research UK London Research Institute; UK
| | - Nicola Zamboni
- Department of Biochemistry and Molecular Biology; Theodor-Boveri-Institute; Biocentre Am Hubland Würzburg Germany
| | - Almut Schulze
- Gene Expression Analysis Laboratory; Cancer Research UK London Research Institute; UK
- Department of Biochemistry and Molecular Biology; Theodor-Boveri-Institute; Biocentre Am Hubland Würzburg Germany
- Comprehensive Cancer Centre Mainfranken; Würzburg Germany
| |
Collapse
|
113
|
Heidtmann H, Ruminot I, Becker HM, Deitmer JW. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859. Eur J Pharmacol 2015; 762:344-9. [PMID: 26027796 DOI: 10.1016/j.ejphar.2015.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The synthetic compound N-cyanosulphonamide S0859 has been described as a selective inhibitor of sodium-bicarbonate cotransporters (NBC, SLC4) in mammalian heart (Ch'en et al., 2008). First, for comparison, the electrogenic human NBCe1 (SLC4A4) was heterologously expressed in Xenopus laevis oocytes, where its transport activity was inhibited by S0859 with an IC50 of 9µM. The activity of monocarboxylate transporter (MCT) isoforms 1, 2, and 4 (SLC16A1, SLC16A7, SLC16A3), which transport lactate, pyruvate and ketone bodies, were also heterologously expressed in Xenopus oocytes, and their transport activity was similarly and reversibly inhibited by S0859 with an IC50 of 4-10µM. Partial inhibition of lactate transport by S0859 (50µM) was also obtained in cultured astrocytes of mice. Thus, S0859 appears to be an inhibitor of anion transport with a broader spectrum than previously thought, and may also interfere with cellular metabolite uptake/release.
Collapse
Affiliation(s)
- Hella Heidtmann
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, P.B. 3049, D-67653 Kaiserslautern, Germany
| | - Iván Ruminot
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, P.B. 3049, D-67653 Kaiserslautern, Germany
| | - Holger M Becker
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, P.B. 3049, D-67653 Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, P.B. 3049, D-67653 Kaiserslautern, Germany.
| |
Collapse
|
114
|
Bozdag M, Carta F, Vullo D, Akdemir A, Isik S, Lanzi C, Scozzafava A, Masini E, Supuran CT. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action. Bioorg Med Chem 2015; 23:2368-76. [DOI: 10.1016/j.bmc.2015.03.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
|
115
|
Supuran CT, Winum JY. Designing carbonic anhydrase inhibitors for the treatment of breast cancer. Expert Opin Drug Discov 2015; 10:591-7. [PMID: 25891195 DOI: 10.1517/17460441.2015.1038235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) IX is one of the proteins that are involved in cancerogenesis in hypoxic breast tumors. Indeed, it is present in high amounts in hypoxic tumor cells, where it plays a crucial role in metabolic reprogramming due to the scarcity of oxygen, triggered by the hypoxia inducible factor 1 transcription factor. In such tumors, CA IX is involved, along with other proteins, in tumor pH regulation and its survival in a harsh environment (including hypoxia and acidity). CA IX is also validated as an imaging and treatment target for hypoxic tumors and metastasis. AREAS COVERED In this review, the authors highlight the wealth of CA IX inhibitors currently in the literature. This includes the two most investigated classes of compounds being the sulfonamides and the coumarins, including their isosteres. EXPERT OPINION The most advanced CA IX inhibitors candidates, which demonstrate antimetastatic activity in breast cancer, are the sulfonamides, with one compound (SLC-0111) currently in Phase I clinical development. The fact that this first inhibitor has progressed could increase interest in the development of conceptually novel antitumor/antimetastic drugs belonging to the CA inhibitors class.
Collapse
Affiliation(s)
- Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences , Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence , Italy
| | | |
Collapse
|
116
|
Weiss JT, Carragher NO, Unciti-Broceta A. Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy. Sci Rep 2015; 5:9329. [PMID: 25788464 PMCID: PMC4365405 DOI: 10.1038/srep09329] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Herein we report the development and biological screening of a bioorthogonal palladium-labile prodrug of the nucleoside analogue floxuridine, a potent antineoplastic drug used in the clinic to treat advanced cancers. N-propargylation of the N3 position of its uracil ring resulted in a vast reduction of its biological activity (~6,250-fold). Cytotoxic properties were bioorthogonally rescued in cancer cell culture by heterogeneous palladium chemistry both in normoxia and hypoxia. Within the same environment, the reported chemo-reversible prodrug exhibited up to 1,450-fold difference of cytotoxicity whether it was in the absence or presence of the extracellular palladium source, underlining the precise modulation of bioactivity enabled by this bioorthogonally-activated prodrug strategy.
Collapse
Affiliation(s)
- Jason T Weiss
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| |
Collapse
|
117
|
Vullo D, De Luca V, Del Prete S, Carginale V, Scozzafava A, Capasso C, Supuran CT. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune. Bioorg Med Chem 2015; 23:1728-34. [PMID: 25773015 DOI: 10.1016/j.bmc.2015.02.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 02/09/2023]
Abstract
A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes.
