101
|
Zhao W, Yang H, Chai J, Xing L. RUNX2 as a promising therapeutic target for malignant tumors. Cancer Manag Res 2021; 13:2539-2548. [PMID: 33758548 PMCID: PMC7981165 DOI: 10.2147/cmar.s302173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022] Open
Abstract
The transcription factor runt-related protein 2 (RUNX2) has an important impact on the transformation of bone marrow mesenchymal stem cells to osteoblasts. Further studies have shown that RUNX2 plays a key role in the invasion and metastasis of cancers. RUNX2 is a "key" molecule in the regulatory network comprised of multiple signaling pathways upstream and its target downstream molecules. Due to the complex regulatory mechanisms of RUNX2, the specific mechanism underlying the occurrence, development and prognosis of malignant tumors has not been fully understood. Currently, RUNX2 as a promising therapeutic target for cancers has become a research hotspot. Herein, we reviewed the current literature on the modulatory functions and mechanisms of RUNX2 in the development of malignant tumors, aiming to explore its potential clinical application in the diagnosis, prognosis and treatment of tumors.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiology, Cancer Hospital Affiliated to Shandong First Medical University, Shandong Cancer Hospital and Institute, Jinan, 250117, People’s Republic of China
- Department of Oncology, Binzhou People’s Hospital, Binzhou, 256610, People’s Republic of China
| | - Haiying Yang
- Department of Nursing, Binzhou People’s Hospital, Binzhou, 256610, People’s Republic of China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Cancer Hospital Affiliated to Shandong First Medical University, Shandong Cancer Hospital and Institute, Jinan, 250117, People’s Republic of China
| | - Ligang Xing
- Department of Radiology, Cancer Hospital Affiliated to Shandong First Medical University, Shandong Cancer Hospital and Institute, Jinan, 250117, People’s Republic of China
| |
Collapse
|
102
|
Yuan H, Li M, Feng X, Zhu E, Wang B. miR-142a-5p promoted osteoblast differentiation via targeting nuclear factor IA. J Cell Physiol 2021; 236:1810-1821. [PMID: 32700780 DOI: 10.1002/jcp.29963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
miR-142a-5p plays critical roles in multiple biological processes and diseases, such as inflammation and tumorigenesis. However, it remains to be explored if and how miR-142a-5p contributes to osteoblast differentiation. In this study, our results showed that miR-142a-5p was highly expressed in bone tissue of mice and increased during osteogenesis in preosteoblast MC3T3-E1 cells. Supplementing miR-142a-5p activity using miR-142a-5p agomir promoted osteogenic differentiation in stromal cell line ST2 and preosteoblastic line MC3T3-E1. Conversely, miR-142a-5p antagomir, an inhibitor of endogenous miR-142a-5p, could reduce osteoblast differentiation in ST2 and MC3T3-E1 cells. Nuclear factor IA (NFIA), a site-specific transcriptional factor, was demonstrated to be directly targeted by miR-142a-5p. Overexpression of NFIA inhibited miR-142a-5p-mediated osteoblast differentiation in ST2 cells. Furthermore, mechanism explorations revealed that Wnt/β-catenin signaling transcriptionally regulated the expression of miR-142a-5p during osteogenic differentiation. β-catenin binds to the T-cell factor/lymphoid enhancer factor binding motif within the promoter of miR-142 and positively regulates its transcriptional activity. Our findings suggested that miR-142a-5p promoted osteoblast differentiation via targeting NFIA.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mengyue Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xue Feng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
103
|
Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021; 22:ijms22052269. [PMID: 33668763 PMCID: PMC7956585 DOI: 10.3390/ijms22052269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.
Collapse
Affiliation(s)
- Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan;
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| |
Collapse
|
104
|
Tsukiyama T, Koo BK, Hatakeyama S. Post-translational Wnt receptor regulation: Is the fog slowly clearing?: The molecular mechanism of RNF43/ZNRF3 ubiquitin ligases is not yet fully elucidated and still controversial. Bioessays 2021; 43:e2000297. [PMID: 33569855 DOI: 10.1002/bies.202000297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays pivotal roles during our entire lives, from conception to death, through the regulation of morphogenesis in developing embryos and the maintenance of tissue homeostasis in adults. The regulation of Wnt signaling occurs on several levels: at the receptor level on the plasma membrane, at the β-catenin protein level in the cytoplasm, and through transcriptional regulation in the nucleus. Several recent studies have focused on the mechanisms of Wnt receptor regulation, following the discovery that the Wnt receptor frizzled (Fzd) is a target of the ubiquitin ligases, RNF43 and ZNRF3. RNF43 and ZNRF3 are homologous genes that are mutated in several cancers. The details underlying their mechanism of action continue to unfold, while at the same time raising many new questions. In this review, we discuss advances and controversies in our understanding of Wnt receptor regulation.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
105
|
Huang X, Liang J, Gao Y, Hou Y, Song Y, Kong L. Ckip-1 regulates C3H10T1/2 mesenchymal cell proliferation and osteogenic differentiation via Lrp5. Exp Ther Med 2021; 21:342. [PMID: 33732315 PMCID: PMC7903475 DOI: 10.3892/etm.2021.9773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Casein kinase-2 interaction protein-1 (Ckip-1) is a negative regulator of bone formation. The identification of novel Ckip-1-related targets and their associated signaling pathways that regulate mesenchymal stem cell (MSC) osteogenic differentiation is required. The present study aimed to evaluate the effects of Ckip-1 knockdown on C3H10T1/2 MSC proliferation and osteogenic differentiation, and to explore the role of the canonical Wnt-signaling receptor Lrp5. Ckip-1-knockdown (shCkip-1), Ckip-1-overexpression (Ckip-1) and their corresponding control [shCtrl and empty vector (EV), respectively] cell groups were used in the present study. Immunofluorescence localization of Ckip-1 was observed. The expression of the key molecules of the canonical Wnt signaling pathway was examined in C3H10T1/2 cells following osteogenic induction. Moreover, the effects of Lrp5 knockdown in the presence or absence of Ckip-1 knockdown were examined on C3H10T1/2 cell proliferation and osteogenic differentiation. The results indicated an increase in cell proliferation and osteogenic differentiation in the shCkip-1 group compared with the shCtrl group. The expression levels of LDL receptor related protein 5 (Lrp5), lymphoid enhancer binding factor 1 (Lef1) and transcription factor 1 in C3H10T1/2 cells were significantly increased in shCkip-1 cells following 7-day osteoinduction compared with shCtrl cells. Moreover, the involvement of Lrp5 in shCkip-1-induced osteogenic differentiation of C3H10T1/2 cells was further verified. The results indicated that Ckip-1 reduced C3H10T1/2 MSC proliferation and osteogenic differentiation via the canonical Wnt-signaling receptor Lrp5, which is essential for the improvement of bone tissue engineering.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,School of Stomatology of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jianfei Liang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ye Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Hou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital, Qingdao, Shandong 266001, P.R. China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
106
|
de Winter TJJ, Nusse R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front Cell Dev Biol 2021; 9:627429. [PMID: 33634128 PMCID: PMC7900430 DOI: 10.3389/fcell.2021.627429] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) give rise to adipocytes, osteocytes, and chondrocytes and reside in various tissues, including bone marrow and adipose tissue. The differentiation choices of MSCs are controlled by several signaling pathways, including the Wnt/β-catenin signaling. When MSCs undergo adipogenesis, they first differentiate into preadipocytes, a proliferative adipocyte precursor cell, after which they undergo terminal differentiation into mature adipocytes. These two steps are controlled by the Wnt/β-catenin pathway, in such a way that when signaling is abrogated, the next step in adipocyte differentiation can start. This sequence suggests that the main role of Wnt/β-catenin signaling is to suppress differentiation while increasing MSC and preadipocytes cell mass. During later steps of MSC differentiation, however, active Wnt signaling can promote osteogenesis instead of keeping the MSCs undifferentiated and proliferative. The exact mechanisms behind the various functions of Wnt signaling remain elusive, although recent research has revealed that during lineage commitment of MSCs into preadipocytes, Wnt signaling is inactivated by endogenous Wnt inhibitors. In part, this process is regulated by histone-modifying enzymes, which can lead to increased or decreased Wnt gene expression. The role of Wnt in adipogenesis, as well as in osteogenesis, has implications for metabolic diseases since Wnt signaling may serve as a therapeutic target.
