101
|
Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 2012; 26:190-202. [PMID: 22279050 DOI: 10.1101/gad.179663.111] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
102
|
Busser BW, Taher L, Kim Y, Tansey T, Bloom MJ, Ovcharenko I, Michelson AM. A machine learning approach for identifying novel cell type-specific transcriptional regulators of myogenesis. PLoS Genet 2012; 8:e1002531. [PMID: 22412381 PMCID: PMC3297574 DOI: 10.1371/journal.pgen.1002531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA-based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type-specific developmental gene expression patterns.
Collapse
Affiliation(s)
- Brian W. Busser
- Laboratory of Developmental Systems Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leila Taher
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yongsok Kim
- Laboratory of Developmental Systems Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terese Tansey
- Laboratory of Developmental Systems Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Molly J. Bloom
- Laboratory of Developmental Systems Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (IO); (AMM)
| | - Alan M. Michelson
- Laboratory of Developmental Systems Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (IO); (AMM)
| |
Collapse
|
103
|
Nowak SJ, Aihara H, Gonzalez K, Nibu Y, Baylies MK. Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis. PLoS Genet 2012; 8:e1002547. [PMID: 22396663 PMCID: PMC3291577 DOI: 10.1371/journal.pgen.1002547] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 01/04/2012] [Indexed: 11/19/2022] Open
Abstract
The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein–protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. The proper development of the diverse array of cell types in an organism depends upon the induction and repression of specific genes at particular times and places. This gene regulation requires both the activity of tissue-specific transcriptional regulators and the modulation of the chromatin environment. To date, a complete picture of the interplay between these two processes remains unclear. To address this, we examined the activity of the evolutionarily conserved transcription factor Twist during embryogenesis of Drosophila melanogaster. While Twist has multiple activities and roles during development, a direct link between Twist and chromatin remodeling is unknown. We identified a highly conserved protein, Akirin, as a link between Twist and chromatin remodeling factors. Akirin is required for optimal expression of a Twist-dependent target during muscle development via interactions with the Drosophila SWI/SNF chromatin remodeling complex. Interestingly, Akirin is not required for activation of all Twist-dependent enhancers, suggesting that Akirin refines Twist activity outputs and that different Twist-dependent targets have different requirements for chromatin remodeling during development. Our data further suggests that Akirin similarly links the SWI/SNF chromatin remodeling complex with other transcription factors during development. This work has important ramifications for understanding both normal development and diseases such as cancer.
Collapse
Affiliation(s)
- Scott J. Nowak
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
| | - Hitoshi Aihara
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Katie Gonzalez
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, New York, United States of America
- Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
104
|
Zhu X, Ahmad SM, Aboukhalil A, Busser BW, Kim Y, Tansey TR, Haimovich A, Jeffries N, Bulyk ML, Michelson AM. Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors. Development 2012; 139:1457-66. [PMID: 22378636 PMCID: PMC3308180 DOI: 10.1242/dev.069005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common theme in developmental biology is the repeated use of the same gene in diverse spatial and temporal domains, a process that generally involves transcriptional regulation mediated by multiple separate enhancers, each with its own arrangement of transcription factor (TF)-binding sites and associated activities. Here, by contrast, we show that the expression of the Drosophila Nidogen (Ndg) gene at different embryonic stages and in four mesodermal cell types is governed by the binding of multiple cell-specific Forkhead (Fkh) TFs – including Biniou (Bin), Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu) – to three functionally distinguishable Fkh-binding sites in the same enhancer. Whereas Bin activates the Ndg enhancer in the late visceral musculature, CHES-1-like cooperates with Jumu to repress this enhancer in the heart. CHES-1-like also represses the Ndg enhancer in a subset of somatic myoblasts prior to their fusion to form multinucleated myotubes. Moreover, different combinations of Fkh sites, corresponding to two different sequence specificities, mediate the particular functions of each TF. A genome-wide scan for the occurrence of both classes of Fkh domain recognition sites in association with binding sites for known cardiac TFs showed an enrichment of combinations containing the two Fkh motifs in putative enhancers found within the noncoding regions of genes having heart expression. Collectively, our results establish that different cell-specific members of a TF family regulate the activity of a single enhancer in distinct spatiotemporal domains, and demonstrate how individual binding motifs for a TF class can differentially influence gene expression.
Collapse
Affiliation(s)
- Xianmin Zhu
- Laboratory of Developmental Systems Biology, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 2012; 44:148-56. [PMID: 22231485 DOI: 10.1038/ng.1064] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022]
Abstract
Chromatin modifications are associated with many aspects of gene expression, yet their role in cellular transitions during development remains elusive. Here, we use a new approach to obtain cell type-specific information on chromatin state and RNA polymerase II (Pol II) occupancy within the multicellular Drosophila melanogaster embryo. We directly assessed the relationship between chromatin modifications and the spatio-temporal activity of enhancers. Rather than having a unique chromatin state, active developmental enhancers show heterogeneous histone modifications and Pol II occupancy. Despite this complexity, combined chromatin signatures and Pol II presence are sufficient to predict enhancer activity de novo. Pol II recruitment is highly predictive of the timing of enhancer activity and seems dependent on the timing and location of transcription factor binding. Chromatin modifications typically demarcate large regulatory regions encompassing multiple enhancers, whereas local changes in nucleosome positioning and Pol II occupancy delineate single active enhancers. This cell type-specific view identifies dynamic enhancer usage, an essential step in deciphering developmental networks.
Collapse
Affiliation(s)
- Stefan Bonn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Milligan JN, Jolly ER. Identification and characterization of a Mef2 transcriptional activator in schistosome parasites. PLoS Negl Trop Dis 2012; 6:e1443. [PMID: 22235355 PMCID: PMC3250504 DOI: 10.1371/journal.pntd.0001443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022] Open
Abstract
Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences. Schistosome parasites infect more than 200 million people worldwide and cause human schistosomiasis. Free-swimming schistosome larvae are highly mobile and invade and penetrate the host's skin to perpetuate their lifecycle in their human host, growing from 90–215 micrometers in length as a schistosomulum to a 7–20 millimeter long adult worm. Few molecular pathways have been identified in schistosome worms that are important for parasite early development. The myocyte enhancer factor protein 2 is a major regulator of muscle and nerve development in mammals and insects and is highly conserved from bread yeast to vertebrates. Here we identify and characterize the Mef2 activator from parasitic schistosome worms, the first described in any parasitic worm, and delineation of its function may be important to further understanding the basic biology of schistosome early development. Additionally, since schistosomes developed early evolutionarily, an investigation of schistosome Mef2 regulatory mechanisms could lead to a greater understanding of the development of early muscle and neurogenic development in animals.