Collapse
Affiliation(s)
- Daniela Vullo
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di ChimicaBioinorganica, Polo Scientifico, Via della Lastruccia3, 50019 Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Sonia Del Prete
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di ChimicaBioinorganica, Polo Scientifico, Via della Lastruccia3, 50019 Sesto Fiorentino, Florence, Italy; Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Vincenzo Carginale
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy
| | - Andrea Scozzafava
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di ChimicaBioinorganica, Polo Scientifico, Via della Lastruccia3, 50019 Sesto Fiorentino, Florence, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 81, Napoli, Italy.
| | - Claudiu T Supuran
- Università degliStudi di Firenze, Dipartimento Di Chimica, Laboratorio di ChimicaBioinorganica, Polo Scientifico, Via della Lastruccia3, 50019 Sesto Fiorentino, Florence, Italy; Università degliStudi di Firenze, DipartimentoNeurofarba, Sezione di ScienzeFarmaceutiche, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
118
|
Carta F, Di Cesare Mannelli L, Pinard M, Ghelardini C, Scozzafava A, McKenna R, Supuran CT. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015; 23:1828-40. [PMID: 25766630 DOI: 10.1016/j.bmc.2015.02.027] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
A series of benzene sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors which incorporate lipophilic 4-alkoxy- and 4-aryloxy moieties, together with several derivatives of ethoxzolamide and sulfanilamide are reported. These derivatives were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) of which multiple isoforms are known, and some appear to be involved in pain. These sulfonamides showed modest inhibition against the cytosolic isoform CA I, but were generally effective, low nanomolar CA II, VII, IX and XII inhibitors. X-ray crystallographic data for the adduct of several such sulfonamides with CA II allowed us to rationalize the good inhibition data. In a mice model of neuropathic pain induced by oxaliplatin, one of the strong CA II/VII inhibitors reported here induced a long lasting pain relieving effect, a fact never observed earlier. This is the first report of rationally designed sulfonamide CA inhibitors with pain effective modulating effects.
Collapse
Affiliation(s)
- Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmacologia, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Melissa Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Carla Ghelardini
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Farmacologia, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Andrea Scozzafava
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
119
|
Hojjat-Farsangi M. Novel and emerging targeted-based cancer therapy agents and methods. Tumour Biol 2015; 36:543-56. [PMID: 25663495 DOI: 10.1007/s13277-015-3184-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
After several decades of uncovering the cancer features and following the improvement of therapeutic agents, however cancer remains as one of the major reasons of mortality. Chemotherapy is one of the main treatment options and has significantly improved the overall survival of cancer patients, but chemotherapeutic agents are highly toxic for normal cells. Therefore, there is a great unmet medical need to develop new therapeutic principles and agents. Targeted-based cancer therapy (TBCT) agents and methods have revolutionized the cancer treatment efficacy. Monoclonal antibodies (mAbs) and small molecule inhibitors (SMIs) are among the most effective agents of TBCT. These drugs have improved the prognosis and survival of cancer patients; however, the therapeutic resistance has subdued the effects. Several mechanisms lead to drug resistance such as mutations in the drug targets, activation of compensatory pathways, and intrinsic or acquired resistance of cancer stem cells. Therefore, new modalities, improving current generation of inhibitors and mAbs, and optimizing the combinational therapy regimens are necessary to decrease the current obstacles in front of TBCT. Moreover, the success of new TBCT agents such as mAbs, SMIs, and immunomodulatory agents has sparked further therapeutic modalities with novel targets to inhibit. Due to the lack of cumulative information describing different agents and methods of TBCT, this review focuses on the most important agents and methods of TBCT that are currently under investigation.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, SE-171 76, Stockholm, Sweden,
| |
Collapse
|
120
|
Tanpure RP, Ren B, Peat TS, Bornaghi LF, Vullo D, Supuran CT, Poulsen SA. Carbonic anhydrase inhibitors with dual-tail moieties to match the hydrophobic and hydrophilic halves of the carbonic anhydrase active site. J Med Chem 2015; 58:1494-501. [PMID: 25581127 DOI: 10.1021/jm501798g] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present a new approach to carbonic anhydrase II (CA II) inhibitor design that enables close interrogation of the regions of the CA active site where there is the greatest variability in amino acid residues among the different CA isozymes. By appending dual tail groups onto the par excellence CA inhibitor acetazolamide, compounds that may interact with the distinct hydrophobic and hydrophilic halves of the CA II active site were prepared. The dual-tail combinations selected included (i) two hydrophobic moieties, (ii) two hydrophilic moieties, and (iii) one hydrophobic and one hydrophilic moiety. The CA enzyme inhibition profile as well as the protein X-ray crystal structure of compound 3, comprising one hydrophobic and one hydrophilic tail moiety, in complex with CA II is described. This novel dual-tail approach has provided an enhanced opportunity to more fully exploit interactions with the CA active site by enabling these molecules to interact with the distinct halves of the active site. In addition to the dual-tail compounds, a corresponding set of single-tail derivatives was synthesized, enabling a comparative analysis of the single-tail versus dual-tail compound CA inhibition profile.
Collapse
Affiliation(s)
- Rajendra P Tanpure
- Eskitis Institute for Drug Discovery, Griffith University , Nathan, Queensland 4111, Australia
| | | | | | | | | | | | | |
Collapse
|
121
|
Graham RM, Thompson JW, Webster KA. Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget 2015; 5:1162-73. [PMID: 24811485 PMCID: PMC4012732 DOI: 10.18632/oncotarget.1699] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pro-apoptotic protein Bnip3 is induced by hypoxia and is present in the core regions of most solid tumors. Bnip3 induces programmed necrosis by an intrinsic caspase independent mitochondrial pathway. Many tumor cells have evolved pathways to evade Bnip3-mediated death attesting to the physiological relevance of the survival threat imposed by Bnip3. We have reported that acidosis can trigger the Bnip3 death pathway in hypoxic cells therefore we hypothesized that manipulation of intracellular pH by pharmacological inhibition of the vacuolar (v)ATPase proton pump, a significant pH control pathway, may activate Bnip3 and promote death of hypoxic cells within the tumor. Here we confirm that bafilomycin A1 (BafA1), a selective vATPase inhibitor, significantly increased death of breast cancer cells in a hypoxia and Bnip3-dependent manner and significantly reduced tumor growth in MCF7 and MDA-MB-231 mouse xenografts. Combined treatment of cells with BafA1 and the ERK1/2 inhibitor U0126 further augmented cell death. Combined treatment of mice containing MDA-MB-231 xenografts with BafA1 and the ERK1/2 inhibitor sorafenib was superior to either treatment alone and supported tumor regression. BafA1 and sorafenib treatments alone reduced MDA-MB-231 cell metastasis and again the combination was significantly more effective than either treatment alone and was without apparent side effects. These results present a novel mechanism to destroy hypoxic tumor cells that may help reverse the resistance of hypoxic tumors to radiation and chemotherapy and perhaps target tumor stem cells.
