101
|
Everts PA, Panero AJ. Basic Science of Autologous Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:25-47. [DOI: 10.1016/j.pmr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
102
|
Abadin AA, Orr JP, Lloyd AR, Henning PT, Pourcho A. An Evidence-Based Approach to Orthobiologics for Tendon Disorders. Phys Med Rehabil Clin N Am 2023; 34:83-103. [PMID: 36410893 DOI: 10.1016/j.pmr.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
103
|
Guo X, Liu C, Zhang Y, Bi L. Effect of super activated platelet lysate on cell proliferation, repair and osteogenesis. Biomed Mater Eng 2023; 34:95-109. [PMID: 36120761 DOI: 10.3233/bme-221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Platelet lysate (PL) is considered as an alternative to fetal bovine serum (FBS) and facilitates the proliferation and differentiation of mesenchymal cells. OBJECTIVE The aim of this study is to explore whether super activated platelet lysate (sPL), a novel autologous platelet lysate, has the ability to inhibit inflammation and promote cell proliferation, repair and osteogenesis as a culture medium. METHODS Different concentrations of sPL on human fetal osteoblastic 1.19 cell line (hFOB1.19) proliferation and apoptotic repair were investigated; And detected proliferative capacity, inflammatory factor expressions and osteogenic differentiation of human dental pulp cells (hDPCs) stimulated by LPS under 10% FBS and 5% sPL mediums. RESULTS sPL promoted hFOB1.19 proliferation and had repairing effects on apoptotic cells. No significant difference in proliferation and IL-1α, IL-6 and TNF-α expressions of hDPCs in FBS and sPL medium stimulated by LPS. hDPCs in sPL osteogenic medium had higher osteogenic-related factor expressions and ALP activity. LPS promoted osteogenic-related factor expressions and ALP activity of hDPCs in FBS osteogenic medium, but opposite effect showed in sPL medium. CONCLUSION sPL promoted osteoblast proliferation and had restorative effects. Under LPS stimulation, sPL did not promote hDPCs proliferation or inhibit inflammation. sPL promotes osteogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chunxiang Liu
- National and Local Joint Stem Cell Research, Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin, China
| | - Yi Zhang
- National and Local Joint Stem Cell Research, Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin, China
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
104
|
França BND, Gasparoni LM, Rovai ES, Ambrósio LMB, Mendonça NFD, Hagy MH, Mendoza AH, Sipert CR, Holzhausen M. Protease-activated receptor type 2 activation downregulates osteogenesis in periodontal ligament stem cells. Braz Oral Res 2023; 37:e002. [PMID: 36629588 DOI: 10.1590/1807-3107bor-2023.vol37.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is associated with the pathogenesis of many chronic diseases with inflammatory characteristics, including periodontitis. This study aimed to evaluate how the activation of PAR2 can affect the osteogenic activity of human periodontal ligament stem cells (PDLSCs) in vitro. PDLSCs collected from three subjects were treated in osteogenic medium for 2, 7, 14, and 21 days with trypsin (0.1 U/mL), PAR2 specific agonist peptide (SLIGRL-NH2) (100 nM), and PAR2 antagonist peptide (FSLLRY-NH2) (100 nM). Gene (RT-qPCR) expression and protein expression (ELISA) of osteogenic factors, bone metabolism, and inflammatory cytokines, cell proliferation, alkaline phosphatase (ALP) activity, alizarin red S staining, and supernatant concentration were assessed. Statistical analysis of the results with a significance level of 5% was performed. Activation of PAR2 led to decreases in cell proliferation and calcium deposition (p < 0.05), calcium concentration (p < 0.05), and ALP activity (p < 0.05). Additionally, PAR2 activation increased gene and protein expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) (p < 0.05) and significantly decreased the gene and protein expression of osteoprotegerin (p <0. 05). Considering the findings, the present study demonstrated PAR2 activation was able to decrease cell proliferation, decreased osteogenic activity of PDLSCs, and upregulated conditions for bone resorption. PAR2 may be considered a promising target in periodontal regenerative procedures.
Collapse
Affiliation(s)
- Bruno Nunes de França
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | | | - Emanuel Silva Rovai
- Universidade de Taubaté - Unitau, School of Dentistry, Periodontics Division, Taubaté, São Paulo, SP, Brazil
| | | | | | - Marcos Hideki Hagy
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | - Aldrin Huamán Mendoza
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- Universidade de São Paulo - USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Marinella Holzhausen
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| |
Collapse
|
105
|
Tang H, Wang X, Zheng J, Long YZ, Xu T, Li D, Guo X, Zhang Y. Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. J Mater Chem B 2023; 11:389-402. [PMID: 36511477 DOI: 10.1039/d2tb02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell sheets combined with electrospun fibrous mats represent an attractive approach for the repair and regeneration of injured tissues. However, the conventional dense electrospun mats as supportive substrates in forming "cell sheet on fiber mat" complexes suffer from problems of limiting the cellular function and eliciting a host response upon implantation. To give full play to the role of electrospun biomimicking fibers in forming quality cell sheets, this study proposed to develop a cell-fiber integrated sheet (CFIS) featuring a spatially homogeneous distribution of cells within the fiber structure by using a low-density fibrous network for cell sheet formation. A low-density electrospun polycaprolactone (PCL) fibrous network at a density of 103.8 ± 16.3 μg cm-2 was produced by controlling the fiber deposition for a short period of 1 min and subsequently transferred onto polydimethylsiloxane rings for facilitating cell sheet formation, in which rat bone marrow-derived mesenchymal cells were used. Using a dense electrospun PCL fibrous mat (481.5 ± 7.5 μg cm-2) as the control, it was found that cells on the low-density fibrous network (L-G) exhibited improved capacities in spreading, proliferation, stemness maintenance and matrix-remodeling during the process of CFIS formation. Structurally, the CFIS constructs revealed strong integration between the cells and the fibrous network, thus providing excellent cohesion and physical integrity to enable strengthening of the formed cell sheet. By contrast, the cell sheet formed on the dense fibrous mat (D-G) showed a two-layer (biphasic) structure due to the limitation of cellular invasion. Moreover, such engineered CFIS was identified with enhanced immunomodulatory effects by promoting LPS-stimulated macrophages towards an M2 phenotype in vitro. Our results suggest that the CFIS may be used as a native tissue equivalent "cell sheet" for improving the efficacy of the tissue engineering approach for the repair and regeneration of impaired tissues.
Collapse
Affiliation(s)
- Han Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
106
|
Miclau K, Hambright WS, Huard J, Stoddart MJ, Bahney CS. Cellular expansion of MSCs: Shifting the regenerative potential. Aging Cell 2023; 22:e13759. [PMID: 36536521 PMCID: PMC9835588 DOI: 10.1111/acel.13759] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells. Therapeutic applications for MSCs and their secretome-derived products often involve in vitro monolayer expansion. However, consecutive passaging of MSCs significantly alters their therapeutic potential, inducing a broad shift from a pro-regenerative to a pro-inflammatory phenotype. A consistent by-product of in vitro expansion of MSCs is the onset of replicative senescence, a state of cell arrest characterized by an increased release of proinflammatory cytokines and growth factors. However, little is known about changes in the secretome profile at different stages of in vitro expansion. Some culture conditions and bioprocessing techniques have shown promise in more effectively retaining the pro-regenerative and anti-inflammatory MSC phenotype throughout expansion. Understanding how in vitro expansion conditions influence the nature and function of MSCs, and their associated secretome, may provide key insights into the underlying mechanisms driving these alterations. Elucidating the dynamic and diverse changes in the MSC secretome at each stage of in vitro expansion is a critical next step in the development of standardized, safe, and effective MSC-based therapies.
Collapse
Affiliation(s)
- Katherine Miclau
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - William S. Hambright
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
| | - Martin J. Stoddart
- Orthopaedic Trauma Institute (OTI)University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine (CRPM)Steadman Philippon Research InstituteVailColoradoUSA
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
107
|
Liu C, Lu Y, Du P, Yang F, Guo P, Tang X, Diao L, Lu G. Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization. Regen Ther 2022; 21:192-200. [PMID: 35983499 PMCID: PMC9356027 DOI: 10.1016/j.reth.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Methods Results Conclusions We found that S-IT MSCs were better at promoting macrophage migration and activation than S-MSCs in vitro. Next, we reconfirmed that S-IT MSCs were more effective than S-MSCs in accelerating wound closure by promoting macrophage migration and activation. High levels of CCL2 and IL-6 in S-IT MSCs may play a key role in improving macrophage function.
