101
|
Kish SJ, Boileau I, Callaghan RC, Tong J. Brain dopamine neurone 'damage': methamphetamine users vs. Parkinson's disease - a critical assessment of the evidence. Eur J Neurosci 2017; 45:58-66. [PMID: 27519465 PMCID: PMC5209286 DOI: 10.1111/ejn.13363] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
The objective of this review is to evaluate the evidence that recreational methamphetamine exposure might damage dopamine neurones in human brain, as predicted by experimental animal findings. Brain dopamine marker data in methamphetamine users can now be compared with those in Parkinson's disease, for which the Oleh Hornykiewicz discovery in Vienna of a brain dopamine deficiency is established. Whereas all examined striatal (caudate and putamen) dopamine neuronal markers are decreased in Parkinson's disease, levels of only some (dopamine, dopamine transporter) but not others (dopamine metabolites, synthetic enzymes, vesicular monoamine transporter 2) are below normal in methamphetamine users. This suggests that loss of dopamine neurones might not be characteristic of methamphetamine exposure in at least some human drug users. In methamphetamine users, dopamine loss was more marked in caudate than in putamen, whereas in Parkinson's disease, the putamen is distinctly more affected. Substantia nigra loss of dopamine-containing cell bodies is characteristic of Parkinson's disease, but similar neuropathological studies have yet to be conducted in methamphetamine users. Similarly, it is uncertain whether brain gliosis, a common feature of brain damage, occurs after methamphetamine exposure in humans. Preliminary epidemiological findings suggest that methamphetamine use might increase risk of subsequent development of Parkinson's disease. We conclude that the available literature is insufficient to indicate that recreational methamphetamine exposure likely causes loss of dopamine neurones in humans but does suggest presence of a striatal dopamine deficiency that, in principle, could be corrected by dopamine substitution medication if safety and subject selection considerations can be resolved.
Collapse
Affiliation(s)
- Stephen J. Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Russell C. Callaghan
- Northern Medical Program, University of Northern British Columbia (UNBC), Prince George, British Columbia, Canada
| | - Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
102
|
Abstract
Neuropsychiatric disorders caused by toxic substances pose a great diagnostic challenge due to the large variety of changes caused in the central and peripheral nervous system. The pathogenetic mechanisms at work are multifaceted and partly not solved. In human drug abusers (cannabis, opiates, cocaine, amphetamines, methamphetamine and "designer drugs"), a broad spectrum of central nervous system alterations are observed including infarction, intracerebral and subarachnoidal hemorrhage, hypoxic-ischemic leukoencephalopathy, infections, neuronal loss, specific astroglial and microglial reaction patterns, and vascular changes, including the endothelial cell as well as the basal lamina.
Collapse
Affiliation(s)
- Serge Weis
- Division of Neuropathology, Department of Pathology and Neuropathology, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria.
| | - Andreas Büttner
- Department of Forensic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
103
|
Kakish J, Allen KJH, Harkness TA, Krol ES, Lee JS. Novel Dimer Compounds That Bind α-Synuclein Can Rescue Cell Growth in a Yeast Model Overexpressing α-Synuclein. A Possible Prevention Strategy for Parkinson's Disease. ACS Chem Neurosci 2016; 7:1671-1680. [PMID: 27673434 DOI: 10.1021/acschemneuro.6b00209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C8-6-I and C8-6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C8-6-I and C8-6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 105 M-1.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Kevin J. H. Allen
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Troy A. Harkness
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Ed S. Krol
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| |
Collapse
|
104
|
Ballester J, Valentine G, Sofuoglu M. Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev Clin Pharmacol 2016; 10:305-314. [PMID: 27927042 DOI: 10.1080/17512433.2017.1268916] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Methamphetamine (MA) abuse remains a global health challenge despite intense research interest in the development of pharmacological treatments. This review provides a summary of clinical trials and human studies on the pharmacotherapy of methamphetamine use disorder (MUD). Areas covered: We summarize published clinical trials that tested candidate medications for MUD and also conducted PubMed and Google Scholar searches to identify recently completed clinical trials using the keywords 'methamphetamine' 'addiction' 'pharmacotherapy' and 'clinical trial.' To determine the status of ongoing clinical trials targeting MUD, we also searched the ClinicalTrials.gov online database. We conclude this review with a discussion of current research gaps and future directions. Expert commentary: Clinical trials examining the potential for pharmacotherapies of MUD have largely been negative. Future studies need to address several limitations to reduce the possibility of Type II errors: small sample sizes, high dropout rates or multiple comorbidities. Additionally, new treatment targets, such as MA-induced disruptions in cognition and in the neuroimmune system, merit trials with agents that selectively modulate these processes.