Collapse
|
122
|
Webb TE, Hughes A, Smalley DS, Spriggs KA. An internal ribosome entry site in the 5' untranslated region of epidermal growth factor receptor allows hypoxic expression. Oncogenesis 2015; 4:e134. [PMID: 25622307 PMCID: PMC4275558 DOI: 10.1038/oncsis.2014.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022] Open
Abstract
The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates.
Collapse
Affiliation(s)
- T E Webb
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - A Hughes
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D S Smalley
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - K A Spriggs
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
123
|
Majeed W, Aslam B, Javed I, Khaliq T, Muhammad F, Ali A, Raza A. Breast cancer: major risk factors and recent developments in treatment. Asian Pac J Cancer Prev 2015; 15:3353-8. [PMID: 24870721 DOI: 10.7314/apjcp.2014.15.8.3353] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common in women worldwide, with some 5-10% of all cases due to inherited mutations of BRCA1 and BRCA2 genes. Obesity, hormone therapy and use of alcohol are possible causes and over-expression of leptin in adipose tissue may also play a role. Normally surgery, radiation therapy and chemotherapy allow a good prognosis where screening measures are in place. New hope in treatment measures include adjuvant therapy, neoadjuvant therapy, and introduction of mono-clonal antibodies and enzyme inhibitors.
Collapse
Affiliation(s)
- Wafa Majeed
- Department of Physiology and Pharmacology, Veterinary Science, University of Agriculture, Faisalabad, Pakistan E-mail :
| | | | | | | | | | | | | |
Collapse
|
124
|
Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics 2014; 104:477-81. [DOI: 10.1016/j.ygeno.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/10/2014] [Accepted: 10/24/2014] [Indexed: 01/27/2023]
|
125
|
Bozdag M, Pinard M, Carta F, Masini E, Scozzafava A, McKenna R, Supuran CT. A class of 4-sulfamoylphenyl-ω-aminoalkyl ethers with effective carbonic anhydrase inhibitory action and antiglaucoma effects. J Med Chem 2014; 57:9673-86. [PMID: 25358036 PMCID: PMC4255726 DOI: 10.1021/jm501497m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
We
report a series of 4-sulfamoylphenyl-ω-aminoalkyl ethers
as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The structure–activity
relationship was drawn for the inhibition of four physiologically
relevant isoforms: hCA I, II, IX, and XII. Many of these compounds
were highly effective, low nanomolar inhibitors of all CA isoforms,
whereas several isoform-selective were also identified. X-ray crystal
structures of two new sulfonamides bound to the physiologically dominant
CA II isoform showed the tails of these derivatives bound within the
hydrophobic half of the enzyme active site through van der Waals contacts
with Val135, Leu198, Leu204, Trp209, Pro201, and Pro202 amino acids.
One of the highly water-soluble compound (as trifluoroacetate salt)
showed effective IOP lowering properties in an animal model of glaucoma.
Several fluorescent sulfonamides incorporating either the fluorescein-thiourea
(7a–c) or tetramethylrhodamine-thiourea
(9a,b) moieties were also obtained and showed
interesting CA inhibitory properties for the tumor-associated isoforms
CA IX and XII.
Collapse
Affiliation(s)
- Murat Bozdag
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Rm 188, Università degli Studi di Firenze , Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | | | | | | | | | | | | |
Collapse
|
126
|
Abdel-Aziz AAM, El-Azab AS, Ceruso M, Supuran CT. Carbonic anhydrase inhibitory activity of sulfonamides and carboxylic acids incorporating cyclic imide scaffolds. Bioorg Med Chem Lett 2014; 24:5185-9. [DOI: 10.1016/j.bmcl.2014.09.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
|
127
|
Tang XJ, Han M, Yang B, Shen YQ, He ZG, Xu DH, Gao JQ. Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Int J Pharm 2014; 477:536-45. [PMID: 25445532 DOI: 10.1016/j.ijpharm.2014.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022]
Abstract
Camptothecin (CPT) nanosuspension was prepared by anti-solvent precipitation with TPGS as stabilizer to improve the solubility, stability and antitumor activity of CPT. And an increased solubility, stability and dissolution rate was achieved after nanosuspension being prepared. While, enhanced intracellular accumulation and cellular cytotoxicity was also observed for CPT nanosuspension than that of CPT solution.In addition, nanosuspension could increase bioavailability and intratumor accumulation of CPT in vivo after intravenous administration, and then produced a much higher antitumor effect and biocompatibility than that of CPT solution. Meanwhile, an enhanced cellular CPT uptake in hypoxic or acid conditions could also be observed for nanosuspension. As a result, nanosuspension represents a potentially feasible formation for insoluble drug in antitumor research.