Collapse
|
108
|
Combination Therapy of Mesenchymal Stem Cell Transplantation and Astrocyte Ablation Improve Remyelination in a Cuprizone-Induced Demyelination Mouse Model. Mol Neurobiol 2022; 59:7278-7292. [PMID: 36175823 DOI: 10.1007/s12035-022-03036-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes display an active, dual, and controversial role in multiple sclerosis (MS), a chronic inflammatory demyelination disorder. However, mesenchymal stem cells (MSCs) can affect myelination in demyelinating disorders. This study aimed to investigate the effect of single and combination therapies of astrocyte ablation and MSC transplantation on remyelination in the cuprizone (CPZ) model of MS. C57BL/6 mice were fed 0.2% CPZ diet for 12 weeks. Astrocytes were ablated twice by L-a-aminoadipate (L-AAA) at the beginning of weeks 13 and 14 whereas MSCs were injected in the corpus callosum at the beginning of week 13. Motor coordination and balance were assessed through rotarod test whereas myelin content was evaluated by Luxol-fast blue (LFB) staining and transmission electron microscopy (TEM). Glial cells were assessed by immunofluorescence staining while mRNA expression was evaluated by quantitative real-time PCR. Combination treatment of ablation of astrocytes and MSC transplantation (CPZ + MSC + L-AAA) significantly decreased motor coordination deficits better than single treatments (CPZ + MSCs or CPZ + L-AAA), in comparison to CPZ mice. In addition, L-AAA and MSCs treatment significantly enhanced remyelination compared to CPZ group. Moreover, combination therapy caused a significant decrease in the number of GFAP+ and Iba-1+ cells, whereas oligodendrocytes were significantly increased in comparison to CPZ mice. Finally, MSC administration resulted in a significant upregulation of BDNF and NGF mRNA expression levels. Our data indicate that transient ablation of astrocytes along with MSCs treatment improve remyelination through enhancing oligodendrocytes and attenuating gliosis in a chronic demyelinating mouse model of MS.
Collapse
|
109
|
El-Araby HA, Sobhy GA, Naeem SAM, Alsayed AFM, Zakaria HM, Khedr MA. The regenerative effect of stem cells on acetaminophen-induced hepatotoxicity in male albino rats. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Acetaminophen overdose is the leading cause of acute liver injury (ALI) and acute liver failure (ALF) in the developed world. We aimed at studying the therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in accelerating healing of acetaminophen-induced hepatotoxicity.
Results
This prospective study included 50 male albino rats divided into 2 groups: hepatotoxic group and non-hepatotoxic group. Hepatotoxicity was induced in experimental rats by acetaminophen and then stem cells were transplanted into the rats and their effects on the liver cells were assessed. After injection of BM MSCs, the cells reached the targeted tissues. They were established in the central veins and blood sinusoids in the liver tissue. The hepatotoxic liver showed degeneration and loss of normal hepatic architecture as well as necrotic areas and congestion mainly in the portal tract vessels, dilation of blood sinusoids, and infiltration by inflammatory cells around the central veins. In addition, there were abnormal nuclei either irregular in shape or showing loss of open face compared to the normal control group. The liver tissue in BM MSC-treated group showed restoration of normal architecture of the liver tissue.
Conclusion
Administration of MSCs has hepato-therapeutic effect on acetaminophen-induced hepatotoxicity in rats. The mechanism of this hepatoprotective effect may be through anti-inflammatory, anti-apoptotic, and immunomodulatory actions of MSCs.
Collapse
|
110
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
111
|
Rahmati A, Abbasi R, Najafi R, Rezaei-soufi L, Karkehabadi H. Effect of diode low level laser and red light emitting diode irradiation on cell proliferation and osteogenic/odontogenic differentiation of stem cells from the apical papilla. BMC Oral Health 2022; 22:543. [PMID: 36434589 PMCID: PMC9701043 DOI: 10.1186/s12903-022-02574-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This experimental study aimed to assess the effect of irradiation of red light-emitting diode (LED) and Diode low-level laser (LLL) on osteogenic/odontogenic differentiation of stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS SCAPs were isolated from the human tooth root. The experimental groups were subjected to 4 J/cm2 diode low level laser and red LED irradiation in osteogenic medium. The control group did not receive any irradiation. Cell viability/proliferation of SCAPs was assessed by the methyl thiazolyl tetrazolium (MTT) assay on days 1 and 2 (n = 9). Osteogenic differentiation was evaluated by alizarin red staining (ARS) (n = 3), and expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 12) on days 1 and 2. SPSS version 18 was used for data evaluation. The Kruskal-Wallis and Mann-Whitney tests were used to compare the groups at each time point. RESULTS The MTT assay showed no significant difference in cell viability/proliferation of SCAPs in the low level laser, red LED, and control groups at 24 or 48 h (P < 0.001). The ARS assessment showed that low level laser and red LED irradiation enhanced osteogenic differentiation of SCAPs. low level laser and red LED irradiation both induced over-expression of osteogenic/dentinogenic genes including alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) in SCAPs. Up-regulation of genes was significantly greater in low level laser irradiation group than red LED group (P < 0.001). CONCLUSION Diode low level laser irradiation with 4 J/cm2 energy density and red LED irradiation enhanced osteogenic differentiation of SCAPs without adversely affecting cell viability.
Collapse
Affiliation(s)
- Afsaneh Rahmati
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Roshanak Abbasi
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran ,grid.411950.80000 0004 0611 9280Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- grid.411950.80000 0004 0611 9280Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran ,grid.411950.80000 0004 0611 9280Dental Research Center, Department of Operative Dentistry, School of dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Loghman Rezaei-soufi
- grid.411950.80000 0004 0611 9280Dental Research Center, Department of Operative Dentistry, School of dentistry, Hamadan University of Medical Science, Hamadan, Iran
| | - Hamed Karkehabadi
- grid.411950.80000 0004 0611 9280Endodontic Department, School of Dentistry, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
112
|
Kim K, Bae KS, Kim HS, Lee WY. Effectiveness of Mesenchymal Stem Cell Therapy for COVID-19-Induced ARDS Patients: A Case Report. Medicina (B Aires) 2022; 58:medicina58121698. [PMID: 36556900 PMCID: PMC9784973 DOI: 10.3390/medicina58121698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: This study assessed the safety, feasibility, and tolerability of mesenchymal stem cells for patients diagnosed with COVID (Coronavirus disease 2019-induced ARDS (acute respiratory distress syndrome)). Materials and Methods: Critically ill adult COVID-19 patients who were admitted to Wonju Severance Christian Hospital were enrolled in this study. One patient received human bone marrow-derived mesenchymal stem cell (hBMSC) transplantation and received a total dose of 9 × 107 allogeneic hBMSCs via intravenous infusion. The main outcome of this study was to assess the safety, adverse events, and efficacy following transplantation of hBMSCs in COVID-19- induced ARDS patients. Efficacy was assessed radiologically based on pneumonia improvement, changes in PaO2/FiO2, and O2 saturation. Results: A 73-year-old man visited Wonju Severance Christian Hospital presenting with fever and fatigue. A throat swab was performed for real-time polymerase chain reaction to confirm COVID-19, and the result was positive. The patient developed ARDS on Day 5. MSC transplantation was performed on that day and administered on Day 29. Early adverse events, including allergic reactions, were not observed following MSC transplantation. Subsequently, clinical symptoms, signs, and laboratory findings, including PaO2/FiO2 and O2 saturation, improved. Conclusion: The results of this case report suggest that intravenous injection of MSC derived from the bone marrow is safe and acceptable and can lead to favorable outcomes for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Kwangmin Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Keum Seok Bae
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Sungnam 13229, Republic of Korea
- Kim’s Stem Cell Clinic, Seoul 06017, Republic of Korea
| | - Won-Yeon Lee
- Department of Pulmonology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Correspondence: ; Tel.: +82-33-741-0541; Fax: +82-33-0928
| |
Collapse
|
113
|
Jiang Y, Lin S, Gao Y. Mesenchymal Stromal Cell-Based Therapy for Dry Eye: Current Status and Future Perspectives. Cell Transplant 2022; 31:9636897221133818. [PMID: 36398793 PMCID: PMC9679336 DOI: 10.1177/09636897221133818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dry eye is one of the most common chronic diseases in ophthalmology. It affects quality of life and has become a public health problem that cannot be ignored. The current treatment methods mainly include artificial tear replacement therapy, anti-inflammatory therapy, and local immunosuppressive therapy. These treatments are mainly limited to improvement of ocular surface discomfort and other symptoms. In recent years, regenerative medicine has developed rapidly, and ophthalmologists are working on new methods to treat dry eye. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immune regulatory effects, and have become a promising tool for the treatment of dry eye. These effects can also be produced by MSC-derived exosomes (MSC-Exos). As a cell-free therapy, MSC-Exos are hypoimmunogenic, serve more stable entities, and compared with MSCs, reduce the safety risks associated with the injection of live cells. This article reviews current knowledge about MSCs and MSC-Exos, and highlights the latest progress and future prospects of MSC-based therapy in dry eye treatment.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Yingying Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Yingying Gao, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian, China.
| |
Collapse
|
114
|
Paracrine and Autocrine Effects of VEGF Are Enhanced in Human eMSC Spheroids. Int J Mol Sci 2022; 23:ijms232214324. [PMID: 36430800 PMCID: PMC9695450 DOI: 10.3390/ijms232214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.