Collapse
Affiliation(s)
- Twan J J de Winter
- Faculty of Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Roeland Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford, CA, United States.,School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
107
|
Chu S, Skidmore ZL, Kunisaki J, Walker JR, Griffith M, Griffith OL, Bryan JN. Unraveling the chaotic genomic landscape of primary and metastatic canine appendicular osteosarcoma with current sequencing technologies and bioinformatic approaches. PLoS One 2021; 16:e0246443. [PMID: 33556121 PMCID: PMC7870011 DOI: 10.1371/journal.pone.0246443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma is a rare disease in children but is one of the most common cancers in adult large breed dogs. The mutational landscape of both the primary and pulmonary metastatic tumor in two dogs with appendicular osteosarcoma (OSA) was comprehensively evaluated using an automated whole genome sequencing, exome and RNA-seq pipeline that was adapted for this study for use in dogs. Chromosomal lesions were the most common type of mutation. The mutational landscape varied substantially between dogs but the lesions within the same patient were similar. Copy number neutral loss of heterozygosity in mutant TP53 was the most significant driver mutation and involved a large region in the middle of chromosome 5. Canine and human OSA is characterized by loss of cell cycle checkpoint integrity and DNA damage response pathways. Mutational profiling of individual patients with canine OSA would be recommended prior to targeted therapy, given the heterogeneity seen in our study and previous studies.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
108
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
109
|
Jiang Q, Lei YH, Krishnadath DC, Zhu BY, Zhou XW. Curcumin regulates EZH2/Wnt/β-Catenin pathway in the mandible and femur of ovariectomized osteoporosis rats. Kaohsiung J Med Sci 2021; 37:513-519. [PMID: 33501725 DOI: 10.1002/kjm2.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022] Open
Abstract
Osteoporosis (OP) behaves in different manners in different parts of the skeleton. This study aims to investigate the effects of curcumin on bone mass of the mandibular and femur from ovariectomized OP rats and to validate whether enhancer of zeste homolog 2 (EZH2)/Wnt/β-Catenin pathway is involved in this process. Curcumin was administered intragastrically into ovariectomized rats for 12 weeks. The bone parameters and the morphology of the trabecular bone of the left mandible and left femur were assessed by micro-computed tomography assay. Morphological changes of the left mandible and left femur were evaluated by hematoxylin and eosin staining. The mRNA levels of EZH2, β-Catenin, and Runx2 in the right mandible and right femur were examined by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed to assess EZH2 expression. Both the mandible and femur exhibited OP-like changes in ovariectomized rats, while the mandible bone resorption was less than the femur bone resorption. Curcumin intragastric administration improved bone microstructure and promoted bone formation in the mandible and femur. Curcumin inhibited EZH2 mRNA level and induced that of β-Catenin and Runx2 in the mandible and femur. Collectively, curcumin exerts protective effects against OP, possibly by regulating the EZH2/Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Hua Lei
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dewi Chrystal Krishnadath
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing-Yu Zhu
- Department of Stomatology, Ningbo Yinzhou People's Hospital, Ningbo, China
| | - Xiong-Wen Zhou
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
110
|
Juhl OJ, Merife AB, Zhang Y, Lemmon CA, Donahue HJ. Hydroxyapatite Particle Density Regulates Osteoblastic Differentiation Through β-Catenin Translocation. Front Bioeng Biotechnol 2021; 8:591084. [PMID: 33490047 PMCID: PMC7820766 DOI: 10.3389/fbioe.2020.591084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Substrate surface characteristics such as roughness, wettability and particle density are well-known contributors of a substrate's overall osteogenic potential. These characteristics are known to regulate cell mechanics as well as induce changes in cell stiffness, cell adhesions, and cytoskeletal structure. Pro-osteogenic particles, such as hydroxyapatite, are often incorporated into a substrate to enhance the substrates osteogenic potential. However, it is unknown which substrate characteristic is the key regulator of osteogenesis. This is partly due to the lack of understanding of how these substrate surface characteristics are transduced by cells. In this study substrates composed of polycaprolactone (PCL) and carbonated hydroxyapatite particles (HAp) were synthesized. HAp concentration was varied, and a range of surface characteristics created. The effect of each substrate characteristic on osteoblastic differentiation was then examined. We found that, of the characteristics examined, only HAp density, and indeed a specific density (85 particles/cm2), significantly increased osteoblastic differentiation. Further, an increase in focal adhesion maturation and turnover was observed in cells cultured on this substrate. Moreover, β-catenin translocation from the membrane bound cell fraction to the nucleus was more rapid in cells on the 85 particle/cm2 substrate compared to cells on tissue culture polystyrene. Together, these data suggest that particle density is one pivotal factor in determining a substrates overall osteogenic potential. Additionally, the observed increase in osteoblastic differentiation is a at least partly the result of β-catenin translocation and transcriptional activity suggesting a β-catenin mediated mechanism by which substrate surface characteristics are transduced.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna-Blessing Merife
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher A Lemmon
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
111
|
Yang J, Kitami M, Pan H, Nakamura MT, Zhang H, Liu F, Zhu L, Komatsu Y, Mishina Y. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal 2021; 14:14/665/eaaz9368. [PMID: 33436499 DOI: 10.1126/scisignal.aaz9368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cranial neural crest cells (CNCCs) are a population of multipotent stem cells that give rise to craniofacial bone and cartilage during development. Bone morphogenetic protein (BMP) signaling and autophagy have been individually implicated in stem cell homeostasis. Mutations that cause constitutive activation of the BMP type I receptor ACVR1 cause the congenital disorder fibrodysplasia ossificans progressiva (FOP), which is characterized by ectopic cartilage and bone in connective tissues in the trunk and sometimes includes ectopic craniofacial bones. Here, we showed that enhanced BMP signaling through the constitutively activated ACVR1 (ca-ACVR1) in CNCCs in mice induced ectopic cartilage formation in the craniofacial region through an autophagy-dependent mechanism. Enhanced BMP signaling suppressed autophagy by activating mTORC1, thus blocking the autophagic degradation of β-catenin, which, in turn, caused CNCCs to adopt a chondrogenic identity. Transient blockade of mTORC1, reactivation of autophagy, or suppression of Wnt-β-catenin signaling reduced ectopic cartilages in ca-Acvr1 mutants. Our results suggest that BMP signaling and autophagy coordinately regulate β-catenin activity to direct the fate of CNCCs during craniofacial development. These findings may also explain why some patients with FOP develop ectopic bones through endochondral ossification in craniofacial regions.