Collapse
Affiliation(s)
- Xin-Jiang Tang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Min Han
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhong-Gui He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Dong-Hang Xu
- The Second Affiliated Hospital of Zhejiang University, Hangzhou 310001, PR China
| | - Jian-Qing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
128
|
Bozdag M, Ferraroni M, Carta F, Vullo D, Lucarini L, Orlandini E, Rossello A, Nuti E, Scozzafava A, Masini E, Supuran CT. Structural Insights on Carbonic Anhydrase Inhibitory Action, Isoform Selectivity, and Potency of Sulfonamides and Coumarins Incorporating Arylsulfonylureido Groups. J Med Chem 2014; 57:9152-67. [DOI: 10.1021/jm501314c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Murat Bozdag
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Fabrizio Carta
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Laura Lucarini
- Sezione di Farmacologia, Dipartimento di Neuroscienze,
Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno,
6, 56126 Pisa, Italy
| | - Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno,
6, 56126 Pisa, Italy
| | - Andrea Scozzafava
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Emanuela Masini
- Sezione di Farmacologia, Dipartimento di Neuroscienze,
Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Claudiu T. Supuran
- Laboratorio di Chimica
Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
- Sezione di Scienze Farmaceutiche, Dipartimento
di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino
(NEUROFARBA), Università degli Studi di Firenze, Via Ugo Schiff
6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
129
|
Alka K, Casey JR. Bicarbonate transport in health and disease. IUBMB Life 2014; 66:596-615. [PMID: 25270914 DOI: 10.1002/iub.1315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
130
|
Wolf IML, Fan Z, Rauh M, Seufert S, Hore N, Buchfelder M, Savaskan NE, Eyüpoglu IY. Histone deacetylases inhibition by SAHA/Vorinostat normalizes the glioma microenvironment via xCT equilibration. Sci Rep 2014; 4:6226. [PMID: 25228443 PMCID: PMC4165982 DOI: 10.1038/srep06226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas are characterized by neurodegenerative actions leading to the destruction of surrounding brain parenchyma. The disturbance in glutamate homeostasis caused by increased expression of the glutamate transporter xCT plays a key role in glioma progression. We demonstrate that the HDAC-inhibitor SAHA specifically inhibits the xCT-transporter expression. Thereby, tumor cell stress is engendered, marked by increase in ROS. Moreover, SAHA dependent xCT-reduction correlates with the inhibition of ATF4-expression, a factor known to foster xCT expression. Since xCT/system Xc- is pivotal for the brain tumor microenvironment, normalization of this system is a key in the management of malignant gliomas. To date, the problem lay in the inability to specifically target xCT due to the ubiquitous expression of the xCT-transporter—i.e. in non-cancerously transformed cells too—as well as its essential role in physiological CNS processes. Here, we show xCT-transporter equilibration through SAHA is specific for malignant brain tumors whereas SAHA does not affect the physiological xCT levels in healthy brain parenchyma. Our data indicate that SAHA operates on gliomas specifically via normalizing xCT expression which in consequence leads to reduced extracellular glutamate levels. This in turn causes a marked reduction in neuronal cell death and normalized tumor microenvironment.
Collapse
Affiliation(s)
- Ines M L Wolf
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Zheng Fan
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg
| | | | - Nirjhar Hore
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU)
| | - Michael Buchfelder
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU)
| | - Nic E Savaskan
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| | - Ilker Y Eyüpoglu
- 1] Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg (FAU) [2]
| |
Collapse
|
131
|
Colliez F, Neveu MA, Magat J, Cao Pham TT, Gallez B, Jordan BF. Qualification of a Noninvasive Magnetic Resonance Imaging Biomarker to Assess Tumor Oxygenation. Clin Cancer Res 2014; 20:5403-11. [DOI: 10.1158/1078-0432.ccr-13-3434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
132
|
Alafeefy AM, Abdel-Aziz HA, Carta F, Supuran CT, Pathak SK, Prasad O, Sinha L. Exploring QSARs of some benzenesulfonamides incorporating cyanoacrylamide moieties as a carbonic anhydrase inhibitors (specifically against tumor-associated isoforms IX and XII). J Enzyme Inhib Med Chem 2014; 30:519-23. [PMID: 25198893 DOI: 10.3109/14756366.2014.948435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Benzenesulfonamides incorporating cyanoacrylamide moieties with activity against tumour-associated human (h) isoforms hCA IX and XII (which are validated antitumor targets) were investigated for their quantitative structural activity relationships (QSAR). Multiple linear regression analysis was used to develop model relationships between molecular descriptors and inhibition constants (Ki). The molecular geometry optimization were performed on all molecules at DFT-B3LYP/6-311++G(d,p) level. Over 1250 molecular descriptors were calculated using Gaussian 09, Hyperchem and EDRAGON programs. Multiple linear regression equations have been developed and validated using leave-one-out cross-validated technique. The derived QSAR models are found to be statistically significant and show good predictive ability.
Collapse
Affiliation(s)
- Ahmed M Alafeefy
- Department of Pharmaceutical Chemistry, College of Pharmacy, Salman Bin Abdulaziz University , Alkharj , Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
133
|
D’Ascenzio M, Carradori S, Secci D, Vullo D, Ceruso M, Akdemir A, Supuran CT. Selective inhibition of human carbonic anhydrases by novel amide derivatives of probenecid: Synthesis, biological evaluation and molecular modelling studies. Bioorg Med Chem 2014; 22:3982-8. [DOI: 10.1016/j.bmc.2014.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022]
|
134
|
Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. J Control Release 2014; 193:27-34. [PMID: 25020039 DOI: 10.1016/j.jconrel.2014.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 11/19/2022]
Abstract
Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.
Collapse
Affiliation(s)
- Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australia; University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australia; University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
135
|
Smits KM, Melotte V, Niessen HE, Dubois L, Oberije C, Troost EG, Starmans MH, Boutros PC, Vooijs M, van Engeland M, Lambin P. Epigenetics in radiotherapy: Where are we heading? Radiother Oncol 2014; 111:168-77. [DOI: 10.1016/j.radonc.2014.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
|
136
|
Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 2014; 54:810-20. [PMID: 24729481 DOI: 10.1002/mc.22151] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
Abstract
Docosahexaenoic acid (DHA; C22:6n-3) depresses mammary carcinoma proliferation and growth in cell culture and in animal models. The current study explored the role of interrupting bioenergetic pathways in BT-474 and MDA-MB-231 breast cancer cell lines representing respiratory and glycolytic phenotypes, respectively and comparing the impacts of DHA with a non-transformed cell line, MCF-10A. Metabolic investigation revealed that DHA supplementation significantly diminished the bioenergetic profile of the malignant cell lines in a dose-dependent manner. DHA enrichment also resulted in decreases in hypoxia-inducible factor (HIF-1α) total protein level and transcriptional activity in the malignant cell lines but not in the non-transformed cell line. Downstream targets of HIF-1α, including glucose transporter 1 (GLUT 1) and lactate dehydrogenase (LDH), were decreased by DHA treatment in the BT-474 cell line, as well as decreases in LDH protein level in the MDA-MB-231 cell line. Glucose uptake, total glucose oxidation, glycolytic metabolism, and lactate production were significantly decreased in response to DHA supplementation; thereby enhancing metabolic injury and decreasing oxidative metabolism. The DHA-induced metabolic changes led to a marked decrease of intracellular ATP levels by 50% in both cancer cell lines, which mediated phosphorylation of metabolic stress marker, AMPK, at Thr172. These findings show that DHA contributes to impaired cancer cell growth and survival by altering cancer cell metabolism, increasing metabolic stress and altering HIF-1α-associated metabolism, while not affecting non-transformed MCF-10A cells. This study provides rationale for enhancement of current cancer prevention models and current therapies by combining them with dietary sources, like DHA.