Collapse
Affiliation(s)
- Javier Ballester
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b VA Connecticut Healthcare System , West Haven , CT , USA
| | - Gerald Valentine
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b VA Connecticut Healthcare System , West Haven , CT , USA
| | - Mehmet Sofuoglu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b VA Connecticut Healthcare System , West Haven , CT , USA
| |
Collapse
|
105
|
Midkine Is a Novel Regulator of Amphetamine-Induced Striatal Gliosis and Cognitive Impairment: Evidence for a Stimulus-Dependent Regulation of Neuroinflammation by Midkine. Mediators Inflamm 2016; 2016:9894504. [PMID: 28044069 PMCID: PMC5164901 DOI: 10.1155/2016/9894504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
Midkine (MK) is a cytokine that modulates amphetamine-induced striatal astrogliosis, suggesting a possible role of MK in neuroinflammation induced by amphetamine. To test this hypothesis, we studied astrogliosis and microglial response induced by amphetamine (10 mg/kg i.p. four times, every 2 h) in different brain areas of MK−/− mice and wild type (WT) mice. We found that amphetamine-induced microgliosis and astrocytosis are enhanced in the striatum of MK−/− mice in a region-specific manner. Surprisingly, LPS-induced astrogliosis in the striatum was blocked in MK−/− mice. Since striatal neuroinflammation induced by amphetamine-type stimulants correlates with the cognitive deficits induced by these drugs, we also tested the long-term effects of periadolescent amphetamine treatment (3 mg/kg i.p. daily for 10 days) in a memory task in MK−/− and WT mice. Significant deficits in the Y-maze test were only observed in amphetamine-pretreated MK−/− mice. The data demonstrate for the first time that MK is a novel modulator of neuroinflammation depending on the inflammatory stimulus and the brain area considered. The data indicate that MK limits amphetamine-induced striatal neuroinflammation. In addition, our data demonstrate that periadolescent amphetamine treatment in mice results in transient disruption of learning and memory processes in absence of endogenous MK.
Collapse
|
106
|
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; 32:75-88. [PMID: 27197071 DOI: 10.1016/j.arr.2016.05.004] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum.
Collapse
|
107
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
108
|
Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation. Eur Neuropsychopharmacol 2016; 26:1794-1805. [PMID: 27642078 DOI: 10.1016/j.euroneuro.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice.
Collapse
|
109
|
Lud Cadet J. Dysregulation of Acetylation Enzymes Inanimal Models of Psychostimulant use Disorders: Evolving Stories. Curr Neuropharmacol 2016; 14:10-6. [PMID: 26813118 PMCID: PMC4787278 DOI: 10.2174/1570159x13666150121230133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/01/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023] Open
Abstract
Substance use disorders are neuropsychiatric illnesses that have substantial negative biopsychosocial impact. These diseases are defined as compulsive abuse of licit or illicit substances despite adverse medicolegal consequences. Although much research has been conducted to elucidate the pathobiological bases of these disorders, much remains to be done to develop an overarching neurobiological understanding that might be translatable to beneficial pharmacological therapies. Recent advances in epigenetics promise to lead to such an elucidation. Here I provide a brief overview of observations obtained using some models of psychostimulant administration in rodents. The review identifies CREB binding protein (CBP), HDAC1, HDAC2, HADC3, HDAC4, and HDAC5 as important players in the acetylation and deacetylation processes that occur after contingent or non-contingent administration of psychostimulants. These observations are discussed within a framework that suggests a need for better animal models of addiction in order to bring these epigenetic advances to bear on the pharmacological treatment of human addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224.