Collapse
Affiliation(s)
- John N Milligan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
107
|
Ghavi-Helm Y, Furlong EEM. Analyzing transcription factor occupancy during embryo development using ChIP-seq. Methods Mol Biol 2012; 786:229-245. [PMID: 21938630 DOI: 10.1007/978-1-61779-292-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accurately assessing the binding of transcription factors to cis-regulatory elements in vivo is an essential step toward understanding the mechanisms that govern embryonic development. Genome-wide transcription factor location analysis has been facilitated by the development of high-density tiling arrays (ChIP-on-chip), and more recently by next-generation sequencing technologies, which are used to sequence the DNA fragments obtained from chromatin immunoprecipitation experiments (ChIP-seq). This chapter provides a detailed protocol of the different steps required to generate a successful ChIP-seq library, starting from embryo collection and fixation to chromatin preparation, immunoprecipitation, and finally library preparation. The protocol is optimized for Drosophila embryos, but can be adapted to any organism. The obtained library is suitable for sequencing on an Illumina GAIIx platform.
Collapse
Affiliation(s)
- Yad Ghavi-Helm
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
108
|
Morriss GR, Bryantsev AL, Chechenova M, LaBeau EM, Lovato TL, Ryan KM, Cripps RM. Analysis of skeletal muscle development in Drosophila. Methods Mol Biol 2012; 798:127-52. [PMID: 22130835 DOI: 10.1007/978-1-61779-343-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Drosophila system has been invaluable in providing important insights into mesoderm specification, muscle specification, myoblast fusion, muscle differentiation, and myofibril assembly. Here, we present a series of Drosophila protocols that enable the researcher to visualize muscle precursors and differentiated muscles, at all stages of development. In doing so, we also highlight the variety of techniques that are used to create these findings. These protocols are directly used for the Drosophila system, and are provided with explanatory detail to enable the researcher to apply them to other systems.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Aerts S. Computational strategies for the genome-wide identification of cis-regulatory elements and transcriptional targets. Curr Top Dev Biol 2012; 98:121-45. [PMID: 22305161 DOI: 10.1016/b978-0-12-386499-4.00005-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) are key proteins that decode the information in our genome to express a precise and unique set of proteins and RNA molecules in each cell type in our body. These factors play a pivotal role in all biological processes, including the determination of a cell's fate during development and the maintenance of a cell's physiological function. To achieve this, a TF binds to specific DNA sequences in the noncoding part of the genome, recruits chromatin modifiers and cofactors, and directs the transcription initiation rate of its "target genes." Therefore, a key challenge in deciphering a transcriptional switch is to identify the direct target genes of the master regulators that control the switch, the cis-regulatory elements implementing (auto-)regulatory loops, and the target genes of all the TFs in the downstream regulatory network. A better knowledge of a TF's targetome during specification and differentiation of a particular cell type will generate mechanistic insight into its developmental program. Here, I review computational strategies and methods to predict transcriptional targets by genome-wide searches for TF binding sites using position weight matrices, motif clusters, phylogenetic footprinting, chromatin binding and accessibility data, enhancer classification, motif enrichment, and gene expression signatures.
Collapse
Affiliation(s)
- Stein Aerts
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
110
|
Abstract
CO(2) sensation represents an interesting example of nervous system and behavioral evolutionary divergence. The underlying molecular mechanisms, however, are not understood. Loss of microRNA-279 in Drosophila melanogaster leads to the formation of a CO(2) sensory system partly similar to the one of mosquitoes. Here, we show that a novel allele of the pleiotropic transcription factor Prospero resembles the miR-279 phenotype. We use a combination of genetics and in vitro and in vivo analysis to demonstrate that Pros participates in the regulation of miR-279 expression, and that reexpression of miR-279 rescues the pros CO(2) neuron phenotype. We identify common target molecules of miR-279 and Pros in bioinformatics analysis, and show that overexpression of the transcription factors Nerfin-1 and Escargot (Esg) is sufficient to induce formation of CO(2) neurons on maxillary palps. Our results suggest that Prospero restricts CO(2) neuron formation indirectly via miR-279 and directly by repressing the shared target molecules, Nerfin-1 and Esg, during olfactory system development. Given the important role of Pros in differentiation of the nervous system, we anticipate that miR-mediated signal tuning represents a powerful method for olfactory sensory system diversification during evolution.
Collapse
|
111
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2011; 40:3329-47. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
- Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
112
|
A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 2011; 21:783-95. [PMID: 22014527 DOI: 10.1016/j.devcel.2011.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 07/06/2011] [Accepted: 09/09/2011] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms that concordantly regulate stress, life span, and aging remain incompletely understood. Here, we demonstrate that in Drosophila, a p38 MAP kinase (p38K)/Mef2/MnSOD pathway is a coregulator of stress and life span. Hence, overexpression of p38K extends life span in a MnSOD-dependent manner, whereas inhibition of p38K causes early lethality and precipitates age-related motor dysfunction and stress sensitivity, that is rescued through muscle-restricted (but not neuronal) add-back of p38K. Additionally, mutations in p38K are associated with increased protein carbonylation and Nrf2-dependent transcription, while adversely affecting metabolic response to hypoxia. Mechanistically, p38K modulates expression of the mitochondrial MnSOD enzyme through the transcription factor Mef2, and predictably, perturbations in MnSOD modify p38K-dependent phenotypes. Thus, our results uncover a muscle-restricted p38K-Mef2-MnSOD signaling module that influences life span and stress, distinct from the insulin/JNK/FOXO pathway. We propose that potentiating p38K might be instrumental in restoring the mitochondrial detoxification machinery and combating stress-induced aging.
Collapse
|
113
|
Belu M, Mizutani CM. Variation in mesoderm specification across Drosophilids is compensated by different rates of myoblast fusion during body wall musculature development. PLoS One 2011; 6:e28970. [PMID: 22194964 PMCID: PMC3237579 DOI: 10.1371/journal.pone.0028970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background It has been shown that species separated by relatively short evolutionary distances may have extreme variations in egg size and shape. Those variations are expected to modify the polarized morphogenetic gradients that pattern the dorso-ventral axis of embryos. Currently, little is known about the effects of scaling over the embryonic architecture of organisms. We began examining this problem by asking if changes in embryo size in closely related species of Drosophila modify all three dorso-ventral germ layers or only particular layers, and whether or not tissue patterning would be affected at later stages. Principal Findings Here we report that changes in scale affect predominantly the mesodermal layer at early stages, while the neuroectoderm remains constant across the species studied. Next, we examined the fate of somatic myoblast precursor cells that derive from the mesoderm to test whether the assembly of the larval body wall musculature would be affected by the variation in mesoderm specification. Our results show that in all four species analyzed, the stereotyped organization of the body wall musculature is not disrupted and remains the same as in D. melanogaster. Instead, the excess or shortage of myoblast precursors is compensated by the formation of individual muscle fibers containing more or less fused myoblasts. Conclusions Our data suggest that changes in embryonic scaling often lead to expansions or retractions of the mesodermal domain across Drosophila species. At later stages, two compensatory cellular mechanisms assure the formation of a highly stereotyped larval somatic musculature: an invariable selection of 30 muscle founder cells per hemisegment, which seed the formation of a complete array of muscle fibers, and a variable rate in myoblast fusion that modifies the number of myoblasts that fuse to individual muscle fibers.