Collapse
Affiliation(s)
- Michael Mouradian
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Keith D Kikawa
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Brian P Dranka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steven M Komas
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ronald S Pardini
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| |
Collapse
|
137
|
Tauro M, Loiodice F, Ceruso M, Supuran CT, Tortorella P. Arylamino bisphosphonates: Potent and selective inhibitors of the tumor-associated carbonic anhydrase XII. Bioorg Med Chem Lett 2014; 24:1941-3. [DOI: 10.1016/j.bmcl.2014.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/21/2023]
|
138
|
Kuger S, Cörek E, Polat B, Kämmerer U, Flentje M, Djuzenova CS. Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions. Breast Cancer (Auckl) 2014; 8:39-49. [PMID: 24678241 PMCID: PMC3964191 DOI: 10.4137/bcbcr.s13693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022] Open
Abstract
In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were significantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment.
Collapse
Affiliation(s)
- Sebastian Kuger
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Emre Cörek
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Cholpon S. Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
139
|
Design, synthesis and evaluation of N-substituted saccharin derivatives as selective inhibitors of tumor-associated carbonic anhydrase XII. Bioorg Med Chem 2014; 22:1821-31. [DOI: 10.1016/j.bmc.2014.01.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 12/11/2022]
|
140
|
Gu YQ, Gong G, Xu ZL, Wang LY, Fang ML, Zhou H, Xing H, Wang KR, Sun L. miRNA profiling reveals a potential role of milk stasis in breast carcinogenesis. Int J Mol Med 2014; 33:1243-9. [PMID: 24584717 DOI: 10.3892/ijmm.2014.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/17/2014] [Indexed: 11/06/2022] Open
Abstract
The tumor microenvironment plays an important role in breast carcinogenesis. Milk acts as an important microenvironment of breast cancer, but its role in breast carcinogenesis is largely unknown. Milk stasis may exist in the breast for a number of years after breastfeeding. In the present study, we reported the first microRNA (miRNA) profiling of milk from patients with milk stasis. We identified 266 known miRNAs and 271 novel miRNAs in 10 milk stasis only samples, 271 known miRNAs and 140 novel miRNAs in 10 milk stasis plus breast neoplasm samples by deep sequencing. miRNA profiles were different between the two groups. Furthermore, nine tumor suppressor miRNAs such as miR-29a, miR-146 and miR-223 were significantly downregulated, while seven oncogenic miRNAs such as miR-451, miR-486, miR-107, miR-92 and miR-10 were significantly upregulated in the milk of milk stasis plus neoplasm patients. Three of the identified miRNAs (miR-140, miR-21 and let-7a) were selected using real-time PCR, confirming that these miRNAs were highly expressed. The results also showed that the three miRNAs detected were more abundant in the milk than in the blood. In summary, the data suggested that miRNAs in milk from milk stasis patients may contribute to breast carcinogenesis and that they are more sensitive biomarkers for breast cancer than miRNAs in the blood.
Collapse
Affiliation(s)
- Yi-Qi Gu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gu Gong
- Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhe-Li Xu
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li-Ying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming-Li Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Zhou
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hua Xing
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ke-Ren Wang
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang Sun
- Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
141
|
Echiburú-Chau C, Alfaro-Lira S, Brown N, Salas CO, Cuellar M, Santander J, Ogalde JP, Rothhammer F. The selective cytotoxicity elicited by phytochemical extract from Senecio graveolens (Asteraceae) on breast cancer cells is enhanced by hypoxia. Int J Oncol 2014; 44:1357-64. [PMID: 24535330 DOI: 10.3892/ijo.2014.2302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the second cause of cancer‑related deaths in woman and the incidence of the disease has increased worldwide, in part due to improvements in early detection. Several drugs with anticancer effects have been extracted from plants in the last 20 years, many of which are particularly effective against breast cancer cells. In particular, we have become interested in the ethanolic extract from Senecio graveolens (synonym of S. nutans), a plant commonly called Chachacoma, in an effort to isolate compounds that could demonstrate cytotoxic effects on breast cancer cells. Senecio (Asteraceae) is the largest gender in Chile comprising approximatly 200 species. These herbs inhabit areas over 3,500 meters above the sea level in the Andes Mountains. S. graveolens is commonly used by local communities for its medicinal properties, particularly its capacity to ameliorate high-altitude-associated sickness. The cytotoxic effect of the alcoholic extract from S. graveolens, as well as its most abundant compound 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, were tested in the breast cancer cell lines ZR-75-1, MCF-7 and MDA-MB‑231, and non-tumorigenic MCF-10F cells. We show that the phytochemical extract was able to induce cytotoxicity in cancer cells but not in MCF-10F. Importantly, this effect was enhanced under hypoxic conditions. However, 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, the main compound, did not by itself show an effective anticarcinogenic activity in comparison to the whole extract. Interestingly, the cytotoxic effect of the phytochemical extract was dependent on the basal MnSOD protein expression. Thus, cytotoxicity was increased when MnSOD levels were low, but resistance was evident when protein levels were high. Additionally, the crude extract seems to trigger cell death by a variety of processes, including autophagy, apoptosis and necrosis, in MCF-7 cells. In summary, S. graveolens extract possess anticancer activity displaying a specific cytotoxic effect on cancer cells, thus serving as a potential source of phytochemical compounds for cancer treatment.