Collapse
Affiliation(s)
- Jingwen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megumi Kitami
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA.,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masako Toda Nakamura
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA. .,Graduate Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
112
|
Shen L, Sharma D, Yu Y, Long F, Karner CM. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci 2021; 134:jcs251645. [PMID: 33262314 PMCID: PMC7823158 DOI: 10.1242/jcs.251645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical β-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
113
|
Wang LT, Lee YW, Bai CH, Chiang HC, Wang HH, Yen BL, Yen ML. A Rapid and Highly Predictive in vitro Screening Platform for Osteogenic Natural Compounds Using Human Runx2 Transcriptional Activity in Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 8:607383. [PMID: 33537299 PMCID: PMC7849832 DOI: 10.3389/fcell.2020.607383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
The rapid aging of worldwide populations had led to epidemic increases in the incidence of osteoporosis (OP), but while treatments are available, high cost, adverse effects, and poor compliance continue to be significant problems. Naturally occurring plant-based compounds including phytoestrogens can be good and safe candidates to treat OP, but screening for osteogenic capacity has been difficult to achieve, largely due to the requirement of using primary osteoblasts or mesenchymal stem cells (MSCs), the progenitors of osteoblasts, to conduct time-consuming in vitro and in vivo osteogenic assay. Taking advantage of MSC osteogenic capacity and utilizing a promoter reporter assay for Runx2, the master osteogenesis transcription factor, we developed a rapid in vitro screening platform to screen osteogenic small molecules including natural plant-based compounds. We screened eight plant-derived compounds from different families including flavonoids, polyphenolic compounds, alkaloids, and isothiocyanates for osteogenic capacity using the human RUNX2-promoter luciferase reporter (hRUNX2-luc) transduced into the mouse MSC line, C3H10T1/2, with daidzein-a well-studied osteogenic phytoestrogen-as a positive control. Classical in vitro and in vivo osteogenesis assays were performed using primary murine and human bone marrow MSCs (BMMSCs) to validate the accuracy of this rapid screening platform. Using the MSC/hRUNX2-luc screening platform, we were able not only to shorten the selection process for osteogenic compounds from 3∼4 weeks to just a few days but also simultaneously perform comparisons between multiple compounds to assess relative osteogenic potency. Predictive analyses revealed nearly absolute correlation of the MSC/hRUNX2-luc reporter platform to the in vitro classical functional assay of mineralization using murine BMMSCs. Validation using human BMMSCs with in vitro mineralization and in vivo osteogenesis assays also demonstrated nearly absolute correlation to the MSC/hRUNX2-luc reporter results. Our findings therefore demonstrate that the MSC/hRUNX2 reporter platform can accurately, rapidly, and robustly screen for candidate osteogenic compounds and thus be relevant for therapeutic application in OP.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Chun Chiang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Obstetrics and Gynecology, Cathay General Hospital Shiji, New Taipei City, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
114
|
Abstract
The WNT/β-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/β-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/β-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/β-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.
Collapse
Affiliation(s)
- Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBSC-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
115
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
116
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
117
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
118
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
119
|
Tan Z, Kong M, Wen S, Tsang KY, Niu B, Hartmann C, Chan D, Hui CC, Cheah KSE. IRX3 and IRX5 Inhibit Adipogenic Differentiation of Hypertrophic Chondrocytes and Promote Osteogenesis. J Bone Miner Res 2020; 35:2444-2457. [PMID: 32662900 DOI: 10.1002/jbmr.4132] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Maintaining the correct proportions of different cell types in the bone marrow is critical for bone function. Hypertrophic chondrocytes (HCs) and osteoblasts are a lineage continuum with a minor contribution to adipocytes, but the regulatory network is unclear. Mutations in transcription factors, IRX3 and IRX5, result in skeletal patterning defects in humans and mice. We found coexpression of Irx3 and Irx5 in late-stage HCs and osteoblasts in cortical and trabecular bone. Irx3 and Irx5 null mutants display severe bone deficiency in newborn and adult stages. Quantitative analyses of bone with different combinations of functional alleles of Irx3 and Irx5 suggest these two factors function in a dosage-dependent manner. In Irx3 and Irx5 nulls, the amount of bone marrow adipocytes was increased. In Irx5 nulls, lineage tracing revealed that removal of Irx3 specifically in HCs exacerbated reduction of HC-derived osteoblasts and increased the frequency of HC-derived marrow adipocytes. β-catenin loss of function and gain of function specifically in HCs affects the expression of Irx3 and Irx5, suggesting IRX3 and IRX5 function downstream of WNT signaling. Our study shows that IRX3 and IRX5 regulate fate decisions in the transition of HCs to osteoblasts and to marrow adipocytes, implicating their potential roles in human skeletal homeostasis and disorders.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Mingpeng Kong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Songjia Wen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Ben Niu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Faculty of Medicine, University of Münster, Münster, Germany
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, HKSAR, China
| |
Collapse
|
120
|
Matsushita Y, Ono W, Ono N. Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies: Quiescent mature skeletal cells can be activated in response to injury and robustly participate in bone regeneration through cellular plasticity. Bioessays 2020; 43:e2000202. [PMID: 33155283 DOI: 10.1002/bies.202000202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
An emerging concept is that quiescent mature skeletal cells provide an important cellular source for bone regeneration. It has long been considered that a small number of resident skeletal stem cells are solely responsible for the remarkable regenerative capacity of adult bones. However, recent in vivo lineage-tracing studies suggest that all stages of skeletal lineage cells, including dormant pre-adipocyte-like stromal cells in the marrow, osteoblast precursor cells on the bone surface and other stem and progenitor cells, are concomitantly recruited to the injury site and collectively participate in regeneration of the damaged skeletal structure. Lineage plasticity appears to play an important role in this process, by which mature skeletal cells can transform their identities into skeletal stem cell-like cells in response to injury. These highly malleable, long-living mature skeletal cells, readily available throughout postnatal life, might represent an ideal cellular resource that can be exploited for regenerative medicine.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
121
|
Ramesh T. Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A. Cell Biochem Funct 2020; 39:148-158. [PMID: 33137853 DOI: 10.1002/cbf.3596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/18/2023]
Abstract
Stem cell therapy is growing rapidly to treat numerous diseases including bone-associated diseases. Mesenchymal stem cells (MSCs) are most commonly preferred to treat bone diseases because it possesses high osteogenic potency. Though, to obtain maximum osteogenic efficiency of MSCs is challenging. Therefore, this study was planned to evaluate the osteogenic efficiency of human bone marrow derived mesenchymal stem cells (hBMSCs) by bacoside-A. This study was investigated the activity of alkaline phosphatase (ALP) and expressions of the genes specific to osteogenic regulation mainly runt-related transcription factor 2 (Runx2), osterix (Osx), osteocalcin (OCN) and collagen type Iα1 (Col I α1) in hBMSCs cultured under osteogenic conditions at different concentrations of bacoside-A for 14 days. The results of this study depicted significant upregulation in the activity of ALP and expressions of osteogenic regulator genes in bacoside-A treated cells when compared with control cells. Besides, expressions of glycogen synthase kinase-3β (GSK-3β) and Wnt/β-catenin were evaluated; these expressions were also significantly increased in bacoside-A treated cells when compared with control cells. This result provides a further supporting evidence of bacoside-A role on osteogenesis in hBMSCs. The present study suggest that bacoside-A will be applied to ameliorate the process of osteogenesis in hBMSCs to repair damaged bone structure during MSC-based therapy; this will be an excellent and auspicious treatment for bone-associated disorders including osteoporosis. Significance of the study Osteoporosis is a bone metabolic disorder characterized by an imbalance between the activity of osteoblastic bone formation and osteoclastic bone resorption that disrupts the bone microarchitecture. Current anti-osteoporotic drugs are inhibiting bone resorption, but they are unable to restore the bone structure due to extreme bone remodelling process and causes numerous side effects. The finding of natural bioactive compounds with osteogenic property is very essential for osteoporosis treatment. This study was reported that bacoside-A ameliorated osteogenic differentiation of hBMSCs through upregulation of osteogenic differentiation genes and Wnt/β-catenin signalling pathway. This result is indicating that bacoside-A may be useful for osteoporosis treatments.