Collapse
Affiliation(s)
- Mirela Belu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia M. Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
114
|
Reshmi G, Sona C, Pillai MR. Comprehensive patterns in microRNA regulation of transcription factors during tumor metastasis. J Cell Biochem 2011; 112:2210-7. [PMID: 21503963 DOI: 10.1002/jcb.23148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In spite of a large body of information about the upstream regulators of metastasis, a process that often plays a limiting factor in therapeutic outcome of cancer patients, the impact of regulatory microRNA patterns remains obscure. This review describes computational analysis of coordinated regulation of genes by di-directional regulation of microRNA and transcription factors that specifically regulate the process of metastasis. We discovered several unexpected modes of regulatory patterns between microRNAs and transcription factors. For example, we found a double positive feedback loop regulated by the hub transcription factor ZEB1 and miR-200 during epithelial-mesenchymal transition. This review further explains flow of information and how such components coordinate various adaptable controls of microRNAs and thus, contribute to regulation of transcription factors in context of cancer metastasis. Information described here provides a regulatory framework for future experimental analyses and discoveries of new insights into post-transcriptional gene regulation at the microRNA level in cancer metastasis.
Collapse
Affiliation(s)
- G Reshmi
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | | | | |
Collapse
|
115
|
Halfon MS, Zhu Q, Brennan ER, Zhou Y. Erroneous attribution of relevant transcription factor binding sites despite successful prediction of cis-regulatory modules. BMC Genomics 2011; 12:578. [PMID: 22115527 PMCID: PMC3235160 DOI: 10.1186/1471-2164-12-578] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022] Open
Abstract
Background Cis-regulatory modules are bound by transcription factors to regulate gene expression. Characterizing these DNA sequences is central to understanding gene regulatory networks and gaining insight into mechanisms of transcriptional regulation, but genome-scale regulatory module discovery remains a challenge. One popular approach is to scan the genome for clusters of transcription factor binding sites, especially those conserved in related species. When such approaches are successful, it is typically assumed that the activity of the modules is mediated by the identified binding sites and their cognate transcription factors. However, the validity of this assumption is often not assessed. Results We successfully predicted five new cis-regulatory modules by combining binding site identification with sequence conservation and compared these to unsuccessful predictions from a related approach not utilizing sequence conservation. Despite greatly improved predictive success, the positive set had similar degrees of sequence and binding site conservation as the negative set. We explored the reasons for this by mutagenizing putative binding sites in three cis-regulatory modules. A large proportion of the tested sites had little or no demonstrable role in mediating regulatory element activity. Examination of loss-of-function mutants also showed that some transcription factors supposedly binding to the modules are not required for their function. Conclusions Our results raise important questions about interpreting regulatory module predictions obtained by finding clusters of conserved binding sites. Attribution of function to these sites and their cognate transcription factors may be incorrect even when modules are successfully identified. Our study underscores the importance of empirical validation of computational results even when these results are in line with expectation.
Collapse
Affiliation(s)
- Marc S Halfon
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
116
|
Genikhovich G, Technau U. Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 2011; 138:4911-9. [PMID: 22007131 DOI: 10.1242/dev.068122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In triploblastic animals, mesoderm gives rise to many tissues and organs, including muscle. By contrast, the representatives of the diploblastic phylum Cnidaria (corals, sea anemones, jellyfish and hydroids) lack mesoderm but possess muscle. In vertebrates and insects, the transcription factor Mef2 plays a pivotal role in muscle differentiation; however, it is also an important regulator of neuron differentiation and survival. In the sea anemone Nematostella vectensis, an organism that lacks mesoderm but has muscles and neurons, Mef2 (Nvmef2) has been reported in single ectodermal cells of likely neural origin. To our surprise, we found that Nvmef2 is alternatively spliced, forming differentially expressed variants. Using morpholino-mediated knockdown and mRNA injection, we demonstrate that specific splice variants of Nvmef2 are required for the proliferation and differentiation of endodermal cells and for the development of ectodermal nematocytes, a neuronal cell type. Moreover, we identified a small conserved motif in the transactivation domain that is crucially involved in the endodermal function of Nvmef2. The identification of a crucial and conserved motif in the transactivation domain predicts a similarly important role in vertebrate Mef2 function. This is the first functional study of a determinant of several mesodermal derivatives in a diploblastic animal. Our data suggest that the involvement of alternative splice variants of Mef2 in endomesoderm and neuron differentiation predates the cnidarian-bilaterian split.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | | |
Collapse
|
117
|
Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila. Dev Biol 2011; 361:191-207. [PMID: 22008792 DOI: 10.1016/j.ydbio.2011.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 08/27/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
Abstract
Identifying the genetic program that leads to formation of functionally and morphologically distinct muscle fibers is one of the major challenges in developmental biology. In Drosophila, the Myocyte Enhancer Factor-2 (MEF2) transcription factor is important for all types of embryonic muscle differentiation. In this study we investigated the role of MEF2 at different stages of adult skeletal muscle formation, where a diverse group of specialized muscles arises. Through stage- and tissue-specific expression of Mef2 RNAi constructs, we demonstrate that MEF2 is critical at the early stages of adult myoblast fusion: mutant myoblasts are attracted normally to their founder cell targets, but are unable to fuse to form myotubes. Interestingly, ablation of Mef2 expression at later stages of development showed MEF2 to be more dispensable for structural gene expression: after myoblast fusion, Mef2 knockdown did not interrupt expression of major structural gene transcripts, and myofibrils were formed. However, the MEF2-depleted fibers showed impaired integrity and a lack of fibrillar organization. When Mef2 RNAi was induced in muscles following eclosion, we found no adverse effects of attenuating Mef2 function. We conclude that in the context of adult myogenesis, MEF2 remains an essential factor, participating in control of myoblast fusion, and myofibrillogenesis in developing myotubes. However, MEF2 does not show a major requirement in the maintenance of muscle structural gene expression. Our findings point to the importance of a diversity of regulatory factors that are required for the formation and function of the distinct muscle fibers found in animals.
Collapse
Affiliation(s)
- Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
118
|
Moleskin is essential for the formation of the myotendinous junction in Drosophila. Dev Biol 2011; 359:176-89. [PMID: 21925492 DOI: 10.1016/j.ydbio.2011.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/07/2011] [Accepted: 08/02/2011] [Indexed: 02/04/2023]
Abstract
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle-tendon cell attachment. Although the muscle-tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle-tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.