Collapse
Affiliation(s)
- Carlos Echiburú-Chau
- Centro de Investigaciones del Hombre en el Desierto (CODECITE-CIHDE), Arica, Chile
| | - Susana Alfaro-Lira
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Nelson Brown
- Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cuellar
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Javier Santander
- Nucleus for Microbiology and Immunity, Center for Genomics and Bioinformatics, Faculty of Sciences, University Mayor, Santiago, Chile
| | | | | |
Collapse
|
142
|
Kuiper C, Dachs GU, Munn D, Currie MJ, Robinson BA, Pearson JF, Vissers MCM. Increased Tumor Ascorbate is Associated with Extended Disease-Free Survival and Decreased Hypoxia-Inducible Factor-1 Activation in Human Colorectal Cancer. Front Oncol 2014; 4:10. [PMID: 24551593 PMCID: PMC3912592 DOI: 10.3389/fonc.2014.00010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/17/2014] [Indexed: 12/13/2022] Open
Abstract
Ascorbate is a co-factor for the hydroxylases that regulate the transcription factor hypoxia-inducible factor (HIF)-1, which provides cancer cells with a metabolic and survival advantage in the hypoxic environment of solid tumors. However, whether ascorbate affects tumor development is a highly debated issue. We aimed to determine whether tumor ascorbate was associated with HIF-1 activation and patient disease-free survival. In this study, we undertook a retrospective observational analysis of tissue-banked tumor and paired normal tissue from 49 colorectal cancer patients, measuring ascorbate levels, HIF-1α and its downstream gene products BNIP3, and vascular endothelial cell growth factor (VEGF). Patient survival was monitored for the first 6 years after surgery. We found that ascorbate levels were lower in tumor tissue compared to normal tissue (p < 0.001) but overall levels varied considerably. HIF-1α, VEGF, and BNIP3 were elevated in tumor samples (p < 0.01). There was an inverse relationship between tumor ascorbate content and HIF-1 pathway activation (p = 0.002) and tumor size (p = 0.018). Higher tumor ascorbate content was associated with significantly improved disease-free survival in the first 6 years after surgery (p = 0.006), with 141–1,094 additional disease-free days. This was independent of tumor grade and stage. Survival advantage was associated with the amount of ascorbate in the tumor, but not with the amount in adjacent normal tissue. Our results demonstrate that higher tumor ascorbate content is associated with decreased HIF-1 activation, most likely due to the co-factor activity of ascorbate for the regulatory HIF hydroxylases. Our findings support the need for future studies to determine whether raising tumor ascorbate is possible with clinical intervention and whether this results in modification of hydroxylase-dependent pathways in the tumor.
Collapse
Affiliation(s)
- Caroline Kuiper
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand
| | - Delwyn Munn
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand
| | - Margaret J Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand ; Canterbury Regional Cancer and Blood Service, Canterbury District Health Board, Christchurch Hospital , Christchurch , New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, Department of Public Health and General Practice, University of Otago Christchurch , Christchurch , New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch , Christchurch , New Zealand
| |
Collapse
|
143
|
TFPI1 mediates resistance to doxorubicin in breast cancer cells by inducing a hypoxic-like response. PLoS One 2014; 9:e84611. [PMID: 24489651 PMCID: PMC3904823 DOI: 10.1371/journal.pone.0084611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/16/2013] [Indexed: 11/19/2022] Open
Abstract
Thrombin and hypoxia are important players in breast cancer progression. Breast cancers often develop drug resistance, but mechanisms linking thrombin and hypoxia to drug resistance remain unresolved. Our studies using Doxorubicin (DOX) resistant MCF7 breast cancer cells reveals a mechanism linking DOX exposure with hypoxic induction of DOX resistance. Global expression changes between parental and DOX resistant MCF7 cells were examined. Westerns, Northerns and immunocytochemistry were used to validate drug resistance and differentially expressed genes. A cluster of genes involved in the anticoagulation pathway, with Tissue Factor Pathway Inhibitor 1 (TFPI1) the top hit, was identified. Plasmids overexpressing TFPI1 were utilized, and 1% O2 was used to test the effects of hypoxia on drug resistance. Lastly, microarray datasets from patients with drug resistant breast tumors were interrogated for TFPI1 expression levels. TFPI1 protein levels were found elevated in 3 additional DOX resistant cells lines, from humans and rats, indicating evolutionarily conservation of the effect. Elevated TFPI1 in DOX resistant cells was active, as thrombin protein levels were coincidentally low. We observed elevated HIF1α protein in DOX resistant cells, and in cells with forced expression of TFPI1, suggesting TFPI1 induces HIF1α. TFPI1 also induced c-MYC, c-SRC, and HDAC2 protein, as well as DOX resistance in parental cells. Growth of cells in 1% O2 induced elevated HIF1α, BCRP and MDR-1 protein, and these cells were resistant to DOX. Our in vitro results were consistent with in vivo patient datasets, as tumors harboring increased BCRP and MDR-1 expression also had increased TFPI1 expression. Our observations are clinically relevant indicating that DOX treatment induces an anticoagulation cascade, leading to inhibition of thrombin and the expression of HIF1α. This in turn activates a pathway leading to drug resistance.