Collapse
Affiliation(s)
- Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
122
|
miR-124-3p promotes BMSC osteogenesis via suppressing the GSK-3β/β-catenin signaling pathway in diabetic osteoporosis rats. In Vitro Cell Dev Biol Anim 2020; 56:723-734. [PMID: 33085064 DOI: 10.1007/s11626-020-00502-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this study is to investigate miRNAs' effects, targeting the Wnt signaling pathway, on osteogenic differentiation to provide new targets for diabetic osteoporosis treatments. Twelve male rats were divided into a normal rat group (NOR group) and a model rat group (MOD group). Cluster analysis of differentially expressed miRNAs and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Primary rat bone marrow mesenchymal stem cells (BMSCs) were divided into a high-glucose group and a low-glucose group, and osteogenic differentiation was induced. Alkaline phosphatase (ALP) staining and Alizarin Red staining were used for pathological analysis of the cells. Western blot analysis was used to measure GSK-3β, β-catenin, p-β-catenin, c-Myc, and CyclinD1 expression. Immunofluorescence (IF) was used to analyze the effect of GSK-3β inhibitor (CHIR99021) on β-catenin and CyclinD1 expressions levels in BMSCs. A total of 428 differentially expressed miRNAs were found between the NOR and MOD groups. KEGG analysis showed that the target genes were mostly enriched in signaling pathways, including PI3K-Akt, focal adhesion, AGE-RAGE, HIF-1, and Wnt. qPCR verification demonstrated that miR-124-3p exhibited the greatest difference in expression level. In BMSCs, miR-124-3p overexpression could reverse the inhibited expression of BMSC osteogenic markers, including Alpl, Bglap, and Runx2, induced by high glucose. Western blot analysis revealed that the transfection of miR-124-3p mimics could further reverse the upregulated p-β-catenin and GSK-3β levels and the downregulated c-Myc and CyclinD1 levels induced by high glucose. IF results revealed that BMSCs treated CHIR99021 under high glucose showed the reduced GSK-3β and increased β-catenin and CyclinD1 expression levels. Our research highlighted miRNAs' important roles in regulating the Wnt pathway and provided new information for the diagnosis and treatment of diabetic osteoporosis.
Collapse
|
123
|
He X, Dong Y. Ankylosis progressive homolog upregulation inhibits cell viability and mineralization during fibroblast ossification by regulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2020; 22:4551-4560. [PMID: 33173993 PMCID: PMC7646822 DOI: 10.3892/mmr.2020.11576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Ankylosis progressive homolog (ANKH) is associated with fibroblast ossification in ankylosing spondylitis (AS). As the human ANKH gene is poorly characterized relative to its murine counterpart, the aim of the present study was to examine ANKH expression in ligament tissue isolated from patients with AS and the role played by this gene in AS‑associated fibroblast ossification. Fibroblasts were isolated from ligament tissue collected from patients with AS and ligament tissue from individuals with spinal cord fractures, then cultured. Fibroblasts from patients with AS were subsequently transfected with an ANKH overexpression vector, while those collected from individuals with spinal cord fractures were transfected with small interfering RNA specific for ANKH. Cell viability, apoptosis and mineralization were analyzed using MTT assays, flow cytometry and Alizarin Red staining, respectively. Furthermore, ANKH mRNA and protein expression levels were analyzed using reverse transcription‑quantitative PCR and western blotting analysis, respectively. The expression levels of osteogenesis markers, including alkaline phosphatase, osteocalcin, Runt‑related transcription factor 2, c‑Myc, as well as the β‑catenin signaling protein, were also determined using western blotting. The results of the present study revealed that ANKH protein expression levels were downregulated in AS total ligament tissue extract, compared with spinal fracture ligament. Moreover, the fibroblasts derived from patients with AS exhibited an increased viability and reduced apoptosis rates, compared with the fibroblasts from patients with spinal fracture. Notably, ANKH overexpression inhibited viability, mineralization and ossification, increased the phosphorylation of β‑catenin and downregulated β‑catenin and c‑Myc protein expression levels in fibroblasts from patients with AS. In addition, ANKH overexpression increased the ratio of p‑β‑catenin/β‑catenin in fibroblasts from patients with AS. By contrast, ANKH silencing in fibroblasts from patients with spinal fracture resulted in the opposite effect. In conclusion, the findings of the present study suggested that ANKH may inhibit fibroblast viability, mineralization and ossification, possibly by regulating the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Xindong He
- Department of Spinal Surgery, The People's Hospital of Xinchang, Xinchang, Zhejiang 312500, P.R. China
| | - Yongqiang Dong
- Department of Spinal Surgery, The People's Hospital of Xinchang, Xinchang, Zhejiang 312500, P.R. China
| |
Collapse
|
124
|
Bartoletti G, Dong C, Umar M, He F. Pdgfra regulates multipotent cell differentiation towards chondrocytes via inhibiting Wnt9a/beta-catenin pathway during chondrocranial cartilage development. Dev Biol 2020; 466:36-46. [PMID: 32800757 DOI: 10.1016/j.ydbio.2020.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
The mammalian skull is composed of the calvarial bones and cartilages. Malformation of craniofacial cartilage has been identified in multiple human syndromes. However, the mechanisms of their development remain largely unknown. In the present study, we identified Pdgfra as a novel player of chondrocranial cartilage development. Our data show that Pdgfra is required for normal chondrocranial cartilage development. Using tissue-specific genetic tools, we demonstrated that Pdgfra is essential for chondrocyte progenitors formation, but not in mature chondrocytes. Further analysis revealed that Pdgfra regulates chondrocytes progenitors development at two stages: in embryonic mesenchymal stem cells (eMSCs), Pdgfra directs their differentiation toward chondrocyte progenitors; in chondrocytes progenitors, Pdgfra activation promotes cell proliferation. We also found that excessive Pdgfra activity causes ectopic cartilage formation. Our data show that Pdgfra directs eMSCs differentiation via inhibiting Wnt9a transcription and its downstream signaling, and activating Wnt signaling rescues ectopic cartilage phenotype caused by excessive Pdgfra activity. In summary, our study dissected the role of Pdgfra signaling in chondrocranial cartilage formation, and illustrated the underlying mechanisms at multiple stages.
Collapse
Affiliation(s)
- Garrett Bartoletti
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Chunmin Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Meenakshi Umar
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
125
|
Miyatake K, Kumagai K, Imai S, Yamaguchi Y, Inaba Y. Sclerostin inhibits interleukin-1β-induced late stage chondrogenic differentiation through downregulation of Wnt/β-catenin signaling pathway. PLoS One 2020; 15:e0239651. [PMID: 32976505 PMCID: PMC7518574 DOI: 10.1371/journal.pone.0239651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Abstract
It is known that Wnt/β-catenin signaling induces endochondral ossification and plays a significant role in the pathophysiology of osteoarthritis (OA). Sclerostin is a potent inhibitor of the Wnt/β-catenin signaling pathway. This study investigated the role of sclerostin in the endochondral differentiation under an OA-like condition induced by proinflammatory cytokines. ATDC5 cells were used to investigate chondrogenic differentiation and terminal calcification, and 10 ng/ml IL-1β and/or 200 ng/ml sclerostin were added to the culture medium. IL-1β impaired early chondrogenesis from undifferentiated state into proliferative chondrocytes, and it was not altered by sclerostin. IL-1β induced progression of chondrogenic differentiation in the late stage and promoted terminal calcification. These processes were inhibited by sclerostin and chondrogenic phenotype was restored. In addition, sclerostin restored IL-1β-induced upregulation of Wnt/β-catenin signaling in the late stage. This study provides insights into the possible role of sclerostin in the chondrogenic differentiation under the IL-1β-induced OA-like environment. Suppression of Wnt signaling by an antagonist may play a key role in the maintenance of articular homeostasis and has a potential to prevent the progression of OA. Thus, sclerostin is a candidate treatment option for OA.