Collapse
|
119
|
Al Madhoun AS, Mehta V, Li G, Figeys D, Wiper-Bergeron N, Skerjanc IS. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C. EMBO J 2011; 30:2477-2489. [PMID: 21556048 PMCID: PMC3116284 DOI: 10.1038/emboj.2011.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/19/2011] [Indexed: 12/18/2022] Open
Abstract
The MEF2 factors regulate transcription during cardiac and skeletal myogenesis. MEF2 factors establish skeletal muscle commitment by amplifying and synergizing with MyoD. While phosphorylation is known to regulate MEF2 function, lineage-specific regulation is unknown. Here, we show that phosphorylation of MEF2C on T(80) by skeletal myosin light chain kinase (skMLCK) enhances skeletal and not cardiac myogenesis. A phosphorylation-deficient MEF2C mutant (MEFT80A) enhanced cardiac, but not skeletal myogenesis in P19 stem cells. Further, MEFT80A was deficient in recruitment of p300 to skeletal but not cardiac muscle promoters. In gain-of-function studies, skMLCK upregulated myogenic regulatory factor (MRF) expression, leading to enhanced skeletal myogenesis in P19 cells and more efficient myogenic conversion. In loss-of-function studies, MLCK was essential for efficient MRF expression and subsequent myogenesis in embryonic stem (ES) and P19 cells as well as for proper activation of quiescent satellite cells. Thus, skMLCK regulates MRF expression by controlling the MEF2C-dependent recruitment of histone acetyltransferases to skeletal muscle promoters. This work identifies the first kinase that regulates MyoD and Myf5 expression in ES or satellite cells.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Grace Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
120
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
121
|
High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat Genet 2011; 43:414-20. [PMID: 21478888 DOI: 10.1038/ng.808] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/21/2011] [Indexed: 12/13/2022]
Abstract
The binding of some transcription factors has been shown to diverge substantially between closely related species. Here we show that the binding of the developmental transcription factor Twist is highly conserved across six Drosophila species, revealing strong functional constraints at its enhancers. Conserved binding correlates with sequence motifs for Twist and its partners, permitting the de novo discovery of their combinatorial binding. It also includes over 10,000 low-occupancy sites near the detection limit, which tend to mark enhancers of later developmental stages. These results suggest that developmental enhancers can be highly evolutionarily constrained, presumably because of their complex combinatorial nature.
Collapse
|
122
|
Schejter ED, Baylies MK. Born to run: creating the muscle fiber. Curr Opin Cell Biol 2011; 22:566-74. [PMID: 20817426 DOI: 10.1016/j.ceb.2010.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/27/2022]
Abstract
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system.
Collapse
Affiliation(s)
- Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
123
|
Furlong EE. The importance of being specified: cell fate decisions and their role in cell biology. Mol Biol Cell 2011; 21:3797-8. [PMID: 21079016 PMCID: PMC2982138 DOI: 10.1091/mbc.e10-05-0436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eileen E Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Myerhofstrasse, Heidelberg BW D69117, Germany.
| |
Collapse
|
124
|
MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 2011; 27:141-8. [PMID: 21295369 DOI: 10.1016/j.tig.2011.01.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022]
Abstract
The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors. Surprisingly, data from a variety of model organisms and tissues have demonstrated that transcription factors vary greatly in their number of genomic binding sites, and that binding events can significantly exceed the number of known or possible direct gene targets. Thus, current understanding of transcription factor function must expand to encompass what role, if any, binding might have outside of direct transcriptional target regulation. In this review, we discuss the biological significance of genome-wide binding of transcription factors and present models that can account for this phenomenon.
Collapse
Affiliation(s)
- Kyle L MacQuarrie
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | |
Collapse
|
125
|
He J, Ye J, Cai Y, Riquelme C, Liu JO, Liu X, Han A, Chen L. Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly. Nucleic Acids Res 2011; 39:4464-74. [PMID: 21278418 PMCID: PMC3105382 DOI: 10.1093/nar/gkr030] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure of a ternary complex of the p300 TAZ2 domain bound to MEF2 on DNA at 2.2Å resolution. The structure reveals three MEF2:DNA complexes binding to different sites of the TAZ2 domain. Using structure-guided mutations and a mammalian two-hybrid assay, we show that all three interfaces contribute to the binding of MEF2 to p300, suggesting that p300 may use one of the three interfaces to interact with MEF2 in different cellular contexts and that one p300 can bind three MEF2:DNA complexes simultaneously. These studies, together with previously characterized TAZ2 complexes bound to different transcription factors, demonstrate the potency and versatility of TAZ2 in protein–protein interactions. Our results also support a model wherein p300 promotes the assembly of a higher-order enhanceosome by simultaneous interactions with multiple DNA-bound transcription factors.
Collapse
Affiliation(s)
- Ju He
- MOE Key Laboratory for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Tchurikov NA, Kretova OV, Sosin DV, Zykov IA, Zhimulev IF, Kravatsky YV. Genome-wide profiling of forum domains in Drosophila melanogaster. Nucleic Acids Res 2011; 39:3667-85. [PMID: 21247882 PMCID: PMC3089479 DOI: 10.1093/nar/gkq1353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50-200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Genome Organization, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow 119991, Russia.
| | | | | | | | | | | |
Collapse
|
127
|
Punch VG, Jones AE, Rudnicki MA. Transcriptional networks that regulate muscle stem cell function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:128-140. [PMID: 20835986 DOI: 10.1002/wsbm.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.
Collapse
Affiliation(s)
- Vincent G Punch
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Andrew E Jones
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Michael A Rudnicki
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- The Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| |
Collapse
|
128
|
Su J, Teichmann SA, Down TA. Assessing computational methods of cis-regulatory module prediction. PLoS Comput Biol 2010; 6:e1001020. [PMID: 21152003 PMCID: PMC2996316 DOI: 10.1371/journal.pcbi.1001020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/29/2010] [Indexed: 01/02/2023] Open
Abstract
Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we summarized and categorized them based on search strategy and input data requirements. Twelve representative methods were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE regions. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs. Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation of future CRM-prediction methods. Transcriptional regulation involves multiple transcription factors binding to DNA sequences. A limited repertoire of transcription factors performs this complex regulatory step through various spatial and temporal interactions between themselves and their binding sites. These transcription factor binding interactions are clustered as distinct modules: cis-regulatory modules (CRMs). Computational methods attempting to identify instances of CRMs in the genome face a challenging problem because a majority of these interactions between transcription factors remain unknown. To investigate the reliability and accuracy of these methods, we chose twelve representative methods and applied them to predict CRMs on both the fly and human genomes. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. We provide a guide for users and key considerations for developers. We also expect that, along with new technology generating new types of genomic data, future CRM prediction methods will be able to reveal transcription binding interactions in three-dimensional space.
Collapse
Affiliation(s)
- Jing Su
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
129
|
Wilczyński B, Furlong EEM. Dynamic CRM occupancy reflects a temporal map of developmental progression. Mol Syst Biol 2010; 6:383. [PMID: 20571532 PMCID: PMC2913398 DOI: 10.1038/msb.2010.35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/30/2010] [Indexed: 02/07/2023] Open
Abstract
Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.