Collapse
|
115
|
Silva-Carvalho AÉ, da Silva IGM, Corrêa JR, Saldanha-Araujo F. Regulatory T-Cell Enhancement, Expression of Adhesion Molecules, and Production of Anti-Inflammatory Factors Are Differentially Modulated by Spheroid-Cultured Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232214349. [PMID: 36430835 PMCID: PMC9695986 DOI: 10.3390/ijms232214349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The culture of mesenchymal stem cells (MSCs) as spheroids promotes a more physiological cellular behavior, as it more accurately reflects the biological microenvironment. Nevertheless, mixed results have been found regarding the immunosuppressive properties of spheroid-cultured MSCs (3D-MSCs), the mechanisms of immunoregulation of 3D-MSCs being scarcely described at this point. In the present study, we constructed spheroids from MSCs and compared their immunosuppressive potential with that of MSCs cultured in monolayer (2D-MSCs). First, we evaluated the ability of 2D-MSCs and 3D-MSCs to control the activation and proliferation of T-cells. Next, we evaluated the percentage of regulatory T-cells (Tregs) after the co-culturing of peripheral blood mononuclear cells (PBMCs) with 2D-MSCs and 3D-MSCs. Finally, we investigated the expression of adhesion molecules, as well as the expressions of several anti-inflammatory transcripts in 2D-MSCs and 3D-MSCs maintained in both inflammatory and non-inflammatory conditions. Interestingly, our data show that several anti-inflammatory genes are up-regulated in 3D-MSCs, and that these cells can control T-cell proliferation. Nevertheless, 2D-MSCs are more efficient in suppressing the immune cell proliferation. Importantly, contrary to what was observed in 3D-MSCs, the expressions of ICAM-1 and VCAM-1 are significantly upregulated in 2D-MSCs exposed to an inflammatory environment. Furthermore, only 2D-MSCs are able to promote the enhancement of Tregs. Taken together, our data clearly show that the immunosuppressive potential of MSCs is significantly impacted by their shape, and highlights the important role of cell-cell adhesion molecules for optimal MSC immunomodulatory function.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Molecular Pharmacology Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | | | - José Raimundo Corrêa
- Microscopy and Microanalysis Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Correspondence: ; Tel./Fax: +55-61-3107-2008
| |
Collapse
|
116
|
The Prescription of Oral Mucosal Mesenchymal Stem Cells post-Traumatic Brain Injury Improved the Kidney and Heart Inflammation and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8235961. [PMID: 36408281 PMCID: PMC9671733 DOI: 10.1155/2022/8235961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Background In the last years, mesenchymal stem cells (MSCs) have been considered as a useful strategy to treat many diseases such as traumatic brain injury (TBI). The production of inflammatory agents by TBI elicits an inflammatory response directed to other systems of body, such as the heart and the kidneys. In this study, the efficacy of oral mucosal mesenchymal stem cells (OMSCs) prescription after TBI in inflammation and oxidative stress of the heart and kidneys was evaluated. Methods Twenty-four male rats were located in groups as follows: sham, TBI, vehicle (Veh), and stem cell (SC). OMSCs were injected intravenously 1 and 24 hours after TBI. Inflammatory, oxidative stress, and histopathological outcomes of the heart and kidney tissues were investigated 48 hours after TBI. Results TBI caused an increase in the level of interleukin-1β (IL-1β), interleukin-6 (IL-6), malondialdehyde (MDA), and carbonyl protein (PC) of the heart and kidney compared to the sham group. Superoxide dismutase (SOD), total antioxidant capacity (TAC), catalase (CAT), and interleukin-10 (IL-10) of the heart and kidney decreased after TBI. The use of OMSCs after TBI reduced the changes of these factors in both the heart and the kidney. Conclusion Application of OMSCs after TBI can decrease inflammation and oxidative stress of the heart and kidney tissues leading to the reduction of damage. Therefore, this method can be evaluated in the TBI patients in future studies.
Collapse
|
117
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
118
|
Transplantation of adipose-derived mesenchymal stem cells ameliorates acute hepatic injury caused by nonsteroidal anti-inflammatory drug diclofenac sodium in female rats. Biomed Pharmacother 2022; 155:113805. [PMID: 36271578 DOI: 10.1016/j.biopha.2022.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although the beneficial role of adipose-derived mesenchymal stem cells (AD-MSCs) in acute liver injury has been addressed by numerous studies employing different liver injury inducers, the role of rat AD-MSCs (rAD-MSCs) in diclofenac sodium (DIC) - induced acute liver injury has not yet been clarified. OBJECTIVE This study aimed to investigate whether rat adipose- rAD-MSCs injected intraperitoneal could restore the DIC-induced hepatoxicity. METHODS Hepatotoxicity was induced by DIC in a dose-based manner, after which intraperitoneal injection of rAD-MSCs was performed. RESULTS Here, the transplanted cells migrated to the injured liver, and this was evidenced by detecting the specific SRY in the liver samples. After administering DIC, a significant decrease in body weight, survival rate, serum proteins, antioxidants, anti-apoptotic gene expression, and certain growth factors, whereas hepatic-specific markers, pro-inflammatory mediators, and oxidative, pro-apoptotic, and ER-stress markers were elevated. These adverse effects were significantly recovered after engraftment with rAD-MSCs. This was evidenced by enhanced survival and body weight, improved globulin and albumin values, increased expression of SOD, GPx, BCL-2, VEGF, and FGF-basic expression, and decreased serum ALT, AST, ALP, and total bilirubin. rAD-MSCs also reduced liver cell damage by suppressing the expression of MDA, IL-1B, IL-6, BAX, JNK, GRP78/BiP, CHOP, XBP-1, and cleaved caspase 3/7. Degenerative hepatic changes and multifocal areas of fatty change within liver cells were observed in DIC-received groups. These changes were improved with the transplantation of rAD-MSCs. CONCLUSIONS We could conclude that targeted AD-MSCs could be applied to reduce hepatic toxicity caused by NSAIDs (DIC).
Collapse
|
119
|
Recent Patents Involving Stromal Vascular Fraction. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
120
|
Wang Y, Kong B, Chen X, Liu R, Zhao Y, Gu Z, Jiang Q. BMSC exosome-enriched acellular fish scale scaffolds promote bone regeneration. J Nanobiotechnology 2022; 20:444. [PMID: 36224596 PMCID: PMC9555002 DOI: 10.1186/s12951-022-01646-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Tissue engineering scaffolds are essential for repairing bone defects. The use of biomimetic scaffolds for bone tissue engineering has been investigated for decades. To date, the trend in this area has been moved toward the construction of biomimetic acellular scaffolds with effective modification to enhance the osteogenic differentiation efficiency of bone marrow mesenchymal stem cells (BMSCs). The exosomes derived from BMSCs have been shown as a potential therapeutic tool for repairing bone defects. In this study, we demonstrated the pro-osteogenic effects of exosomes derived form osteogenic differentiated BMSCs (OBMSC) and presented a novel exosmes-functionalized decellularized fish scale (DE-FS) scaffold for promoting bone regeneration in vivo. The DE-FS scaffolds were obtained through decellularization and decalcification processes, which exhibited high biocompatibility and low immunological rejection. The intrinsic anisotropic structures of DE-FS could enhance the adhesion and proliferation ability of BMSCs in vitro. In addition, we demonstrated that the porous structure of DE-FS endowed them with the capacity to load and release exosomes to BMSCs, resulting in the enhanced osteogenic differentiation of BMSCs. Concerning these pro-osteogenic effects, it was further proved that OBMSC exosome-modified DE-FS scaffolds could effectively promote bone regeneration in the mouse calvarial defect models. In conclusion, our work provided a new insight to design exosome-riched biomimetic scaffolds for bone tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, Jiangsu, PR China
| | - Bin Kong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, PR China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, Jiangsu, PR China
| | - Rui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Yuanjin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, PR China. .,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China.