Collapse
|
144
|
Abaza M, Luqmani YA. The influence of pH and hypoxia on tumor metastasis. Expert Rev Anticancer Ther 2013; 13:1229-42. [PMID: 24099530 DOI: 10.1586/14737140.2013.843455] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rapid malignant proliferation, prior to effective tumor neoangiogenesis, creates a microenvironment around solid cancers, which is predominantly hypoxic and characterized by a high interstitial fluid pressure. Presumably as an adaptive response, tumor cells favor metabolic activity with apparently inefficient energy output, and production of intermediates that promote cellular replication, preferentially through anaerobic glycolysis, a phenomenon that persists even in re-established normoxic conditions (anomalously referred to as 'aerobic glycolysis'). Extrusion of the consequently excessive accumulation of lactate and protons decreases extracellular pH, leading to a microenvironment considered conducive to promotion of tumor motility, invasion and metastasis, and one that will invariably influence response to drug treatment. This review will critically assess the evidence forming the basis of current understanding of the precise pH conditions in the extracellular tumor matrix, its regulation by cancer cells and relationship with hypoxia, its relevance to malignant progression and its exploitation for therapeutic advantage.
Collapse
Affiliation(s)
- Mariam Abaza
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | | |
Collapse
|
145
|
Sethi KK, Verma SM. A systematic quantitative approach to rational drug design and discovery of novel human carbonic anhydrase IX inhibitors. J Enzyme Inhib Med Chem 2013; 29:571-81. [DOI: 10.3109/14756366.2013.827677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kalyan K. Sethi
- Department of Pharmaceutical Sciences, Birla Institute of Technology
Mesra, Ranchi, JharkhandIndia
| | - Saurabh M. Verma
- Department of Pharmaceutical Sciences, Birla Institute of Technology
Mesra, Ranchi, JharkhandIndia
| |
Collapse
|
146
|
Eccles SA, Aboagye EO, Ali S, Anderson AS, Armes J, Berditchevski F, Blaydes JP, Brennan K, Brown NJ, Bryant HE, Bundred NJ, Burchell JM, Campbell AM, Carroll JS, Clarke RB, Coles CE, Cook GJR, Cox A, Curtin NJ, Dekker LV, dos Santos Silva I, Duffy SW, Easton DF, Eccles DM, Edwards DR, Edwards J, Evans DG, Fenlon DF, Flanagan JM, Foster C, Gallagher WM, Garcia-Closas M, Gee JMW, Gescher AJ, Goh V, Groves AM, Harvey AJ, Harvie M, Hennessy BT, Hiscox S, Holen I, Howell SJ, Howell A, Hubbard G, Hulbert-Williams N, Hunter MS, Jasani B, Jones LJ, Key TJ, Kirwan CC, Kong A, Kunkler IH, Langdon SP, Leach MO, Mann DJ, Marshall JF, Martin LA, Martin SG, Macdougall JE, Miles DW, Miller WR, Morris JR, Moss SM, Mullan P, Natrajan R, O’Connor JPB, O’Connor R, Palmieri C, Pharoah PDP, Rakha EA, Reed E, Robinson SP, Sahai E, Saxton JM, Schmid P, Smalley MJ, Speirs V, Stein R, Stingl J, Streuli CH, Tutt ANJ, Velikova G, Walker RA, Watson CJ, Williams KJ, Young LS, Thompson AM. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res 2013; 15:R92. [PMID: 24286369 PMCID: PMC3907091 DOI: 10.1186/bcr3493] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.
Collapse
Affiliation(s)
- Suzanne A Eccles
- The Institute of Cancer Research, 15 Cotswold Road, London SM2 5MG, UK
| | - Eric O Aboagye
- Imperial College London, Exhibition Rd, London SW7 2AZ, UK
| | - Simak Ali
- Imperial College London, Exhibition Rd, London SW7 2AZ, UK
| | | | - Jo Armes
- Kings College London, Strand, London WC2R 2LS, UK
| | | | - Jeremy P Blaydes
- University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Keith Brennan
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Nicola J Brown
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Helen E Bryant
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nigel J Bundred
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute/University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
| | - Robert B Clarke
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Charlotte E Coles
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Gary JR Cook
- Kings College London, Strand, London WC2R 2LS, UK
| | - Angela Cox
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Curtin
- Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | | | | | - Stephen W Duffy
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Douglas F Easton
- Cancer Research UK, Cambridge Research Institute/University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
| | - Diana M Eccles
- University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Dylan R Edwards
- University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | - Joanne Edwards
- University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - D Gareth Evans
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Deborah F Fenlon
- University of Southampton, University Road, Southampton SO17 1BJ, UK
| | | | - Claire Foster
- University of Southampton, University Road, Southampton SO17 1BJ, UK
| | | | | | - Julia M W Gee
- University of Cardiff, Park Place, Cardiff CF10 3AT, UK
| | - Andy J Gescher
- University of Leicester, University Road, Leicester LE1 4RH, UK
| | - Vicky Goh
- Kings College London, Strand, London WC2R 2LS, UK
| | - Ashley M Groves
- University College London, Gower Street, London WC1E 6BT, UK
| | | | - Michelle Harvie
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Bryan T Hennessy
- Royal College of Surgeons Ireland, 123, St Stephen’s Green, Dublin 2, Ireland
| | | | - Ingunn Holen
- University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Sacha J Howell
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony Howell
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | - Bharat Jasani
- University of Cardiff, Park Place, Cardiff CF10 3AT, UK
| | - Louise J Jones
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Timothy J Key
- University of Oxford, Wellington Square, Oxford OX1 2JD, UK
| | - Cliona C Kirwan
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony Kong
- University of Oxford, Wellington Square, Oxford OX1 2JD, UK
| | - Ian H Kunkler
- University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK
| | - Simon P Langdon
- University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK
| | - Martin O Leach
- The Institute of Cancer Research, 15 Cotswold Road, London SM2 5MG, UK
| | - David J Mann
- Imperial College London, Exhibition Rd, London SW7 2AZ, UK
| | - John F Marshall
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lesley Ann Martin
- The Institute of Cancer Research, 15 Cotswold Road, London SM2 5MG, UK
| | - Stewart G Martin
- University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | - Sue M Moss
- Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Paul Mullan
- Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| | - Rachel Natrajan
- The Institute of Cancer Research, 15 Cotswold Road, London SM2 5MG, UK
| | | | | | - Carlo Palmieri
- The University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK
| | - Paul D P Pharoah
- Cancer Research UK, Cambridge Research Institute/University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
| | - Emad A Rakha
- University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elizabeth Reed
- Princess Alice Hospice, West End Lane, Esher KT10 8NA, UK
| | - Simon P Robinson
- The Institute of Cancer Research, 15 Cotswold Road, London SM2 5MG, UK
| | - Erik Sahai
- London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - John M Saxton
- University of East Anglia, Earlham Road, Norwich NR4 7TJ, UK
| | - Peter Schmid
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex BN1 9PX, UK
| | | | | | - Robert Stein
- University College London, Gower Street, London WC1E 6BT, UK
| | - John Stingl
- Cancer Research UK, Cambridge Research Institute/University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
| | | | | | | | | | - Christine J Watson
- Cancer Research UK, Cambridge Research Institute/University of Cambridge, Trinity Lane, Cambridge CB2 1TN, UK
| | - Kaye J Williams
- University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Leonie S Young
- Royal College of Surgeons Ireland, 123, St Stephen’s Green, Dublin 2, Ireland
| | | |
Collapse
|
147
|
Pedersen SF, Hoffmann EK, Novak I. Cell volume regulation in epithelial physiology and cancer. Front Physiol 2013; 4:233. [PMID: 24009588 PMCID: PMC3757443 DOI: 10.3389/fphys.2013.00233] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022] Open
Abstract
The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.