Collapse
Affiliation(s)
- Kazuma Miyatake
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- * E-mail:
| | - Sosuke Imai
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasuteru Yamaguchi
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery and Musculoskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
126
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
127
|
Shu B, Zhao Y, Zhao S, Pan H, Xie R, Yi D, Lu K, Yang J, Xue C, Huang J, Wang J, Zhao D, Xiao G, Wang Y, Chen D. Inhibition of Axin1 in osteoblast precursor cells leads to defects in postnatal bone growth through suppressing osteoclast formation. Bone Res 2020; 8:31. [PMID: 32821442 PMCID: PMC7424530 DOI: 10.1038/s41413-020-0104-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Axin1 is a negative regulator of β-catenin signaling and its role in osteoblast precursor cells remains undefined. In the present studies, we determined changes in postnatal bone growth by deletion of Axin1 in osteoblast precursor cells and analyzed bone growth in newborn and postnatal Axin1Osx mice and found that hypertrophic cartilage area was largely expanded in Axin1Osx KO mice. A larger number of chondrocytes and unabsorbed cartilage matrix were found in the bone marrow cavity of Axin1Osx KO mice. Osteoclast formation in metaphyseal and subchondral bone areas was significantly decreased, demonstrated by decreased TRAP-positive cell numbers, associated with reduction of MMP9- and cathepsin K-positive cell numbers in Axin1Osx KO mice. OPG expression and the ratio of Opg to Rankl were significantly increased in osteoblasts of Axin1Osx KO mice. Osteoclast formation in primary bone marrow derived microphage (BMM) cells was significantly decreased when BMM cells were cultured with conditioned media (CM) collected from osteoblasts derived from Axin1Osx mice compared with BMM cells cultured with CM derived from WT mice. Thus, the loss of Axin1 in osteoblast precursor cells caused increased OPG and the decrease in osteoclast formation, leading to delayed bone growth in postnatal Axin1Osx KO mice.
Collapse
Affiliation(s)
- Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Shitian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Dan Yi
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Junjie Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Chunchun Xue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, 725 WanPing South Road, Shanghai, 200032 China
- Key Laboratory, Ministry of Education of China, 725 WanPing South Road, Shanghai, 200032 China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| |
Collapse
|
128
|
Ohsugi Y, Katagiri S, Hirota T, Niimi H, Hatasa M, Watanabe K, Shimohira T, Mizutani K, Kitazawa M, Matsuzawa A, Kadokura H, Yokose S, Iwata T, Aoki A. Laser irradiation decreases sclerostin expression in bone and osteogenic cells. FASEB J 2020; 34:12877-12893. [DOI: 10.1096/fj.202001032r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Kazuki Watanabe
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Moe Kitazawa
- Department of Epigenetics, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Hiroshi Kadokura
- Division of Endodontic and Operative Dentistry, Department of Restorative and Biomaterials Sciences, School of Dentistry Meikai University Saitama Japan
| | - Satoshi Yokose
- Division of Endodontic and Operative Dentistry, Department of Restorative and Biomaterials Sciences, School of Dentistry Meikai University Saitama Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
129
|
Anthony CC, Robbins DJ, Ahmed Y, Lee E. Nuclear Regulation of Wnt/β-Catenin Signaling: It's a Complex Situation. Genes (Basel) 2020; 11:genes11080886. [PMID: 32759724 PMCID: PMC7465203 DOI: 10.3390/genes11080886] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling is an evolutionarily conserved metazoan cell communication pathway required for proper animal development. Of the myriad of signaling events that have been ascribed to cellular activation by Wnt ligands, the canonical Wnt/β-catenin pathway has been the most studied and best understood. Misregulation of Wnt/β-catenin signaling has been implicated in developmental defects in the embryo and major diseases in the adult. Despite the latter, no drugs that inhibit the Wnt/β-catenin pathway have been approved by the FDA. In this review, we explore the least understood step in the Wnt/β-catenin pathway-nuclear regulation of Wnt target gene transcription. We initially describe our current understanding of the importation of β-catenin into the nucleus. We then focus on the mechanism of action of the major nuclear proteins implicated in driving gene transcription. Finally, we explore the concept of a nuclear Wnt enhanceosome and propose a modified model that describes the necessary components for the transcription of Wnt target genes.
Collapse
Affiliation(s)
- Christin C. Anthony
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - David J. Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA;
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
130
|
Oichi T, Otsuru S, Usami Y, Enomoto-Iwamoto M, Iwamoto M. Wnt signaling in chondroprogenitors during long bone development and growth. Bone 2020; 137:115368. [PMID: 32380258 PMCID: PMC7354209 DOI: 10.1016/j.bone.2020.115368] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
Wnt signaling together with other signaling pathways governs cartilage development and the growth plate function during long bone formation and growth. β-catenin-dependent Wnt signaling is a specific lineage determinant of skeletal mesenchymal cells toward chondrogenic or osteogenic direction. Once cartilage forms and the growth plate organize, Wnt signaling continues to regulate proliferation and differentiation of the growth plate chondrocytes. Although chondrocytes in the growth plate have a high capacity to proliferate, new cells must be supplied to the growth plate from chondroprogenitor population. Advances in in vivo cell tracking techniques have demonstrated the importance of Wnt signaling in driving tissue renewal. The Wnt-responsive cells, genetically marked by the Wnt-reporter system, are found as stem cells in various tissues. Similarly, Wnt-responsive cells are found in the periphery of the growth plate and expanded to constitute entire column structure, indicating that Wnt signaling participates in the regulation of chondroprogenitors in the growth plate. This review will discuss advancements in research of progenitors in the growth plate, specifically focusing on Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Takeshi Oichi
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Satoru Otsuru
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
131
|
Matsushita Y, Ono W, Ono N. Growth plate skeletal stem cells and their transition from cartilage to bone. Bone 2020; 136:115359. [PMID: 32276155 PMCID: PMC7246136 DOI: 10.1016/j.bone.2020.115359] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
The growth plate is an essential component of endochondral bone development. Not surprisingly, the growth plate and its surrounding structure, the perichondrium, contain a wealth of skeletal stem cells (SSCs) and progenitor cells that robustly contribute to bone development. Recent in vivo lineage-tracing studies using mouse genetic models provide substantial insight into the diversity and versatility of these skeletal stem and progenitor cell populations, particularly shedding light on the importance of the transition from cartilage to bone. Chondrocytes and perichondrial cells are inseparable twins that develop from condensing undifferentiated mesenchymal cells during the fetal stage; although morphologically and functionally distinct, these cells ultimately serve for the same goal, that is, to make bone bigger and stronger. Even in the postnatal stage, a small subset of growth plate chondrocytes can transform into osteoblasts and marrow stromal cells; this is in part fueled by a unique type of SSCs maintained in the resting zone of the growth plate, which continue to self-renew for the long term. Here, we discuss diverse skeletal stem and progenitor cell populations in the growth plate and the perichondrium and their transition from cartilage to bone.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
132
|
Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111217. [PMID: 32806290 DOI: 10.1016/j.msec.2020.111217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/05/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Repairing bone defects remains challenging in orthopedics. Here, strontium (Sr) alginate hydrogels containing chondroitin sulfate (CS) were fabricated for enhancing bone defects repair. The effects of CS incorporation ratio on the morphology, structure, thermal stability, water uptake and mechanical performance of Sr-CS/alginate hydrogels were also evaluated. Increasing CS incorporation ratio, Sr-CS/alginate hydrogels exhibit decreasing mechanical properties and lower water retention capacity. In vitro results suggest that Sr-CS/alginate hydrogels with higher CS ratio facilitate the proliferation of osteoblasts. Additionally, the osteogenic genes expressions were investigated by real-time quantitative polymerase chain reaction (RT-qPCR). The results reveal that Sr-CS/alginate hydrogels should have positive effects on modulating the osteogenic factors. Moreover, by employing repair femoral cylindrical defects rabbit model, the efficiency of as-fabricated Sr-CS/alginate hydrogels in bone regeneration was evaluated. The animal study suggests that Sr-CS/alginate hydrogel could significantly facilitate bone defects repair and therefore should potentially be useful for osteochondral tissue engineering.