| | - Zhuxiao Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, Jiangsu, PR China. .,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, PR China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, Jiangsu, PR China. .,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, China.
| |
Collapse
|
121
|
Gilger BC. Developing advanced therapeutics through the study of naturally occurring immune-mediated ocular disease in domestic animals. Am J Vet Res 2022; 83:ajvr.22.08.0145. [PMID: 36201404 DOI: 10.2460/ajvr.22.08.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review, which is part of the "Currents in One Health" series, describes the importance of the study of immune-mediated ocular disease in the development of innovative therapeutics, such as cell and gene therapy for the eye. Recent examples of cell and gene therapy studies from the author's laboratory are reviewed to emphasize the importance of One Health initiatives in developing innovative therapies for ocular diseases. Spontaneous immune-mediated corneal disease is common in horses, cats, dogs, and humans. Autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) injected subconjunctivally resulted in the resolution of naturally occurring immune-mediated keratitis (IMMK) without adverse effects. These results support that autologous subconjunctival BM-MSC therapy may be a viable treatment alternative for IMMK. Furthermore, the use of subconjunctival MSCs may be an effective method to treat ocular surface immune-mediated diseases in humans and other species, including herpetic stromal keratitis and immunologic dry eye disease. Furthermore, the use of adeno-associated viral (AAV) vectors to deliver the immunosuppressive transgene cDNA of equine interleukin 10 (eqIL-10) or human leukocyte antigen G injected intravitreally was shown to be safe and inhibited the development of uveitis in the experimental autoimmune uveitis rat model. Efficacy and safety studies of ocular gene therapy in models will pave the way for clinical trials in animals with naturally occurring immune-mediated diseases, such as a therapeutic clinical trial for AAV-eqIL-10 in horses with equine recurrent uveitis.
Collapse
|
122
|
Trends in using mesenchymal stromal/stem cells (MSCs) in treating corneal diseases. Ocul Surf 2022; 26:255-267. [DOI: 10.1016/j.jtos.2022.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
|
123
|
Chu Y, Zuo J, Zhang Y, Gao G, Hu X, Han R, Liu C, Zhou H, Li M, Peng W, Wang Y. Co-culture with chorionic villous mesenchymal stem cells promotes endothelial cell proliferation and angiogenesis via ABCA9-AKT pathway. FASEB J 2022; 36:e22568. [PMID: 36165221 DOI: 10.1096/fj.202101316rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Human chorionic villous mesenchymal stem cells (CV-MSCs) are a promising and effective therapeutic option for tissue injury. Vascular dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work aims to investigate how CV-MSCs regulate the function of vascular endothelial cells. In this study, RNA-seq analysis was used to examine the changes in HUVECs treated with CV-MSC conditioned medium (CM). We examined the levels of ABCA9 and AKT signaling in human umbilical vein endothelial cells (HUVECs) by immunohistochemistry, western blotting, and qRT-PCR assays. CCK-8, colony formation, and tube formation assays were used to understand the role of ABCA9 in HUVEC proliferation and angiogenesis mediated by CV-MSCs. The CV-MSC treatment significantly enhanced the HUVEC proliferation and angiogenesis. Furthermore, a significant increase in the ABCA9 expression and AKT pathway activation was observed in CV-MSCs -treated HUVECs. Consistent with these findings, ABCA9 overexpression exhibited the same proliferation-and angiogenesis-promoting effect in HUVECs as induced by CV-MSC CM, also accompanied the AKT signaling activation. In addition, inhibition of ABCA9 inactivated the AKT signaling in HUVECs and reduced the HUVEC proliferation and angiogenesis. Importantly, the elevation of proliferation and angiogenesis induced by ABCA9 overexpression in HUVECs could be reversed by AKT pathway inhibition. Our results suggest that ABCA9-dependent AKT signaling activation mediated by CV-MSCs could promote HUVEC proliferation and angiogenesis.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Gao
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Hu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rendong Han
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
124
|
AbuBakr N, Fares AE, Mostafa A, Farag DB. Mesenchymal stem cells-derived microvesicles versus platelet-rich plasma in the treatment of monoiodoacetate-induced temporomandibular joint osteoarthritis in Albino rats. Heliyon 2022; 8:e10857. [PMID: 36212013 PMCID: PMC9539788 DOI: 10.1016/j.heliyon.2022.e10857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a serious disease, designated by severe joint pain and dysfunction. Limitations of current therapeutics have led to an increased interest in regenerative strategies. Recently, the non-surgical treatment of OA has seen increased use of biologic injectable therapies like mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). Although these biotherapies represent an admirable effort, more studies are necessary to determine their efficacy. Thus, the aim of this study was to assess the curative potential of a single intra-articular injection of bone marrow MSCs-derived microvesicles (BM-MSCs-MVs) versus a single intra-articular injection of PRP in monoiodoacetate (MIA)-induced TMJ-OA model in Albino rats. Forty-eight male rats were used. A single intra-articular unilateral MIA injection was utilized to induce TMJ-OA. One week post induction, rats were sorted into 3 groups (16 rats each): group (I): received no treatment, groups (II) & (III): received BM-MSCs-MVs and PRP respectively. Scarification was done at 2 and 4 weeks from onset of treatment. Histological changes of the condylar TMJ were examined with H&E staining. Expression of IL-1β, TNF-α, NF-κB, MMP-13, MMP-3, and collagen ΙΙ markers was detected using real-time PCR. Histologically, the osteoarthritic group exhibited degenerated condylar tissues which were aggravated at 4 weeks. Oppositely, a marked improvement in the condylar TMJ histology was noticed in both the BM-MSCs-MVs-and PRP-treated groups at both time intervals. Additionally, the treated groups showed a decrease in IL-1β, TNF-α, NF-κB, MMP-13 and MMP-3 and an increase in collagen ΙΙ genes expression in contrast to the untreated group. Moreover, this difference was significant in the BM-MSCs-MVs group as compared to the PRP-treated group. Our results concluded that BM-MSCs-MVs as well as PRP treatments were able to target the key pathological features in OA, mainly inflammation and matrix degradation, and helped in restoring condylar structure in TMJ-OA rat model. However, BM-MSCs-MVs treatment exhibited more efficient therapeutic potential as compared to PRP treatment.
Collapse
|
125
|
Koch DW, Schnabel LV, Ellis IM, Bates RE, Berglund AK. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Res Ther 2022; 13:477. [PMID: 36114555 PMCID: PMC9482193 DOI: 10.1186/s13287-022-03172-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-β2. Methods RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-β2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-β2-treated BM-MSCs. Results TGF-β2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-β2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-β2-treated BM-MSCs increased tenocyte migration in vitro. Conclusions Treating equine BM-MSCs with TGF-β2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03172-9.
Collapse
|
126
|
Mesenchymal Stem Cell Sheet Centrifuge-Assisted Layering Augments Pro-Regenerative Cytokine Production. Cells 2022; 11:cells11182840. [PMID: 36139414 PMCID: PMC9497223 DOI: 10.3390/cells11182840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
A focal advantage of cell sheet technology has been as a scaffold-free three-dimensional (3D) cell delivery platform capable of sustained cell engraftment, survival, and reparative function. Recent evidence demonstrates that the intrinsic cell sheet 3D tissue-like microenvironment stimulates mesenchymal stem cell (MSC) paracrine factor production. In this capacity, cell sheets not only function as 3D cell delivery platforms, but also prime MSC therapeutic paracrine capacity. This study introduces a “cell sheet multilayering by centrifugation” strategy to non-invasively augment MSC paracrine factor production. Cell sheets fabricated by temperature-mediated harvest were first centrifuged as single layers using optimized conditions of rotational speed and time. Centrifugation enhanced cell physical and biochemical interactions related to intercellular communication and matrix interactions within the single cell sheet, upregulating MSC gene expression of connexin 43, integrin β1, and laminin α5. Single cell sheet centrifugation triggered MSC functional enhancement, secreting higher concentrations of pro-regenerative cytokines vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-10 (IL-10). Subsequent cell sheet stacking, and centrifugation generated cohesive, bilayer MSC sheets within 2 h, which could not be accomplished within 24 h by conventional layering methods. Conventional layering led to H1F-1α upregulation and increased cell death, indicating a hypoxic thickness limitation to this approach. Comparing centrifuged single and bilayer cell sheets revealed that layering increased VEGF production 10-fold, attributed to intercellular interactions at the layered sheet interface. The “MSC sheet multilayering by centrifugation” strategy described herein generates a 3D MSC-delivery platform with boosted therapeutic factor production capacity.