Collapse
Affiliation(s)
- Stine F Pedersen
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
148
|
Epple LM, Dodd RD, Merz AL, Dechkovskaia AM, Herring M, Winston BA, Lencioni AM, Russell RL, Madsen H, Nega M, Dusto NL, White J, Bigner DD, Nicchitta CV, Serkova NJ, Graner MW. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 2013; 8:e73267. [PMID: 24039668 PMCID: PMC3748289 DOI: 10.1371/journal.pone.0073267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rebecca D. Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea L. Merz
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Herring
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Benjamin A. Winston
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Alex M. Lencioni
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rae L. Russell
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Helen Madsen
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meheret Nega
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Darell D. Bigner
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher V. Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalie J. Serkova
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Anesthesiology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
149
|
Thomas SN, Liao Z, Clark D, Chen Y, Samadani R, Mao L, Ann DK, Baulch JE, Shapiro P, Yang AJ. Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes 2013; 1:87-108. [PMID: 24860738 PMCID: PMC4029595 DOI: 10.3390/proteomes1020087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiation and drug resistance are significant challenges in the treatment of locally advanced, recurrent and metastatic breast cancer that contribute to mortality. Clinically, radiotherapy requires oxygen to generate cytotoxic free radicals that cause DNA damage and allow that damage to become fixed in the genome rather than repaired. However, approximately 40% of all breast cancers have hypoxic tumor microenvironments that render cancer cells significantly more resistant to irradiation. Hypoxic stimuli trigger changes in the cell death/survival pathway that lead to increased cellular radiation resistance. As a result, the development of noninvasive strategies to assess tumor hypoxia in breast cancer has recently received considerable attention. Exosomes are secreted nanovesicles that have roles in paracrine signaling during breast tumor progression, including tumor-stromal interactions, activation of proliferative pathways and immunosuppression. The recent development of protocols to isolate and purify exosomes, as well as advances in mass spectrometry-based proteomics have facilitated the comprehensive analysis of exosome content and function. Using these tools, studies have demonstrated that the proteome profiles of tumor-derived exosomes are indicative of the oxygenation status of patient tumors. They have also demonstrated that exosome signaling pathways are potentially targetable drivers of hypoxia-dependent intercellular signaling during tumorigenesis. This article provides an overview of how proteomic tools can be effectively used to characterize exosomes and elucidate fundamental signaling pathways and survival mechanisms underlying hypoxia-mediated radiation resistance in breast cancer.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - David Clark
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Division of Oncology, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yangyi Chen
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.)
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Li Mao
- Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA;
| | - Paul Shapiro
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Austin J Yang
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
150
|
Achour O, Bridiau N, Kacem M, Delatouche R, Bordenave-Juchereau S, Sannier F, Thiéry V, Piot JM, Maugard T, Arnaudin I. Cathepsin D activity and selectivity in the acidic conditions of a tumor microenvironment: Utilization in the development of a novel Cathepsin D substrate for simultaneous cancer diagnosis and therapy. Biochimie 2013; 95:2010-7. [PMID: 23871913 DOI: 10.1016/j.biochi.2013.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Pro-Cathepsin D (pCD) is an aspartyl endopeptidase which is over expressed in many cancers. This over expression generally led to its secretion into the extracellular culture medium of cancer cells. Moreover, pCD can auto activate and cleave its substrates at an acidic pH compatible with that found in tumor microenvironments (TME). Thus, exploiting these two pathological characteristics of TME offers the opportunity to develop new protease-activated vector on the basis of their specific substrate structures. The aim of this study was to validate new pCD substrates in the extracellular pH conditions of TME. As a first step, we investigated the effect of pH on the catalytic activity and selectivity of mature Cathepsin D (CD). It was found that the increase in the pH of the media led to a decrease in the reaction rate. However, the specificity of mature CD was not affected by a variation in pH. In the second step, the effect of the substrate structure was studied. We demonstrated that the substrate structure had a significant effect on the catalytic activity of CD. In fact, some modifications in peptide structure induced a change in the catalytic behavior that involved a substrate activation phenomenon. We suggest that this activation may be related to the amphiphilic nature of the modified peptide that may induce an interfacial activation mechanism. Finally, pCD, which is the major form found in the extracellular culture medium of cancer cells, was used. We demonstrated that the proform of CD cleave the modified peptide 5 at pH 6.5 with the same cleavage selectivity obtained with the mature form of the protease. These data provide a better understanding of CD behavior in tumor microenvironment conditions and this knowledge can be used to develop more specific tools for diagnosis and drug delivery.
Collapse
Affiliation(s)
- Oussama Achour
- Université de La Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Département de Biotechnologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|