Collapse
|
133
|
Kapania EM, Reif TJ, Tsumura A, Eby JM, Callaci JJ. Alcohol-induced Wnt signaling inhibition during bone fracture healing is normalized by intermittent parathyroid hormone treatment. Animal Model Exp Med 2020; 3:200-207. [PMID: 32613179 PMCID: PMC7323703 DOI: 10.1002/ame2.12116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/14/2022] Open
Abstract
Nearly half of orthopaedic trauma patients are intoxicated at the time of injury, and excess alcohol consumption increases the risk for fracture nonunion. Previous studies show alcohol disrupts fracture associated Wnt signaling required for normal bone fracture repair. Intermittent parathyroid hormone (PTH) promotes bone growth through canonical Wnt signaling, however, no studies have investigated the effect of PTH on alcohol-inhibited bone fracture repair. Male C57BL/6 mice received two-3 day alcohol binges separated by 4 days before receiving a mid-shaft tibia fracture. Postoperatively, mice received PTH daily until euthanasia. Wnt/β-catenin signaling was analyzed at 9 days post-fracture. As previously observed, acute alcohol exposure resulted in a >2-fold decrease in total and the active form of β-catenin and a 2-fold increase in inactive β-catenin within the fracture callus. Intermittent PTH abrogated the effect of alcohol on β-catenin within the fracture callus. Upstream of β-catenin, alcohol-treated animals had a 2-fold decrease in total LRP6, the Wnt co-receptor, which was restored with PTH treatment. Alcohol nor PTH had any significant effect on GSK-3β. These data show that intermittent PTH following a tibia fracture restores normal expression of Wnt signaling proteins within the fracture callus of alcohol-treated mice.
Collapse
Affiliation(s)
- Esha M. Kapania
- Internal Medicine‐Pediatric ResidentRush University Medical CenterChicagoILUSA
| | - Taylor J. Reif
- Limb Lengthening and Complex Reconstruction FellowshipHospital for Special SurgeryNew YorkNYUSA
| | - Aaron Tsumura
- Department of Orthopaedic Surgery and RehabilitationLoyola University Medical CenterMaywoodILUSA
| | - Jonathan M. Eby
- Department of Orthopaedic Surgery and RehabilitationLoyola University Medical CenterMaywoodILUSA
- Alcohol Research Program (ARP)Loyola University Chicago Stritch School of MedicineMaywoodILUSA
| | - John J. Callaci
- Department of Orthopaedic Surgery and RehabilitationLoyola University Medical CenterMaywoodILUSA
- Alcohol Research Program (ARP)Loyola University Chicago Stritch School of MedicineMaywoodILUSA
| |
Collapse
|
134
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
135
|
Funato N, Srivastava D, Shibata S, Yanagisawa H. TBX1 Regulates Chondrocyte Maturation in the Spheno-occipital Synchondrosis. J Dent Res 2020; 99:1182-1191. [PMID: 32442036 DOI: 10.1177/0022034520925080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The synchondrosis in the cranial base is an important growth center for the craniofacial region. Abnormalities in the synchondroses affect the development of adjacent regions, including the craniofacial skeleton. Here, we report that the transcription factor TBX1, the candidate gene for DiGeorge syndrome, is expressed in mesoderm-derived chondrocytes and plays an essential and specific role in spheno-occipital synchondrosis development by inhibiting the expression of genes involved in chondrocyte hypertrophy and osteogenesis. In Tbx1-deficient mice, the spheno-occipital synchondrosis was completely mineralized at birth. TBX1 interacts with RUNX2, a master molecule of osteoblastogenesis and a regulator of chondrocyte maturation, and suppresses its transcriptional activity. Indeed, deleting Tbx1 triggers accelerated mineralization due to accelerated chondrocyte differentiation, which is associated with ectopic expression of downstream targets of RUNX2 in the spheno-occipital synchondrosis. These findings reveal that TBX1 acts as a regulator of chondrocyte maturation and osteogenesis during the spheno-occipital synchondrosis development. Thus, the tight regulation of endochondral ossification by TBX1 is crucial for the normal progression of chondrocyte differentiation in the spheno-occipital synchondrosis.
Collapse
Affiliation(s)
- N Funato
- Department of Signal Gene Regulation, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - D Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - S Shibata
- Department of Maxillofacial Anatomy, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
136
|
Pilquil C, Alvandi Z, Opas M. Calreticulin regulates a switch between osteoblast and chondrocyte lineages derived from murine embryonic stem cells. J Biol Chem 2020; 295:6861-6875. [PMID: 32220932 PMCID: PMC7242707 DOI: 10.1074/jbc.ra119.011029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/09/2020] [Indexed: 11/27/2022] Open
Abstract
Calreticulin is a highly conserved, ubiquitous Ca2+-buffering protein in the endoplasmic reticulum that controls transcriptional activity of various developmental programs and also of embryonic stem cell (ESC) differentiation. Calreticulin activates calcineurin, which dephosphorylates and induces the nuclear import of the osteogenic transcription regulator nuclear factor of activated T cells 1 (NFATC1). We investigated whether calreticulin controls a switch between osteogenesis and chondrogenesis in mouse ESCs through NFATC1. We found that in the absence of calreticulin, intranuclear transport of NFATC1 is blocked and that differentiation switches from osteogenic to chondrogenic, a process that could be mimicked by chemical inhibition of NFAT translocation. Glycogen synthase kinase 3β (GSK3β) deactivation and nuclear localization of β-catenin critical to osteogenesis were abrogated by calreticulin deficiency or NFAT blockade. Chemically induced GSK3β inhibition bypassed the calreticulin/calcineurin axis and increased osteoblast output from both control and calreticulin-deficient ESCs, while suppressing chondrogenesis. Calreticulin-deficient ESCs or cells treated with an NFAT blocker had enhanced expression of dickkopf WNT-signaling pathway inhibitor 1 (Dkk1), a canonical Wnt pathway antagonist that blocks GSK3β deactivation. The addition of recombinant mDKK1 switched osteogenic ESC differentiation toward chondrogenic differentiation. The results of our study indicate a role for endoplasmic reticulum calcium signaling via calreticulin in the differentiation of ESCs to closely associated osteoblast or chondrocyte lineages.
Collapse
Affiliation(s)
- Carlos Pilquil
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zahra Alvandi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
137
|
Yang N, Liu D, Zhang X, Li J, Wang M, Xu T, Liu Z. Effects of ginsenosides on bone remodelling for novel drug applications: a review. Chin Med 2020; 15:42. [PMID: 32391072 PMCID: PMC7201946 DOI: 10.1186/s13020-020-00323-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ginsenosides are pharmacologically active compounds that are often extracted from the Panax plant for their medicinal properties. Ginsenosides have multiple effects, including antitumor effects which have been widely studied. In recent years, studies have found that ginsenosides promote proliferation and osteogenesis of osteoblast-related cells, as well as inhibit the activity of osteoclasts. MAIN BODY We briefly introduces the molecules and BMP, WNT, and RANKL signalling pathways involved in bone formation and bone resorption. Next, recent studies on the mechanism of action of ginsenosides in bone remodelling are reviewed from three perspectives: the effects on proliferation of osteoblast-related cells, effects on osteogenesis and effects on osteoclasts. To expedite the development of drugs containing ginsenosides, we summarize the multiple beneficial roles of various types of ginsenosides in bone remodelling; including the promotion of bone formation, inhibition of bone resorption, and anti-inflammatory and antioxidant effects. CONCLUSION Many ginsenosides can promote bone formation and inhibit bone resorption, such as Rb1, Rb2 and Re. Ginsenosides have the potential to be new drugs for the treatment of osteoporosis, promote fracture healing and are strong candidates for cytokines in the tissue-engineered bone. This review provides a theoretical basis for clinical drug applications and proposes several future directions for exploring the beneficial role of ginseng compounds in bone remodelling.