Collapse
|
127
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
128
|
Matheus HR, Özdemir ŞD, Guastaldi FPS. Stem cell-based therapies for temporomandibular joint osteoarthritis and regeneration of cartilage/osteochondral defects: a systematic review of preclinical experiments. Osteoarthritis Cartilage 2022; 30:1174-1185. [PMID: 35597373 DOI: 10.1016/j.joca.2022.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aim of this systematic review was to assess the effects of stem cell-based therapies on the treatment of Temporomandibular Joint Osteoarthritis (TMJ-OA) and the regeneration of cartilage/osteochondral defects. METHODS Data on preclinical studies evaluating the effectiveness of stem cell-based therapies for treating Temporomandibular Disorders (TMDs) were extracted from PubMed, Web of Science, and Cochrane Library and the grey literature by three independent reviewers. A manual search was performed in the databases, the reference list of review studies, and relevant journals in the field. Compliance with the ARRIVE guidelines was evaluated for quality assessment. SYRCLE's risk of bias tool for animal experimental studies was assessed to define internal validity. RESULTS After applying the inclusion and exclusion criteria, 10 studies were included in the qualitative synthesis. Regardless of cell origin, stem cell-based therapeutic approaches induced protective, anti-inflammatory, and chondroregenerative potential in the treatment of TMJ-OA. Regeneration of the cartilage layer on the surface of the condyle was achieved when stem cells were directly flushed into the defect or when delivered within a carrier. CONCLUSION Stem cell-based therapies may be considered a promising approach for the treatment of TMJ-OA and for the regeneration of full-thickness cartilage and osteochondral defects in the TMJ. Human studies shall be performed to validate these results found in animals.
Collapse
Affiliation(s)
- H R Matheus
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA; Department of Diagnosis and Surgery - Periodontics Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| | - Ş D Özdemir
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA; Istanbul Medipol University, School of Dentistry, İstanbul, Turkey.
| | - F P S Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
129
|
Hsieh MCW, Wang WT, Lin CY, Kuo YR, Lee SS, Hou MF, Wu YC. Stem Cell-Based Therapeutic Strategies in Diabetic Wound Healing. Biomedicines 2022; 10:biomedicines10092085. [PMID: 36140185 PMCID: PMC9495374 DOI: 10.3390/biomedicines10092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired wound healing and especially the “all-too-common” occurrence of associated diabetic foot ulcers (DFU) are becoming an increasingly urgent and deteriorating healthcare issue, which drastically impact the quality of life and further heighten the risks of infection and amputation in patients with diabetes mellitus. Amongst the multifactorial wound healing determinants, glycemic dysregulation has been identified to be the primary casual factor of poor wound healing. Unfortunately, current therapeutic modalities merely serve as moderate symptomatic relieves but often fail to completely restore the wound site to its pre-injury state and prevent further recurrence. Stem cell-based therapeutics have been employed for its promising potential to address the root of the problem as they not only exhibit the capacity for self-renewal and differentiation towards multiple lineages, but also have been disclosed to participate in mediating variant growth factors and cytokines. Herein we review the current literatures on the therapeutic benefits of using various kinds of stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and adipose-derived stem cells (ASCs) in diabetic wound healing by searching on the PubMed® Database for publications. This study shall serve as an overview of the current body of research with particular focus on autologous ASCs and the laboratory expandable iPSCs in hope of shedding more light on this attractive therapy so as to elevate the efficacy of wound healing that is almost always compromised in diabetic patients.
Collapse
Affiliation(s)
- Meng-Chien Willie Hsieh
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Wei-Ting Wang
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yur-Ren Kuo
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Plastic Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Surgery, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, Division of Breast Oncology and Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7675)
| |
Collapse
|
130
|
Bowers K, Amelse L, Bow A, Newby S, MacDonald A, Sun X, Anderson D, Dhar M. Mesenchymal Stem Cell Use in Acute Tendon Injury: In Vitro Tenogenic Potential vs. In Vivo Dose Response. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9080407. [PMID: 36004932 PMCID: PMC9404841 DOI: 10.3390/bioengineering9080407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Stem cell therapy for the treatment of tendon injury is an emerging clinical practice in the fields of human and veterinary sports medicine; however, the therapeutic benefit of intralesional transplantation of mesenchymal stem cells in tendonitis cases is not well designed. Questions persist regarding the overall tenogenic potential and efficacy of this treatment alone. In this study, we aimed to isolate a rat mesenchymal stem cell lineage for in vitro and in vivo use, to assess the effects of growth factor exposure in vitro on cell morphology, behavior, and tendon-associated glycoprotein production, and to assess the therapeutic potential of intralesional stem cells, as a function of dose, in vivo. First, rat adipose-derived (rAdMSC) and bone marrow-derived (rBMSC) stem cell lineages were isolated, characterized with flow cytometric analysis, and compared in terms of proliferation (MTS assay) and cellular viability (calcein AM staining). Rat AdMSCs displayed superior proliferation and more homogenous CD 73, CD 44H, and CD 90 expression as compared to rBMSC. Next, the tenogenic differentiation potential of the rAdMSC lineage was tested in vitro through isolated and combined stimulation with reported tenogenic growth factors, transforming growth factor (TGF)-β3 and connective tissue growth factor (CTGF). We found that the most effective tenogenic factor in terms of cellular morphologic change, cell alignment/orientation, sustained cellular viability, and tendon-associated glycoprotein upregulation was TGFβ3, and we confirmed that rAdMSC could be induced toward a tenogenic lineage in vitro. Finally, the therapeutic potential of rAdMSCs as a function of dose was assessed using a rat acute Achilles tendon injury model. Amounts of 5 × 105 (low dose) and 4 × 106 (high dose) were used. Subjectively, on the gross morphology, the rAdMSC-treated tendons exhibited fewer adhesions and less scar tissue than the control tendons; however, regardless of the rAdMSC dose, no significant differences in histological grade or tissue collagen I deposition were noted between the rAdMSC-treated and control tendons. Collectively, rAdMSCs exhibited appropriate stem cell markers and tenogenic potential in vitro, but the clinical efficacy of intralesional implantation of undifferentiated cells in acute tendonitis cases could not be proven. Further investigation into complementary therapeutics or specialized culture conditions prior to implantation are warranted.
Collapse
Affiliation(s)
- Kristin Bowers
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
- Correspondence:
| | - Lisa Amelse
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Austin Bow
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Steven Newby
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Amber MacDonald
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Xiaocun Sun
- Office of Information and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - David Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| | - Madhu Dhar
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-4550, USA
| |
Collapse
|
131
|
Aru B, Gürel G, Yanikkaya Demirel G. Mesenchymal Stem Cells: History, Characteristics and an Overview of Their Therapeutic Administration. TURKISH JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4274/tji.galenos.2022.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
132
|
Hamdalla HM, Ahmed RR, Galaly SR, Ahmed OM, Naguib IA, Alghamdi BS, Abdul-Hamid M. Assessment of the Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells against a Monoiodoacetate-Induced Osteoarthritis Model in Wistar Rats. Stem Cells Int 2022; 2022:1900403. [PMID: 36017131 PMCID: PMC9398859 DOI: 10.1155/2022/1900403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) of the knee is a debilitating condition that can severely limit an individual's mobility and quality of life. This study was designed to evaluate the efficacy of bone marrow-derived mesenchymal stem cell (BM-MSC) treatment in cartilage repair using a rat model of monoiodoacetate- (MIA-) induced knee OA. OA was induced in the knee joint of rats by an intracapsular injection of MIA (2 mg/50 μL) on day zero. The rats were divided into three groups (n = 6): a normal control group, an osteoarthritic control group, and an osteoarthritic group receiving a single intra-articular injection of BM-MSCs (5 × 106 cells/rat). The knee diameter was recorded once per week. By the end of the performed experiment, X-ray imaging and enzyme-linked immunosorbent assay analysis of serum inflammatory cytokines interleukin-1beta (IL-β), IL-6, and tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta (TGF-β) were carried out. In addition, RT-PCR was used to measure nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and type II collagen mRNA levels and Western blot analysis was used to determine caspase-3 protein levels in all treated groups. Finally, hematoxylin/and eosin stains were used for histopathological investigation. Administration of BM-MSCs significantly downregulated knee joint swelling and MIA-induced (IL-1β, IL-6, and TNF-α) and upregulated IL-10 and TGF-β as well. Moreover, BM-MSC-treated osteoarthritic rats exhibited decreased expression of NF-κB, iNOS, and apoptotic mediator (caspase-3) and increased expression of type II collagen when compared to rats treated with MIA alone. The hematoxylin/eosin-stained sections revealed that BM-MSC administration ameliorated the knee joint alterations in MIA-injected rats. BM-MSCs could be an effective treatment for inflamed knee joints in the MIA-treated rat model of osteoarthritis, and the effect may be mediated via its anti-inflammatory and antioxidant potential.