Collapse
Affiliation(s)
- Bartek Wilczyński
- Department of Genome Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
130
|
Jia Y, Huan J. Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism. BMC Bioinformatics 2010; 11 Suppl 6:S27. [PMID: 20946611 PMCID: PMC3026374 DOI: 10.1186/1471-2105-11-s6-s27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Dynamic Bayesian Networks (DBNs) are widely used in regulatory network structure inference with gene expression data. Current methods assumed that the underlying stochastic processes that generate the gene expression data are stationary. The assumption is not realistic in certain applications where the intrinsic regulatory networks are subject to changes for adapting to internal or external stimuli. Results In this paper we investigate a novel non-stationary DBNs method with a potential regulator detection technique and a flexible lag choosing mechanism. We apply the approach for the gene regulatory network inference on three non-stationary time series data. For the Macrophages and Arabidopsis data sets with the reference networks, our method shows better network structure prediction accuracy. For the Drosophila data set, our approach converges faster and shows a better prediction accuracy on transition times. In addition, our reconstructed regulatory networks on the Drosophila data not only share a lot of similarities with the predictions of the work of other researchers but also provide many new structural information for further investigation. Conclusions Compared with recent proposed non-stationary DBNs methods, our approach has better structure prediction accuracy By detecting potential regulators, our method reduces the size of the search space, hence may speed up the convergence of MCMC sampling.
Collapse
Affiliation(s)
- Yi Jia
- Department of Electrical Engineering & Computer Science, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
131
|
Bulchand S, Menon SD, George SE, Chia W. Muscle wasted: a novel component of the Drosophila histone locus body required for muscle integrity. J Cell Sci 2010; 123:2697-707. [DOI: 10.1242/jcs.063172] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Skeletal muscles arise by cellular differentiation and regulated gene expression. Terminal differentiation programmes such as muscle growth, extension and attachment to the epidermis, lead to maturation of the muscles. These events require changes in chromatin organization as genes are differentially regulated. Here, we identify and characterise muscle wasted (mute), a novel component of the Drosophila histone locus body (HLB). We demonstrate that a mutation in mute leads to severe loss of muscle mass and an increase in levels of normal histone transcripts. Importantly, Drosophila Myocyte enhancer factor 2 (Mef2), a central myogenic differentiation factor, and how, an RNA binding protein required for muscle and tendon cell differentiation, are downregulated. Mef2 targets are, in turn, misregulated. Notably, the degenerating muscles in mute mutants show aberrant localisation of heterochromatin protein 1 (HP1). We further show a genetic interaction between mute and the Stem-loop binding protein (Slbp) and a loss of muscle striations in Lsm11 mutants. These data demonstrate a novel role of HLB components and histone processing factors in the maintenance of muscle integrity. We speculate that mute regulates terminal muscle differentiation possibly through heterochromatic reorganisation.
Collapse
Affiliation(s)
- Sarada Bulchand
- Temasek Lifesciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Sree Devi Menon
- Temasek Lifesciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Simi Elizabeth George
- Temasek Lifesciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - William Chia
- Temasek Lifesciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| |
Collapse
|
132
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
133
|
Aerts S, Quan XJ, Claeys A, Naval Sanchez M, Tate P, Yan J, Hassan BA. Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in Drosophila uncovers a regulatory basis for sensory specification. PLoS Biol 2010; 8:e1000435. [PMID: 20668662 PMCID: PMC2910651 DOI: 10.1371/journal.pbio.1000435] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/14/2010] [Indexed: 01/08/2023] Open
Abstract
CisTarget X is a novel computational method that accurately predicts Atonal governed regulatory networks in the retina of the fruit fly. A comprehensive systems-level understanding of developmental programs requires the mapping of the underlying gene regulatory networks. While significant progress has been made in mapping a few such networks, almost all gene regulatory networks underlying cell-fate specification remain unknown and their discovery is significantly hampered by the paucity of generalized, in vivo validated tools of target gene and functional enhancer discovery. We combined genetic transcriptome perturbations and comprehensive computational analyses to identify a large cohort of target genes of the proneural and tumor suppressor factor Atonal, which specifies the switch from undifferentiated pluripotent cells to R8 photoreceptor neurons during larval development. Extensive in vivo validations of the predicted targets for the proneural factor Atonal demonstrate a 50% success rate of bona fide targets. Furthermore we show that these enhancers are functionally conserved by cloning orthologous enhancers from Drosophila ananassae and D. virilis in D. melanogaster. Finally, to investigate cis-regulatory cross-talk between Ato and other retinal differentiation transcription factors (TFs), we performed motif analyses and independent target predictions for Eyeless, Senseless, Suppressor of Hairless, Rough, and Glass. Our analyses show that cisTargetX identifies the correct motif from a set of coexpressed genes and accurately predicts target genes of individual TFs. The validated set of novel Ato targets exhibit functional enrichment of signaling molecules and a subset is predicted to be coregulated by other TFs within the retinal gene regulatory network. Tens of thousands of regulatory elements determine the spatiotemporal expression pattern of protein-coding genes in the metazoan genome. Each regulatory element, when bound by the appropriate transcription factors, can affect the temporal transcription of a nearby target gene in a particular cell type. Annotating the genome for regulatory elements, as well as determining the input transcription factors for each element, is a key challenge in genome biology. In this study, we introduce a computational method, cisTargetX, that predicts transcription factor binding motifs and their target genes through the integration of gene expression data and comparative genomics. We first validate this method in silico using public gene expression data and, then, apply cisTargetX to the developmental program governing photoreceptor neuron specification in the retina of Drosophila melanogaster. Particularly, we perturbed predicted key transcription factors during the initial steps of neurogenesis; measure gene expression by microarrays; identify motifs and predict target genes; validate the predictions in vivo using transgenic animals; and study several functional and evolutionary aspects of the validated regulatory elements for the proneural factor Atonal. Overall, we show that cisTargetX efficiently predicts genetic regulatory interactions and provides mechanistic insight into gene regulatory networks of postembryonic developmental systems.
Collapse
Affiliation(s)
- Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory of Computational Biology, Katholieke Universiteit (K.U.) Leuven, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
- * E-mail: (SA); (BAH)
| | - Xiao-Jiang Quan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Annelies Claeys
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Marina Naval Sanchez
- Laboratory of Computational Biology, Katholieke Universiteit (K.U.) Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
| | - Phillip Tate
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Jiekun Yan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
| | - Bassem A. Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Center for Human Genetics, K.U. Leuven, Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, K.U. Leuven Group Biomedicine, Leuven, Belgium
- * E-mail: (SA); (BAH)
| |
Collapse
|
134
|
Bozek K, Rosahl AL, Gaub S, Lorenzen S, Herzel H. Circadian transcription in liver. Biosystems 2010; 102:61-9. [PMID: 20655353 DOI: 10.1016/j.biosystems.2010.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/15/2010] [Indexed: 02/02/2023]
Abstract
Circadian rhythms regulate a wide range of cellular, physiological, metabolic and behavioral activities in mammals. The complexity of tissue- and day-time specific regulation of thousands of clock controlled genes (CCGs) suggests that many transcriptional regulators are involved. Our bioinformatic analysis is based on two published DNA-array studies from mouse liver. We search overrepresented transcription factor binding sites in promoter regions of CCGs using GC-matched controls. Analyzing a large set of CCG promoters, we find known motifs such as E-boxes, D-boxes and cAMP responsive elements. In addition, we find overrepresented GC-rich motifs (Sp1, ETF, Nrf1), AT-rich motifs (TBP, Fox04, MEF-2), Y-box motifs (NF-Y, C/EBP) and cell cycle regulators (E2F, Elk-1). In a subset of system-driven genes, we find overrepresented motifs of the serum response factor SRF and the estrogen receptor ER. The analysis of published ChIP data reveals that some of our predicted regulators (C/EBP, E2F, HNF-1, Myc, MEF-2) target relatively many clock controlled genes. Our analysis of CCG promoters contributes to an understanding of the complex transcriptional regulation of circadian rhythms in liver.