Collapse
Affiliation(s)
- Nan Yang
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Dingkun Liu
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Xiao Zhang
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Jianing Li
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Mi Wang
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Tongtong Xu
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| | - Zhihui Liu
- Department of Prosthodontics, Stomatology Hospital of Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
138
|
Simfia I, Schiavi J, McNamara LM. Alterations in osteocyte mediated osteoclastogenesis during estrogen deficiency and under ROCK-II inhibition: An in vitro study using a novel postmenopausal multicellular niche model. Exp Cell Res 2020; 392:112005. [PMID: 32330507 DOI: 10.1016/j.yexcr.2020.112005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/03/2023]
Abstract
This study sought to derive an enhanced understanding of the complex intracellular interactions that drive bone loss in postmenopausal osteoporosis. We applied an in-vitro multicellular niche to recapitulate cell-cell signalling between osteocytes, osteoblasts and osteoclasts to investigate (1) how estrogen-deficient and mechanically loaded osteocytes regulate osteoclastogenesis and (2) whether ROCK-II inhibition affects these mechanobiological responses. We report that mechanically stimulated and estrogen-deficient osteocytes upregulated RANKL/OPG and M-CSF gene expression, when compared to those treated with 10 nM estradiol. Osteoclast precursors (RAW 264.7) cultured within this niche underwent significant reduction in osteoclastogenic gene expression (CTSK), and there was an increasing trend in the area covered by TRAP+ osteoclasts (24% vs. 19.4%, p = 0.06). Most interestingly, upon treatment with the ROCK-II inhibitor, RANKL/OPG and M-CSF gene expression by estrogen-deficient osteocytes were downregulated. Yet, this inhibition of the pro-osteoclastogenic factors by osteocytes did not ultimately reduce the differentiation of osteoclast precursors. Indeed, TRAP and CTSK gene expressions in osteoclast precursors were upregulated, and there was an increased trend for osteoclast area (30.4% vs. 24%, p = 0.07), which may have been influenced by static osteoblasts (MC3T3-E1) that were included in the niche. We conclude that ROCK-II inhibition can attenuate bone loss driven by osteocytes during estrogen deficiency.
Collapse
Affiliation(s)
- Irene Simfia
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Schiavi
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
139
|
Zeng J, Guo J, Sun Z, Deng F, Ning C, Xie Y. Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: In vitro and in vivo studies. Bioact Mater 2020; 5:435-446. [PMID: 32280833 PMCID: PMC7138933 DOI: 10.1016/j.bioactmat.2020.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity. Current therapies, including antiosteoporosis drugs and artificial bone grafts, are not always satisfactory. Herein, a strontium-substituted calcium phosphate silicate bioactive ceramic (Sr-CPS) was fabricated. In the present study, the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study. The cytocompatibility, osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS. Molecular mechanisms were also evaluated by Western blot. Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/β-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway. In vivo, micro-CT, histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats. Compared with CPS, Sr-CPS significantly promoted critical sized ovariectomy (OVX) calvarial defects healing. Among all the samples, Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates. Overall, the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption, which might be a promising candidate for the reconstruction of osteoporotic bone defect. Easy-to-perform and cost-effective fabrication of Sr-CPS scaffold. Dual modulation of bone formation and resorption. Outstanding performances in the osteoporotic bone defect healing process.
Collapse
Affiliation(s)
- Junkai Zeng
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingshu Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyu Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fanyan Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Congqin Ning
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
140
|
Chen R, Hao Z, Chen X, Fu Q, Ma Y. Neuropeptide Y enhances proliferation and chondrogenic differentiation of ATDC5 cells. Neuropeptides 2020; 80:102022. [PMID: 31987472 DOI: 10.1016/j.npep.2020.102022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
In recent years, emerging evidence has illustrated the indispensable role of sympathetic neurotransmitters and their receptors in cartilage mediation. The presence of neuropeptide Y (NPY)-positive sympathetic nerve fibres in cartilage and NPY-secretion function in chondrocytes raises the possibility of NPY directly regulating the function of chondrocytes. Therefore, this study intended to evaluate the effect of NPY and its receptors on the proliferation and chondrogenic differentiation of ATDC5 cells. Results showed NPY, especially at a concentration of 10-10 M, to significantly enhance proliferation of ATDC5 cells. Moreover, NPY effectively facilitated early chondrogenesis and late hypertrophy/mineralisation of ATDC5 cells via Y1 receptor signalling, rather than via Y2 receptor signalling. Taken together, the results help us to understand how NPY and its receptors affect the function of chondrocytes.
Collapse
Affiliation(s)
- Ruixin Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhichao Hao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaodan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Qiang Fu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
141
|
Lotz EM, Cohen DJ, Schwartz Z, Boyan BD. Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention. Clin Oral Implants Res 2020; 31:374-387. [PMID: 31953969 PMCID: PMC7771214 DOI: 10.1111/clr.13575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/03/2019] [Accepted: 01/04/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study determined whether implant surfaces that promote osseointegration in normal rats can promote osseointegration in osteoporotic rats without pharmacologic intervention. MATERIALS AND METHODS Virgin female 8-month-old CD Sprague Dawley rats (N = 25) were ovariectomized. At 6 weeks, microstructured/non-nanostructured/hydrophobic, microstructured/nanostructured/hydrophobic, or microstructured/nanostructured/hydrophilic Ti implants (Ø2.5 × 3.5 mm; Institut Straumann AG, Basel, Switzerland) were placed in the distal metaphysis of each femur. At 28 days, bone quality and implant osseointegration were assessed using microCT, histomorphometrics, and removal torque values (RTVs). Calvarial osteoblasts were isolated and cultured for 7 days on Ø15 mm Ti disks processed to exhibit similar surface characteristics as the implants used for the in vivo studies. The phenotype was assessed by measuring the production of osteocalcin, osteoprotegerin, osteopontin, BMP2, VEGF, and RANKL. RESULTS Microstructured/nanostructured/hydrophilic implants promoted increased bone-to-implant contact and RTVs in vivo and increased osteoblastic marker production in vitro compared to microstructured/non-nanostructured/hydrophobic and microstructured/nanostructured/hydrophobic implants, suggesting that osseointegration occurs in osteoporotic animals, and implant surface properties improve its rate. CONCLUSIONS Although all modified implants were able to osseointegrate in rats with OVX-induced osteoporosis without pharmacologic intervention, the degree of osseointegration was greater around microstructured/nanostructured/hydrophilic implant surfaces. These results suggest that when appropriate microstructure is present, hydrophilicity has a greater influence on Ti implant osseointegration compared to nanostructures. Moreover, modified implant surfaces can exert their control over the altered bone turnover observed in osteoporotic patients to stimulate functional osseointegration. These results provide critical insight for developing implants with improved osseointegration in patients with metabolic disorders of bone remodeling.
Collapse
Affiliation(s)
- Ethan M. Lotz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
142
|
Kaji DA, Tan Z, Johnson GL, Huang W, Vasquez K, Lehoczky JA, Levi B, Cheah KS, Huang AH. Cellular Plasticity in Musculoskeletal Development, Regeneration, and Disease. J Orthop Res 2020; 38:708-718. [PMID: 31721278 PMCID: PMC7213644 DOI: 10.1002/jor.24523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
In this review, we highlight themes from a recent workshop focused on "Plasticity of Cell Fate in Musculoskeletal Tissues" held at the Orthopaedic Research Society's 2019 annual meeting. Experts in the field provided examples of mesenchymal cell plasticity during normal musculoskeletal development, regeneration, and disease. A thorough understanding of the biology underpinning mesenchymal cell plasticity may offer a roadmap for promoting regeneration while attenuating pathologic differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:708-718, 2020.