Collapse
Affiliation(s)
- Hadeer Mohamed Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Rasha Rashad Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Sanaa Rida Galaly
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Osama Mohamed Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| |
Collapse
|
133
|
Liu C, Xu Y, Lu Y, Du P, Li X, Wang C, Guo P, Diao L, Lu G. Mesenchymal stromal cells pretreated with proinflammatory cytokines enhance skin wound healing via IL-6-dependent M2 polarization. Stem Cell Res Ther 2022; 13:414. [PMID: 35964139 PMCID: PMC9375394 DOI: 10.1186/s13287-022-02934-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Numerous studies have shown that mesenchymal stromal cells (MSCs) promote cutaneous wound healing via paracrine signaling. Our previous study found that the secretome of MSCs was significantly amplified by treatment with IFN-γ and TNF-α (IT). It has been known that macrophages are involved in the initiation and termination of inflammation, secretion of growth factors, phagocytosis, cell proliferation, and collagen deposition in wound, which is the key factor during wound healing. In this study, we aim to test whether the supernatant of MSCs pretreated with IT (S-IT MSCs) possesses a more pronounced effect on improving wound healing and describe the interplay between S-IT MSCs and macrophages as well as the potential mechanism in skin wound healing. METHODS In the present study, we used a unique supernatant of MSCs from human umbilical cord-derived MSCs (UC-MSCs) pretreated with IT, designated S-IT MSCs, subcutaneously injected into a mice total skin excision. We evaluated the effect of S-IT MSCs on the speed and quality of wound repair via IT MSCs-derived IL-6-dependent M2 polarization in vivo by hematoxylin-eosin staining (H&E), immunohistochemistry (IHC), immunofluorescence (IF), Masson's trichrome staining, Sirius red staining, quantitative real-time PCR (qPCR). In addition, the effect of S-IT MSCs on the polarization of macrophages toward M2 phenotype and the potential mechanism of it were also investigated in vitro by flow cytometry (FCM), enzyme-linked immunosorbent assay (ELISA), tube formation assay, and western blot analysis. RESULTS Compared with control supernatant (S-MSCs), our H&E and IF results showed that S-IT MSCs were more effectively in promoting macrophages convert to the M2 phenotype and enhancing phagocytosis of M2 macrophages. Meanwhile, the results of tube formation assay, IHC, Masson's trichrome staining, Sirius red staining showed that the abilities of M2 phenotype to promote vascularization and collagen deposition were significantly enhanced by S-IT MSCs-treated, thereby accelerating higher quality wound healing. Further, our ELISA, FCM, qPCR and western blot results showed that IL-6 was highly enriched in S-IT MSCs and acted as a key regulator to induce macrophages convert to the M2 phenotype through IL-6-dependent signaling pathways, ultimately achieving the above function of promoting wound repair. CONCLUSIONS These findings provide the first evidence that the S-IT MSCs is more capable of eliciting M2 polarization of macrophages via IL-6-dependent signaling pathways and accelerating wound healing, which may represent a new strategy for optimizing the therapeutic effect of MSCs on wound healing.
Collapse
Affiliation(s)
- Chenyang Liu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China.,Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yan Xu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China.,Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yichi Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Pan Du
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoxiao Li
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China
| | - Chengchun Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Guo
- Nantong University, Nantong, Jiangsu, China
| | - Ling Diao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Guozhong Lu
- Nanjng University of Traditional Chinese Medcine, Nanjng, Jiangsu, China. .,Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, The Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
134
|
Koch DW, Berglund AK, Messenger KM, Gilbertie JM, Ellis IM, Schnabel LV. Interleukin-1β in tendon injury enhances reparative gene and protein expression in mesenchymal stem cells. Front Vet Sci 2022; 9:963759. [PMID: 36032300 PMCID: PMC9410625 DOI: 10.3389/fvets.2022.963759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tendon injury in the horse carries a high morbidity and monetary burden. Despite appropriate therapy, reinjury is estimated to occur in 50–65% of cases. Although intralesional mesenchymal stem cell (MSC) therapy has improved tissue architecture and reinjury rates, the mechanisms by which they promote repair are still being investigated. Additionally, reevaluating our application of MSCs in tendon injury is necessary given recent evidence that suggests MSCs exposed to inflammation (deemed MSC licensing) have an enhanced reparative effect. However, applying MSC therapy in this context is limited by the inadequate quantification of the temporal cytokine profile in tendon injury, which hinders our ability to administer MSCs into an environment that could potentiate their effect. Therefore, the objectives of this study were to define the temporal cytokine microenvironment in a surgically induced model of equine tendon injury using ultrafiltration probes and subsequently evaluate changes in MSC gene and protein expression following in vitro inflammatory licensing with cytokines of similar concentration as identified in vivo. In our in vivo surgically induced tendon injury model, IL-1β and IL-6 were the predominant pro-inflammatory cytokines present in tendon ultrafiltrate where a discrete peak in cytokine concentration occurred within 48 h following injury. Thereafter, MSCs were licensed in vitro with IL-1β and IL-6 at a concentration identified from the in vivo study; however, only IL-1β induced upregulation of multiple genes beneficial to tendon healing as identified by RNA-sequencing. Specifically, vascular development, ECM synthesis and remodeling, chemokine and growth factor function alteration, and immunomodulation and tissue reparative genes were significantly upregulated. A significant increase in the protein expression of IL-6, VEGF, and PGE2 was confirmed in IL-1β-licensed MSCs compared to naïve MSCs. This study improves our knowledge of the temporal tendon cytokine microenvironment following injury, which could be beneficial for the development and determining optimal timing of administration of regenerative therapies. Furthermore, these data support the need to further study the benefit of MSCs administered within the inflamed tendon microenvironment or exogenously licensed with IL-1β in vitro prior to treatment as licensed MSCs could enhance their therapeutic benefit in the healing tendon.
Collapse
Affiliation(s)
- Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Alix K. Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Kristen M. Messenger
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jessica M. Gilbertie
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Ilene M. Ellis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Lauren V. Schnabel
| |
Collapse
|
135
|
Shipping Temperature, Time and Media Effects on Equine Wharton’s Jelly and Adipose Tissue Derived Mesenchymal Stromal Cells Characteristics. Animals (Basel) 2022; 12:ani12151967. [PMID: 35953956 PMCID: PMC9367575 DOI: 10.3390/ani12151967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Today, the use of horse adipose tissue and Wharton’s jelly-derived mesenchymal stromal cells in veterinary regenerative medicine represents a promising tool. Cells need to be isolated and expanded in vitro in the laboratory to obtain a sufficient amount for clinical application and its characterization. In many cases, laboratories and clinics where the therapy will be performed are in different and far-flung facilities, and the cells must therefore be shipped by a courier. The authors evaluated the effects of different storage conditions, in terms of temperature, time of storage and storage solutions on cell viability, cell growth, differentiation potential and molecular characteristics. The aim was to state the most appropriate storage conditions for transporting adipose tissue and Wharton’s jelly-derived stromal cells, ensuring the maintenance of the stemness features for therapeutic application in horses. Abstract To use Mesenchymal Stromal Cells (MSCs) in equine patients, isolation and expansion are performed in a laboratory. Cells are then sent back to the veterinary clinic. The main goal of storage conditions during cell transport is to preserve their biological properties and viability. The aim of this study was to evaluate the effects of storage solutions, temperature and time on the characteristics of equine adipose tissue and Wharton’s jelly-derived MSCs. We compared two different storage solutions (plasma and 0.9% NaCl), two different temperatures (4 °C and room temperature) and three time frames (6, 24, 48 h). Cell viability, colony-forming units, trilineage differentiation, the expression of CD45 and CD90 antigens and adhesion potentials were evaluated. Despite the molecular characterization and differentiation potential were not influenced by storage conditions, viability, colony-forming units and adhesion potential are influenced in different way, depending on MSCs sources. Overall, this study found that, despite equine adipose tissue MSCs being usable after 24 h of storage, cells derived from Wharton’s jelly need to be used within 6 h. Moreover, while for adipose cells the best conservation solutions seems to be plasma, the cell viability of Wharton’s jelly MSCs declined in both saline and plasma solution, confirming their reduced resistance to conservation.