Collapse
Affiliation(s)
- K Bozek
- Max Planck Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
135
|
Bernard F, Krejci A, Housden B, Adryan B, Bray SJ. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 2010; 137:2633-42. [PMID: 20610485 DOI: 10.1242/dev.053181] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell signalling mediated by Notch regulates many different developmental and physiological processes and is involved in a variety of human diseases. Activation of Notch impinges directly on gene expression through the Suppressor of Hairless [Su(H)] DNA-binding protein. A major question that remains to be elucidated is how the same Notch signalling pathway can result in different transcriptional responses depending on the cellular context and environment. Here, we have investigated the factors required to confer this specific response in Drosophila adult myogenic progenitor-related cells. Our analysis identifies Twist (Twi) as a crucial co-operating factor. Enhancers from several direct Notch targets require a combination of Twi and Notch activities for expression in vivo; neither alone is sufficient. Twi is bound at target enhancers prior to Notch activation and enhances Su(H) binding to these regulatory regions. To determine the breadth of the combinatorial regulation we mapped Twi occupancy genome-wide in DmD8 myogenic progenitor-related cells by chromatin immunoprecipitation. Comparing the sites bound by Su(H) and by Twi in these cells revealed a strong association, identifying a large spectrum of co-regulated genes. We conclude that Twi is an essential Notch co-regulator in myogenic progenitor cells and has the potential to confer specificity on Notch signalling at over 170 genes, showing that a single factor can have a profound effect on the output of the pathway.
Collapse
Affiliation(s)
- Fred Bernard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
136
|
Cunha PMF, Sandmann T, Gustafson EH, Ciglar L, Eichenlaub MP, Furlong EEM. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity. PLoS Genet 2010; 6:e1001014. [PMID: 20617173 PMCID: PMC2895655 DOI: 10.1371/journal.pgen.1001014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/01/2010] [Indexed: 11/26/2022] Open
Abstract
Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2) or the zinc-finger transcription factor lame duck (lmd) lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation. While genetic studies are essential to reveal the phenotypic relationships between genes, it is often very difficult to disentangle the molecular mechanism of two genes that phenocopy each other. In this study, we used global scale and single gene analysis to investigate the relationship between two transcription factors whose mutant embryos have a similar defect in myogenesis. In Drosophila, Mef2 mutant embryos display a block in myoblast fusion, which is very similar to what is observed in mutant embryos for lmd, a zinc-finger transcription factor. To understand the underlying nature of these defects we used ChIP-on-chip analysis to obtain a global view of their co-regulated enhancers, and we used expression profiling of mutant embryos to reveal their downstream transcriptional response. The results indicate that Lmd acts as a tissue specific modulator of Mef2 activity. Using in vivo and in vitro reporter assays, we show that co-binding to the same enhancer element can lead to diverse regulatory responses. The presence of Lmd has an additive, cooperative, or repressive effect on Mef2 activity, demonstrating that it acts as a molecular switch for gene expression during muscle differentiation. More broadly, our results highlight the difficulty in translating information on combinatorial binding data into a functional regulatory response.
Collapse
Affiliation(s)
| | | | | | - Lucia Ciglar
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
137
|
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38:576-89. [PMID: 20513432 PMCID: PMC2898526 DOI: 10.1016/j.molcel.2010.05.004] [Citation(s) in RCA: 8915] [Impact Index Per Article: 594.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/02/2010] [Accepted: 05/03/2010] [Indexed: 02/06/2023]
Abstract
Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.
Collapse
Affiliation(s)
- Sven Heinz
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Christopher Benner
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Nathanael Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Eric Bertolino
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
| | - Yin C. Lin
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Peter Laslo
- Section of Experimental Haematology, University of Leeds, Leeds, UK LS9 7TF
| | - Jason X. Cheng
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
| | - Cornelis Murre
- Section of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- To whom correspondence should be addressed: Office: 858-534-6011,
| | - Harinder Singh
- Molecular Genetics and Cell Biology, The University of Chicago, 929 E. 57th St. GCIS W522, Chicago IL 60637
- Department of Discovery Immunology, Genentech, San Francisco, California 94080
- To whom correspondence should be addressed: Office: 858-534-6011,
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
- To whom correspondence should be addressed: Office: 858-534-6011,
| |
Collapse
|
138
|
Kubo A, Suzuki N, Yuan X, Nakai K, Satoh N, Imai KS, Satou Y. Genomic cis-regulatory networks in the early Ciona intestinalis embryo. Development 2010; 137:1613-23. [PMID: 20392745 DOI: 10.1242/dev.046789] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Precise spatiotemporal gene expression during animal development is achieved through gene regulatory networks, in which sequence-specific transcription factors (TFs) bind to cis-regulatory elements of target genes. Although numerous cis-regulatory elements have been identified in a variety of systems, their global architecture in the gene networks that regulate animal development is not well understood. Here, we determined the structure of the core networks at the cis-regulatory level in early embryos of the chordate Ciona intestinalis by chromatin immunoprecipitation (ChIP) of 11 TFs. The regulatory systems of the 11 TF genes examined were tightly interconnected with one another. By combining analysis of the ChIP data with the results of previous comprehensive analyses of expression profiles and knockdown of regulatory genes, we found that most of the previously determined interactions are direct. We focused on cis-regulatory networks responsible for the Ciona mesodermal tissues by examining how the networks specify these tissues at the level of their cis-regulatory architecture. We also found many interactions that had not been predicted by simple gene knockdown experiments, and we showed that a significant fraction of TF-DNA interactions make major contributions to the regulatory control of target gene expression.
Collapse
Affiliation(s)
- Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci U S A 2010; 107:7793-8. [PMID: 20385836 DOI: 10.1073/pnas.0914285107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We present a computational method for identifying potential targets of a transcription factor (TF) using wild-type gene expression time series data. For each putative target gene we fit a simple differential equation model of transcriptional regulation, and the model likelihood serves as a score to rank targets. The expression profile of the TF is modeled as a sample from a Gaussian process prior distribution that is integrated out using a nonparametric Bayesian procedure. This results in a parsimonious model with relatively few parameters that can be applied to short time series datasets without noticeable overfitting. We assess our method using genome-wide chromatin immunoprecipitation (ChIP-chip) and loss-of-function mutant expression data for two TFs, Twist, and Mef2, controlling mesoderm development in Drosophila. Lists of top-ranked genes identified by our method are significantly enriched for genes close to bound regions identified in the ChIP-chip data and for genes that are differentially expressed in loss-of-function mutants. Targets of Twist display diverse expression profiles, and in this case a model-based approach performs significantly better than scoring based on correlation with TF expression. Our approach is found to be comparable or superior to ranking based on mutant differential expression scores. Also, we show how integrating complementary wild-type spatial expression data can further improve target ranking performance.