Collapse
Affiliation(s)
- Deepak A. Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, NYC, NY, USA
| | - Zhijia Tan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Gemma L. Johnson
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Wesley Huang
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kaetlin Vasquez
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin Levi
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Alice H. Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, NYC, NY, USA
| |
Collapse
|
143
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
144
|
Zhou T, Gao B, Fan Y, Liu Y, Feng S, Cong Q, Zhang X, Zhou Y, Yadav PS, Lin J, Wu N, Zhao L, Huang D, Zhou S, Su P, Yang Y. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. eLife 2020; 9:52779. [PMID: 32186512 PMCID: PMC7112954 DOI: 10.7554/elife.52779] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are fundamental regulators of cell behaviors. However, molecular regulation of mechanotransduction remain poorly understood. Here, we identified the mechanosensitive channels Piezo1 and Piezo2 as key force sensors required for bone development and osteoblast differentiation. Loss of Piezo1, or more severely Piezo1/2, in mesenchymal or osteoblast progenitor cells, led to multiple spontaneous bone fractures in newborn mice due to inhibition of osteoblast differentiation and increased bone resorption. In addition, loss of Piezo1/2 rendered resistant to further bone loss caused by unloading in both bone development and homeostasis. Mechanistically, Piezo1/2 relayed fluid shear stress and extracellular matrix stiffness signals to activate Ca2+ influx to stimulate Calcineurin, which promotes concerted activation of NFATc1, YAP1 and ß-catenin transcription factors by inducing their dephosphorylation as well as NFAT/YAP1/ß-catenin complex formation. Yap1 and ß-catenin activities were reduced in the Piezo1 and Piezo1/2 mutant bones and such defects were partially rescued by enhanced ß-catenin activities.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fan
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Shuhao Feng
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Xiaolei Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Prem S Yadav
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| | - Jiachen Lin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States.,Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery and Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, United States
| | - Peiqiang Su
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
145
|
Li Y, Gong H, Ding J, Zhao F, Du J, Wan J, Zhang J, Liu S, Li J, Wang L, Zhou B. Inhibition of GSK3 Represses the Expression of Retinoic Acid Synthetic Enzyme ALDH1A2 via Wnt/β-Catenin Signaling in WiT49 Cells. Front Cell Dev Biol 2020; 8:94. [PMID: 32258025 PMCID: PMC7092725 DOI: 10.3389/fcell.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 02/02/2023] Open
Abstract
Organogenesis, including renal development, requires an appropriate retinoic acid concentration, which is established by differential expression of aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and cytochrome P450 family 26 subfamily A/B/C member 1 (CYP26A1/B1/C1). In the fetal kidney, ALDH1A2 expresses in the developing stroma and renal vesicle and its derivatives but does not present in the ureteric bud. It remains unclear what may contribute to this expression pattern. Here we show that the glycogen synthase kinase 3 alpha/beta (GSK3A/B) inhibitor CHIR99021 significantly represses ALDH1A2 expression in WiT49, which is a Wilms’ tumor cell line that exhibits “triphasic” differential potential and is used as a fetal kidney cell model. CHIR99021 fails to suppress ALDH1A2 as β-catenin is inhibited, suggesting that the downregulation of ALDH1A2 by CHIR99021 is through Wnt/β-catenin signaling. Ectopic expression of mouse Wnt1, Wnt3a, Wnt4, and Wnt9b represses ALDH1A2 expression in WiT49 cells. Using immunohistochemistry, we show an inverse correlation of Aldh1a2 expression with β-catenin in rat E18.5 kidney. ChIP demonstrated that β-catenin is recruited to the ALDH1A2 promoter, the conserved intron1G, and another site within intron 1 of ALDH1A2. Using a luciferase assay, we further show that the ALDH1A2 promoter and the intron1G element are involved in the repression of ALDH1A2 expression by CHIR99021. Our work demonstrates that ALDH1A2 expression can be directly repressed by the Wnt/β-catenin signaling in fetal kidney cells, suggesting that Wnt/β-catenin may play a role in maintaining the expression pattern of ALDH1A2 in the fetal kidney, thus controlling the availability and localization of retinoic acid and regulating aspects of kidney development.
Collapse
Affiliation(s)
- Yifan Li
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China.,Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Hui Gong
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiangfeng Ding
- Department of Stomotology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Fujuan Zhao
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jihui Du
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Juan Zhang
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Shaoxiong Liu
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jing Li
- Department of Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Lei Wang
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Bei Zhou
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
146
|
Qin X, Jiang Q, Miyazaki T, Komori T. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum Mol Genet 2020; 28:896-911. [PMID: 30445456 DOI: 10.1093/hmg/ddy386] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Cleidocranial dysplasia (CCD, #119600), which is characterized by hypoplastic clavicles, open fontanelles, supernumerary teeth and a short stature, is caused by heterozygous mutations in RUNX2. However, it currently remains unclear why suture closure is severely impaired in CCD patients. The closure of posterior frontal (PF) and sagittal (SAG) sutures was completely interrupted in Runx2+/- mice, and the proliferation of suture mesenchymal cells and their condensation were less than those in wild-type mice. To elucidate the underlying molecular mechanisms, differentially expressed genes between wild-type and Runx2+/- PF and SAG sutures were identified by microarray and real-time reverse transcription polymerase chain reaction analyses. The expression of hedgehog, Fgf, Wnt and Pthlh signaling pathway genes, including Gli1, Ptch1, Ihh, Fgfr2, Fgfr3, Tcf7, Wnt10b and Pth1r, which were directly regulated by Runx2, was reduced in the sutures, but not the calvarial bone tissues of Runx2+/- mice. Bone formation and suture closure were enhanced in an organ culture of Runx2+/- calvariae with ligands or agonists of hedgehog, Fgf, Wnt and Pthlh signaling, while they were suppressed and suture mesenchymal cell proliferation was decreased in an organ culture of wild-type calvariae with their antagonists. These results indicate that more than a half dosage of Runx2 is required for the proliferation of suture mesenchymal cells, their condensation and commitment to osteoblast-lineage cells, and the induction of hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in sutures, but not in calvarial bone tissues, and also that the activation of hedgehog, Fgf, Wnt and Pthlh signaling pathways is necessary for suture closure.
Collapse
Affiliation(s)
- Xin Qin
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Qing Jiang
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
147
|
|
148
|
Komori T. Molecular Mechanism of Runx2-Dependent Bone Development. Mol Cells 2020; 43:168-175. [PMID: 31896233 PMCID: PMC7057844 DOI: 10.14348/molcells.2019.0244] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.
Collapse
Affiliation(s)
- Toshihisa Komori
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
149
|
Root SH, Wee NKY, Novak S, Rosen CJ, Baron R, Matthews BG, Kalajzic I. Perivascular osteoprogenitors are associated with transcortical channels of long bones. Stem Cells 2020; 38:769-781. [PMID: 32053258 DOI: 10.1002/stem.3159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRβ), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.
Collapse
Affiliation(s)
- Sierra H Root
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Natalie K Y Wee
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| | - Clifford J Rosen
- Department of Medicine, Tufts University School of Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
150
|
Riedl M, Witzmann C, Koch M, Lang S, Kerschbaum M, Baumann F, Krutsch W, Docheva D, Alt V, Pfeifer C. Attenuation of Hypertrophy in Human MSCs via Treatment with a Retinoic Acid Receptor Inverse Agonist. Int J Mol Sci 2020; 21:ijms21041444. [PMID: 32093330 PMCID: PMC7073129 DOI: 10.3390/ijms21041444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In vitro chondrogenically differentiated mesenchymal stem cells (MSCs) have a tendency to undergo hypertrophy, mirroring the fate of transient “chondrocytes” in the growth plate. As hypertrophy would result in ossification, this fact limits their use in cartilage tissue engineering applications. During limb development, retinoic acid receptor (RAR) signaling exerts an important influence on cell fate of mesenchymal progenitors. While retinoids foster hypertrophy, suppression of RAR signaling seems to be required for chondrogenic differentiation. Therefore, we hypothesized that treatment of chondrogenically differentiating hMSCs with the RAR inverse agonist, BMS204,493 (further named BMS), would attenuate hypertrophy. We induced hypertrophy in chondrogenic precultured MSC pellets by the addition of bone morphogenetic protein 4. Direct activation of the RAR pathway by application of the physiological RAR agonist retinoic acid (RA) further enhanced the hypertrophic phenotype. However, BMS treatment reduced hypertrophic conversion in hMSCs, shown by decreased cell size, number of hypertrophic cells, and collagen type X deposition in histological analyses. BMS effects were dependent on the time point of application and strongest after early treatment during chondrogenic precultivation. The possibility of modifing hypertrophic cartilage via attenuation of RAR signaling by BMS could be helpful in producing stable engineered tissue for cartilage regeneration.
Collapse
Affiliation(s)
- Moritz Riedl
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Christina Witzmann
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Matthias Koch
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Siegmund Lang
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Maximilian Kerschbaum
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Florian Baumann
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Werner Krutsch
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Volker Alt
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Christian Pfeifer
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
- Correspondence:
| |
Collapse
|