Collapse
|
136
|
Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: A new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022; 152:113211. [PMID: 35696942 DOI: 10.1016/j.biopha.2022.113211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
137
|
Mesenchymal stem cells exert renoprotection via extracellular vesicle-mediated modulation of M2 macrophages and spleen-kidney network. Commun Biol 2022; 5:753. [PMID: 35902687 PMCID: PMC9334610 DOI: 10.1038/s42003-022-03712-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have shown therapeutic potentials against refractory diseases. However, the detailed therapeutic mechanisms remain unclear. Here, we report the therapeutic actions of human ASCs in nephritis, focusing on cellular dynamics and multi-organ networks. Intravenously-administered ASCs accumulated in spleen but not kidneys. Nevertheless, ASCs increased M2 macrophages and Tregs in kidneys and drove strong renoprotection. Splenectomy abolished these therapeutic effects. ASC-derived extracellular vesicles (EVs) were transferred to M2 macrophages, which entered the bloodstream from spleen. EVs induced the transcriptomic signatures of hyperpolarization and PGE2 stimulation in M2 macrophages and ameliorated glomerulonephritis. ASCs, ASC-derived EVs, and EV-transferred M2 macrophages enhanced Treg induction. These findings suggest that EV transfer from spleen-accumulated ASCs to M2 macrophages and subsequent modulation of renal immune-environment underlie the renoprotective effects of ASCs. Our results provide insights into the therapeutic actions of ASCs, focusing on EV-mediated modulation of macrophages and the spleen-kidney immune network. The renoprotective effects of adipose-derived mesenchymal stem cells (ASCs) are enhanced through the transfer of EVs predominantly to M2 macrophages in the spleen, providing insights into therapeutic avenues for ASCs.
Collapse
|
138
|
Surtaieva YV, Mazurkevich AY, Bokotko RR. Effects of transplanted mesenchymal stem cells on repair of the lung tissue of rats with experimental pulmonary fibrosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis is one of the commonest forms of interstitial lung diseases with poorly studied methods of its treatment in both human and veterinary medicines. Therefore, this paper focused on seeking alternative methods of its diagnostics and treatment. The article provides the results of the study of bronchoalveolar lavage fluid of rats with experimental lung fibrosis and influence of transplanted allogeneic mesenchymal stem cells of the bone marrow on stimulation of regenerative processes in damaged lung tissues. The studies were conducted on female Wistar rats with pulmonary fibrosis modeled using single transthoracic injection of solution of bleomycin hydrochloride. For the purpose of treatment, we used allogeneic mesenchymal stem cells introduced by various methods and the traditional treatment. We determined that best normalization of the parameters of the studied brochoalveolar lavage occurred in animals that received mesenchymal stem cells. The most active repair processes were in the experimental group that received the mesenchymal stem cells directly to the lung tissue. The animals that received intravenous injection of mesenchymal stemm cells were observed to have lower clinical parameters of the brochoalveolar lavage, but still better than such in the group treated traditionally. The lowest parameters were in animals that received the traditional treatment; they were greater than the phisological parameters, but significantly exceeded them in animals of the control group, indicating presence of inflammatory process in the lung tissue. The conducted cytological assays of the samples of the brochoalveolar lavage revealed that experimental animals with experimental pulmonary fibrosis had development of macrophage and lymphocytic reactions under the influence of transplanted mesenchymal stemm cells. We observed no atypical cells in all the experimental groups. This allows us to draw a conclusion that using stem cells by various methods of transplantation does not stimulate the onset of negative reactons (formation of atypical cells, metastatic processes, etc). Thus, the results of the study of the influence of transplanted mesenchymal stem cells demonstrate that in the conditions of experimental pulmonary fibrosis, the activity of regenerative processes in pathologically altered lung tissue may be an effective method of treatment of animals with this kind of pathology.
Collapse
|
139
|
Adugna DG, Aragie H, Kibret AA, Belay DG. Therapeutic Application of Stem Cells in the Repair of Traumatic Brain Injury. Stem Cells Cloning 2022; 15:53-61. [PMID: 35859889 PMCID: PMC9289752 DOI: 10.2147/sccaa.s369577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury is the main cause of injury-related deaths and disabilities throughout the world, which is characterized by a disruption of the normal physiology of the brain following trauma. It can potentially cause severe complications such as physical, cognitive, and emotional impairment. In addition to understanding traumatic brain injury pathophysiology, this review explains the therapeutic potential of stem cells following brain injury in two pathways: response of endogenous neurogenic cells and transplantation of exogenous stem cell therapy. After traumatic brain injuries, clinical evidence indicated that endogenous neural progenitor cells might play an important role in regenerative medicine to treat brain injury. This is due to an increased neurogenic regeneration ability of these cells following brain injury. Besides, exogenous stem cell transplantation has also accelerated immature neuronal development and increased endogenous cellular proliferation in the damaged brain region. Therefore, a better understanding of the endogenous neural stem cell’s regenerative ability and the effect of exogenous stem cells on proliferation and differentiation ability may help researchers to understand how to increase functional recovery and tissue repair following injury.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Hailu Aragie
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Anteneh Ayelign Kibret
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Daniel Gashaneh Belay
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia.,Department of Epidemiology, Institution of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
140
|
Ho ML, Hsu CJ, Wu CW, Chang LH, Chen JW, Chen CH, Huang KC, Chang JK, Wu SC, Shao PL. Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells. Biomedicines 2022; 10:biomedicines10071752. [PMID: 35885057 PMCID: PMC9312889 DOI: 10.3390/biomedicines10071752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ≤ 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE.
Collapse
Affiliation(s)
- Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Jhen-Wei Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kui-Chou Huang
- Department of Orthopedics, Asia University Hospital, Taichung 413505, Taiwan;
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| |
Collapse
|
141
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
142
|
Stem Cells in the Tumor Immune Microenvironment -Part of the Cure or Part of the Disease? Ontogeny and Dichotomy of Stem and Immune Cells has Led to better Understanding. Stem Cell Rev Rep 2022; 18:2549-2565. [PMID: 35841518 DOI: 10.1007/s12015-022-10428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Stem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis. Immune surveillance plays an important role in this interplay since the response of immune cells toward the oncogenic process can range from reactivity to placidity and even complicity, being orchestrated by intercellular molecular dialogues with the other key players of the tumor microenvironment. With the current understanding that every developing and adult tissue contains inherent stem and progenitor cells, in this manuscript we review the most relevant interactions carried out between the stem cells, tumor cells and immune cells in a bottom-up incursion through the tumor microenvironment beginning from the perivascular niche and going through the tumoral parenchyma and the related stroma. With the exploitation of various factors that influence the behavior of immune effectors toward stem cells and other resting cells in their niche, new therapeutic strategies to tackle the polarization of immune effectors toward a more immunogenic phenotype may arise.
Collapse
|
143
|
Rahimi Tesiye M, Abrishami Kia Z, Rajabi-Maham H. Mesenchymal stem cells and prostate cancer: A concise review of therapeutic potentials and biological aspects. Stem Cell Res 2022; 63:102864. [PMID: 35878578 DOI: 10.1016/j.scr.2022.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate cancer (PCa) arises from a cancer stem or progenitor cell with homogenous characteristics, especially among the aging men population. Over the past decade, the increasing PCa incidence has led to significant changes in both disease diagnosis and treatment. Recently, the therapeutic aspects of stem cells in many cancers, including PCa, have been debatable. The new generation of PCa studies seek to present definitive treatments with reduced therapeutic side effects. Since discovering unique properties of stem cells in modulating immunity, selective migration to inflammatory regions, and secretion of various growth factors, they have been a promising therapeutic target. The existing properties of stem cell therapy bring new opportunities for cancer inhibition: transferring chemotherapeutics, activating prodrugs, affecting the expression of genes involved in cancer, genetically modifying the production of anti-cancer compounds, proteins, and/or deriving extracellular vesicles (EVs) containing therapeutic agents from stem cells. However, their dual properties in carcinogenicity as well as their ability to inhibit cancer result in particular limitations studying them after administration. A clear understanding of the interaction between MSCs and the prostate cancer microenvironment will provide crucial information in revealing the precise applications and new practical protocols for clinical use of these cells..