Collapse
|
140
|
Adryan B, Teichmann SA. The developmental expression dynamics of Drosophila melanogaster transcription factors. Genome Biol 2010; 11:R40. [PMID: 20384991 PMCID: PMC2884543 DOI: 10.1186/gb-2010-11-4-r40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/22/2010] [Accepted: 04/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Site-specific transcription factors (TFs) are coordinators of developmental and physiological gene expression programs. Their binding to cis-regulatory modules of target genes mediates the precise cell- and context-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. RESULTS We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find that 95% of these TFs are expressed at some point during embryonic development, with a peak roughly between 10 and 12 hours after egg laying, the core stages of organogenesis. We address the differential utilization of DNA-binding domains in different developmental programs systematically in a spatio-temporal context, and show that the zinc finger class of TFs is predominantly early expressed, while Homeobox TFs exhibit later expression in embryogenesis. CONCLUSIONS Previous work, dissecting cis-regulatory modules during Drosophila development, suggests that TFs are deployed in groups acting in a cooperative manner. In contrast, we find that there is rapid exchange of co-expressed partners amongst the fly TFs, at rates similar to the genome-wide dynamics of co-expression clusters. This suggests there may also be a high level of combinatorial complexity of TFs at cis-regulatory modules.
Collapse
Affiliation(s)
- Boris Adryan
- Computational Biology Group, Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
141
|
Reim I, Frasch M. Genetic and genomic dissection of cardiogenesis in the Drosophila model. Pediatr Cardiol 2010; 31:325-34. [PMID: 20033682 DOI: 10.1007/s00246-009-9612-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 12/07/2009] [Indexed: 01/26/2023]
Abstract
The linear heart tube of the fruit fly Drosophila has served as a very valuable model for studying the regulation of early heart development. In the past, regulatory genes of Drosophila cardiogenesis have been identified largely through candidate approaches. The vast genetic toolkit available in this organism has made it possible to determine their functions and build regulatory networks of transcription factors and signaling inputs that control heart development. In this review, we summarize the major findings from this study and present current approaches aiming to identify additional players in the specification, morphogenesis, and differentiation of the heart by forward genetic screens. We also discuss various genomic and bioinformatic approaches that are currently being developed to extend the known transcriptional networks more globally which, in combination with the genetic approaches, will provide a comprehensive picture of the regulatory circuits during cardiogenesis.
Collapse
Affiliation(s)
- Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | | |
Collapse
|
142
|
Challenges for modeling global gene regulatory networks during development: Insights from Drosophila. Dev Biol 2010; 340:161-9. [DOI: 10.1016/j.ydbio.2009.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/14/2009] [Accepted: 10/21/2009] [Indexed: 12/26/2022]
|
143
|
Schnorrer F, Schönbauer C, Langer CCH, Dietzl G, Novatchkova M, Schernhuber K, Fellner M, Azaryan A, Radolf M, Stark A, Keleman K, Dickson BJ. Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature 2010; 464:287-91. [DOI: 10.1038/nature08799] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 12/30/2009] [Indexed: 11/09/2022]
|
144
|
Wu Y, Dey R, Han A, Jayathilaka N, Philips M, Ye J, Chen L. Structure of the MADS-box/MEF2 domain of MEF2A bound to DNA and its implication for myocardin recruitment. J Mol Biol 2010; 397:520-33. [PMID: 20132824 DOI: 10.1016/j.jmb.2010.01.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 12/30/2022]
Abstract
Myocyte enhancer factor 2 (MEF2) regulates specific gene expression in diverse developmental programs and adaptive responses. MEF2 recognizes DNA and interacts with transcription cofactors through a highly conserved N-terminal domain referred to as the MADS-box/MEF2 domain. Here we present the crystal structure of the MADS-box/MEF2 domain of MEF2A bound to DNA. In contrast to previous structural studies showing that the MEF2 domain of MEF2A is partially unstructured, the present study reveals that the MEF2 domain participates with the MADS-box in both dimerization and DNA binding as a single domain. The sequence divergence at and immediately following the C-terminal end of the MEF2 domain may allow different MEF2 dimers to recognize different DNA sequences in the flanking regions. The current structure also suggests that the ligand-binding pocket previously observed in the Cabin1-MEF2B-DNA complex and the HDAC9 (histone deacetylase 9)-MEF2B-DNA complex is not induced by cofactor binding but rather preformed by intrinsic folding. However, the structure of the ligand-binding pocket does undergo subtle but significant conformational changes upon cofactor binding. On the basis of these observations, we generated a homology model of MEF2 bound to a myocardin family protein, MASTR, that acts as a potent coactivator of MEF2-dependent gene expression. The model shows excellent shape and chemical complementarity at the binding interface and is consistent with existing mutagenesis data. The apo structure presented here can also serve as a target for virtual screening and soaking studies of small molecules that can modulate the function of MEF2 as research tools and therapeutic leads.
Collapse
Affiliation(s)
- Yongqing Wu
- Division of Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, RRI 204c, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Enriquez J, Boukhatmi H, Dubois L, Philippakis AA, Bulyk ML, Michelson AM, Crozatier M, Vincent A. Multi-step control of muscle diversity by Hox proteins in the Drosophila embryo. Development 2010; 137:457-66. [PMID: 20056681 DOI: 10.1242/dev.045286] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox transcription factors control many aspects of animal morphogenetic diversity. The segmental pattern of Drosophila larval muscles shows stereotyped variations along the anteroposterior body axis. Each muscle is seeded by a founder cell and the properties specific to each muscle reflect the expression by each founder cell of a specific combination of 'identity' transcription factors. Founder cells originate from asymmetric division of progenitor cells specified at fixed positions. Using the dorsal DA3 muscle lineage as a paradigm, we show here that Hox proteins play a decisive role in establishing the pattern of Drosophila muscles by controlling the expression of identity transcription factors, such as Nautilus and Collier (Col), at the progenitor stage. High-resolution analysis, using newly designed intron-containing reporter genes to detect primary transcripts, shows that the progenitor stage is the key step at which segment-specific information carried by Hox proteins is superimposed on intrasegmental positional information. Differential control of col transcription by the Antennapedia and Ultrabithorax/Abdominal-A paralogs is mediated by separate cis-regulatory modules (CRMs). Hox proteins also control the segment-specific number of myoblasts allocated to the DA3 muscle. We conclude that Hox proteins both regulate and contribute to the combinatorial code of transcription factors that specify muscle identity and act at several steps during the muscle-specification process to generate muscle diversity.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, IFR 109 Institut d'Exploration Fonctionnelle des Génomes, 31062 Toulouse cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009; 462:65-70. [PMID: 19890324 DOI: 10.1038/nature08531] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 09/22/2009] [Indexed: 11/09/2022]
Abstract
Development requires the establishment of precise patterns of gene expression, which are primarily controlled by transcription factors binding to cis-regulatory modules. Although transcription factor occupancy can now be identified at genome-wide scales, decoding this regulatory landscape remains a daunting challenge. Here we used a novel approach to predict spatio-temporal cis-regulatory activity based only on in vivo transcription factor binding and enhancer activity data. We generated a high-resolution atlas of cis-regulatory modules describing their temporal and combinatorial occupancy during Drosophila mesoderm development. The binding profiles of cis-regulatory modules with characterized expression were used to train support vector machines to predict five spatio-temporal expression patterns. In vivo transgenic reporter assays demonstrate the high accuracy of these predictions and reveal an unanticipated plasticity in transcription factor binding leading to similar expression. This data-driven approach does not require previous knowledge of transcription factor sequence affinity, function or expression, making it widely applicable.