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Abrishami Kia
- Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hassan Rajabi-Maham
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
144
|
Sipos F, Műzes G. Disagreements in the therapeutic use of mesenchymal stem cell-derived secretome. World J Stem Cells 2022; 14:365-371. [PMID: 35949398 PMCID: PMC9244954 DOI: 10.4252/wjsc.v14.i6.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
In a recent article, the authors provide a detailed summary of the characteristics and biological functions of mesenchymal stem cells (MSCs), as well as a discussion on the potential mechanisms of action of MSC-based therapies. They describe the morphology, biogenesis, and current isolation techniques of exosomes, one of the most important fractions of the MSC-derived secretome. They also summarize the characteristics of MSC-derived exosomes and highlight their functions and therapeutic potential for tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and musculoskeletal diseases, as well as cutaneous wound healing. Despite the fact that MSCs are regarded as an important pillar of regenerative medicine, their regenerative potential has been demonstrated to be limited in a number of pathological conditions. The negative effects of MSC-based cell therapy have heightened interest in the therapeutic use of MSC-derived secretome. On the other hand, MSC-derived exosomes and microvesicles possess the potential to have a significant impact on disease development, including cancer. MSCs can interact with tumor cells and promote mutual exchange and induction of cellular markers by exchanging secretome. Furthermore, enzymes secreted into and activated within exosomes can result in tumor cells acquiring new properties. As a result, therapeutic applications of MSC-derived secretomes must be approached with extreme caution.
Collapse
Affiliation(s)
- Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary.
| | - Györgyi Műzes
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest 1088, Hungary
| |
Collapse
|
145
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:1989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
146
|
Saheli M, Khoramipour K, Vosough M, Piryaei A, Rahmati M, Suzuki K. Athletes' Mesenchymal Stem Cells Could Be the Best Choice for Cell Therapy in Omicron-Infected Patients. Cells 2022; 11:1926. [PMID: 35741055 PMCID: PMC9221912 DOI: 10.3390/cells11121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
New severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Omicron, contains 32 mutations that have caused a high incidence of breakthrough infections or re-infections. These mutations have reduced vaccine protection against Omicron and other new emerging variants. This highlights the need to find effective treatment, which is suggested to be stem cell-based therapy. Stem cells could support respiratory epithelial cells and they could restore alveolar bioenergetics. In addition, they can increase the secretion of immunomodulatory cytokines. However, after transplantation, cell survival and growth rate are low because of an inappropriate microenvironment, and stem cells face ischemia, inflammation, and oxidative stress in the transplantation niche which reduces the cells' survival and growth. Exercise-training can upregulate antioxidant, anti-inflammatory, and anti-apoptotic defense mechanisms and increase growth signaling, thereby improving transplanted cells' survival and growth. Hence, using athletes' stem cells may increase stem-cell therapy outcomes in Omicron-affected patients.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, and Pathology and Stem Cell Research Centre, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran;
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad 6815144316, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Saitama, Japan
| |
Collapse
|
147
|
Yan CP, Wang XK, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li YL. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front Cell Dev Biol 2022; 10:883228. [PMID: 35669516 PMCID: PMC9164109 DOI: 10.3389/fcell.2022.883228] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Bone defects are a global public health problem. However, the available methods for inducing bone regeneration are limited. The application of traditional Chinese herbs for bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol similar to estrogen, that promotes protein synthesis in cells; however, its function in bone regeneration remains unclear. In this study, we investigated the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells were used to test the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-ecdysterone influenced the expression of osteogenesis-related genes, and the bone regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction, the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could upregulate the expression of osteoblastic-related genes, and promoted ALP activity and the formation of calcium nodules. We also determined that β-ecdysterone increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/Osterix signaling pathway and by enrichment biological processes. For in vivo experiments, a femoral condyle defect model was constructed by drilling a bone defect measuring 3 mm in diameter and 4 mm in depth in the femoral condyle of 8-week-old Sprague Dawley male rats. This model was used to further assess the bone regenerative functions of β-ecdysterone. The results of micro-computed tomography showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone volume, bone surface, and bone mineral density at each observation time point. Immunohistochemistry confirmed that the β-ecdysterone also increased the expression of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4 and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has revealed a new direction of osteogenic differentiation and has provided novel therapeutic strategies for treating bone defects.
Collapse
Affiliation(s)
- Cai-Ping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xing-Kuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
148
|
Peñín-Grandes S, Martín-Hernández J, Valenzuela PL, López-Ortiz S, Pinto-Fraga J, Solá LDR, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Exercise and the hallmarks of peripheral arterial disease. Atherosclerosis 2022; 350:41-50. [DOI: 10.1016/j.atherosclerosis.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
|
149
|
Ramos DM, Abdulmalik S, Arul MR, Sardashti N, Banasavadi-Siddegowda YK, Nukavarapu SP, Drissi H, Kumbar SG. Insulin-Functionalized Bioactive Fiber Matrices with Bone Marrow-Derived Stem Cells in Rat Achilles Tendon Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2851-2861. [PMID: 35642544 DOI: 10.1021/acsabm.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing. FDA-approved growth factors to promote tendon healing are lacking, which highlights the need for safe and effective bioactive factors. Our previous work evaluated insulin as a bioactive factor and identified an optimal dose to promote in vitro mesenchymal stem cell survival, division, and tenogenesis. The present work evaluates the ability of insulin-functionalized electrospun nanofiber matrices with or without mesenchymal stem cells to enhance tendon repair in a rat Achilles injury model. Electrospun nanofiber matrices were functionalized with insulin, cultured with or without mesenchymal stem cells, and sutured to transected Achilles tendons in rats. We analyzed rat tendons 4 and 8 weeks after surgery for the tendon morphology, collagen production, and mechanical properties. Bioactive insulin-functionalized fiber matrices with mesenchymal stem cells resulted in significantly increased collagen I and III at 4 and 8 weeks postsurgery. Additionally, these matrices supported highly aligned collagen fibrils in the regenerated tendon tissue at 8 weeks. However, treatment- and control-regenerated tissues had similar tensile properties at 8 weeks, which were less than that of the native Achilles tendon. Our preliminary results establish the benefits of insulin-functionalized fiber matrices in promoting higher levels of collagen synthesis and alignment needed for functional recovery of tendon repair.
Collapse
Affiliation(s)
- Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hicham Drissi
- Department of Orthopedic Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322-1007, United States
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
150
|
Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells. Eur J Cell Biol 2022; 101:151245. [PMID: 35667339 DOI: 10.1016/j.ejcb.2022.151245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) show a decline in pluripotency and differentiation with increased cell culture passages in 2D cultures. The 2D monolayer culture fails to correctly imitate the architecture and microenvironments of in-vivo cell models. Alternatively, 3D culture may improve the simulations of in-vivo cell microenvironments with wide applications in cell culture and drug discovery. In the present study, we compared various 3D culturing techniques such as 3D micro-well (3D-S), hanging drop (HD), and ultra-low attachment (ULA) plate-based spheroid culture to study their effect on morphology, viability, pluripotency, cell surface markers, immunomodulatory factors, and differentiation capabilities of Wharton's jelly-mesenchymal stem cells (WJ-MSCs). The cell morphology, viability, and senescence of 3D cultured WJ-MSCs were comparable to cells in 2D culture. The expression of pluripotency markers (OCT4, SOX2, and NANOG) was enhanced upto 2-8 fold in 3D cultured WJ-MSCs when compared to 2D culture. Moreover, the immunomodulatory factors (IDO, IL-10, LIF, ANG1, and VEGF) were significantly elevated in ULA based 3D cultured WJ-MSCs. Furthermore, significant enhancement in the differentiation potential of WJ-MSCs towards adipocyte (ADP and C/EBP-α), osteocyte (OPN and RUNX2), and definitive endodermal (SOX17, FOXA2, and CXCR4) lineages in 3D culture conditions were observed. Additionally, the osteogenic and adipogenic differentiation potential of WJ-MSCs over the time points 7 days, 14 days, and 28 days was also significantly increased in 3D culture groups. Our study demonstrates that stemness properties of WJ-MSCs were significantly enhanced in 3D cultures and ULA-based culture outperformed other methods with high pluripotency gene expression and enhanced differentiation potential. This study indicates the efficacy of 3D cultures to bridge the gap between 2D cell culture and animal models in regenerative medicine.
Collapse
|