Collapse
|
147
|
Meireles-Filho ACA, Stark A. Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information. Curr Opin Genet Dev 2009; 19:565-70. [PMID: 19913403 DOI: 10.1016/j.gde.2009.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 01/13/2023]
Abstract
We recently witnessed a tremendous increase in genomics studies on gene regulation and in entirely sequenced genomes from closely related species. This has triggered analyses that suggest a wide range of evolutionary dynamics of gene regulation, from rapid turnover of transcription-factor binding sites to conservation of enhancer function across large evolutionary distances. Many examples show that enhancers can evolve beyond recognizable sequence similarity while retaining function. However, bioinformatics approaches are increasingly able to detect conserved regulatory elements through characteristic evolutionary sequence signatures. Cis-regulatory changes are also a major source of morphological evolution, which might be facilitated by many biochemically functional elements that are selectively neutral and by the buffering function of redundant enhancers and 'shadow' enhancers.
Collapse
|
148
|
Ciglar L, Furlong EEM. Conservation and divergence in developmental networks: a view from Drosophila myogenesis. Curr Opin Cell Biol 2009; 21:754-60. [PMID: 19896355 DOI: 10.1016/j.ceb.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/20/2009] [Accepted: 10/06/2009] [Indexed: 01/07/2023]
Abstract
Understanding developmental networks has recently been enhanced through the identification of a large number of conserved essential regulators. Interspecies comparisons of the transcriptional networks regulated by these factors are still at a rather early stage, with limited global data available. Here we use the accumulating phenotypic information from multiple species to provide initial insights into the wiring and rewiring of developmental networks, with particular emphasis on myogenesis, a highly conserved developmental process. This review highlights the most recent findings on the transcriptional program driving Drosophila myogenesis and compares this with vertebrates, revealing emerging themes that may be applicable to other developmental contexts.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
149
|
Costello JC, Dalkilic MM, Beason SM, Gehlhausen JR, Patwardhan R, Middha S, Eads BD, Andrews JR. Gene networks in Drosophila melanogaster: integrating experimental data to predict gene function. Genome Biol 2009; 10:R97. [PMID: 19758432 PMCID: PMC2768986 DOI: 10.1186/gb-2009-10-9-r97] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/17/2009] [Accepted: 09/16/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Discovering the functions of all genes is a central goal of contemporary biomedical research. Despite considerable effort, we are still far from achieving this goal in any metazoan organism. Collectively, the growing body of high-throughput functional genomics data provides evidence of gene function, but remains difficult to interpret. RESULTS We constructed the first network of functional relationships for Drosophila melanogaster by integrating most of the available, comprehensive sets of genetic interaction, protein-protein interaction, and microarray expression data. The complete integrated network covers 85% of the currently known genes, which we refined to a high confidence network that includes 20,000 functional relationships among 5,021 genes. An analysis of the network revealed a remarkable concordance with prior knowledge. Using the network, we were able to infer a set of high-confidence Gene Ontology biological process annotations on 483 of the roughly 5,000 previously unannotated genes. We also show that this approach is a means of inferring annotations on a class of genes that cannot be annotated based solely on sequence similarity. Lastly, we demonstrate the utility of the network through reanalyzing gene expression data to both discover clusters of coregulated genes and compile a list of candidate genes related to specific biological processes. CONCLUSIONS Here we present the the first genome-wide functional gene network in D. melanogaster. The network enables the exploration, mining, and reanalysis of experimental data, as well as the interpretation of new data. The inferred annotations provide testable hypotheses of previously uncharacterized genes.
Collapse
Affiliation(s)
- James C Costello
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| | - Mehmet M Dalkilic
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
| | - Scott M Beason
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
| | - Jeff R Gehlhausen
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
| | - Rupali Patwardhan
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
- Current address: Department of Genome Sciences, University of Washington, NE Pacific St, Seattle, Washington 98195-5065, USA
| | - Sumit Middha
- Center for Genomics and Bioinformatics, Indiana University, E. Third St., Bloomington, Indiana 47405, USA
- Current address: Bioinformatics Core, Mayo Clinic, First St SW, Rochester, Minnesota 55905, USA
| | - Brian D Eads
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| | - Justen R Andrews
- School of Informatics, Indiana University, E. Tenth St, Bloomington, Indiana 47408, USA
- Department of Biology, Indiana University, E. Third St, Bloomington, Indiana 47405, USA
| |
Collapse
|
150
|
Guruharsha KG, Ruiz-Gomez M, Ranganath HA, Siddharthan R, VijayRaghavan K. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre. PLoS One 2009; 4:e6960. [PMID: 19742310 PMCID: PMC2734059 DOI: 10.1371/journal.pone.0006960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 12/18/2022] Open
Abstract
A key early player in the regulation of myoblast fusion is the gene dumbfounded (duf, also known as kirre). Duf must be expressed, and function, in founder cells (FCs). A fixed number of FCs are chosen from a pool of equivalent myoblasts and serve to attract fusion-competent myoblasts (FCMs) to fuse with them to form a multinucleate muscle-fibre. The spatial and temporal regulation of duf expression and function are important and play a deciding role in choice of fibre number, location and perhaps size. We have used a combination of bioinformatics and functional enhancer deletion approaches to understand the regulation of duf. By transgenic enhancer-reporter deletion analysis of the duf regulatory region, we found that several distinct enhancer modules regulate duf expression in specific muscle founders of the embryo and the adult. In addition to existing bioinformatics tools, we used a new program for analysis of regulatory sequence, PhyloGibbs-MP, whose development was largely motivated by the requirements of this work. The results complement our deletion analysis by identifying transcription factors whose predicted binding regions match with our deletion constructs. Experimental evidence for the relevance of some of these TF binding sites comes from available ChIP-on-chip from the literature, and from our analysis of localization of myogenic transcription factors with duf enhancer reporter gene expression. Our results demonstrate the complex regulation in each founder cell of a gene that is expressed in all founder cells. They provide evidence for transcriptional control—both activation and repression—as an important player in the regulation of myoblast fusion. The set of enhancer constructs generated will be valuable in identifying novel trans-acting factor-binding sites and chromatin regulation during myoblast fusion in Drosophila. Our results and the bioinformatics tools developed provide a basis for the study of the transcriptional regulation of other complex genes.
Collapse
Affiliation(s)
- K. G. Guruharsha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Mar Ruiz-Gomez
- Centro de Biologia Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, Madrid, Spain
| | - H. A. Ranganath
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Rahul Siddharthan
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|