| |
Collapse
|
110
|
Xiong K, Liao H, Long L, Ding Y, Huang J, Yan J. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons. Toxicol In Vitro 2016; 35:163-8. [DOI: 10.1016/j.tiv.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
|
111
|
Batra V, Tran TLN, Caputo J, Guerin GF, Goeders NE, Wilden J. Intermittent bilateral deep brain stimulation of the nucleus accumbens shell reduces intravenous methamphetamine intake and seeking in Wistar rats. J Neurosurg 2016; 126:1339-1350. [PMID: 27392268 DOI: 10.3171/2016.4.jns152524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE There is increasing interest in neuromodulation for addiction. Methamphetamine abuse is a global health epidemic with no proven treatment. The objective of this study was to examine the effects of intermittent nucleus accumbens shell (AcbSh) deep brain stimulation (DBS) on operant methamphetamine intake and on methamphetamine seeking when stimulation is delivered in an environment different from that of drug use. METHODS Eighteen rats were implanted with intravenous (IV) catheters and bilateral AcbSh electrodes and subsequently underwent daily sessions in 2-lever (active/methamphetamine and inactive/no reward) operant chambers to establish IV methamphetamine self-administration. After stable responding was achieved, 3 hours of DBS or sham treatment was administered (sham: 0 µA, n = 8; active: 200 µA, n = 10) in a separate nondrug environment prior to the daily operant sessions for 5 consecutive days. Immediately following each DBS/sham treatment, rats were placed in the operant chambers to examine the effects of remote stimulation on methamphetamine intake. After the 5 days of therapy were finished, rats reestablished a posttreatment baseline, followed by extinction training, abstinence, and 1 day of relapse testing to assess methamphetamine-seeking behavior. RESULTS There was a decrease in total methamphetamine intake in rats receiving active DBS versus sham on Days 1 (42%) and 2 (44%). Methamphetamine administration returned to baseline levels following the cessation of DBS therapy. Compared with baseline drug responding, methamphetamine seeking was reduced (57%) in the DBS group but not in the sham group. CONCLUSIONS It is feasible to deliver noncontinuous DBS outside of the drug use environment with a resultant decrease in IV methamphetamine intake and seeking. The AcbSh is a neuroanatomical substrate for psychostimulant reinforcement and may be a target for intermittent neuromodulatory therapies that could be administered during brief periods of sobriety.
Collapse
Affiliation(s)
| | - Thanh Lam N Tran
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jessica Caputo
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Glenn F Guerin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | |
Collapse
|
112
|
Methylphenidate Causes Behavioral Impairments and Neuron and Astrocyte Loss in the Hippocampus of Juvenile Rats. Mol Neurobiol 2016; 54:4201-4216. [PMID: 27324900 DOI: 10.1007/s12035-016-9987-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022]
Abstract
Although the use, and misuse, of methylphenidate is increasing in childhood and adolescence, there is little information about the consequences of this psychostimulant chronic use on brain and behavior during development. The aim of the present study was to investigate hippocampus biochemical, histochemical, and behavioral effects of chronic methylphenidate treatment to juvenile rats. Wistar rats received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9 % saline solution (controls), once a day, from the 15th to the 45th day of age. Results showed that chronic methylphenidate administration caused loss of astrocytes and neurons in the hippocampus of juvenile rats. BDNF and pTrkB immunocontents and NGF levels were decreased, while TNF-α and IL-6 levels, Iba-1 and caspase 3 cleaved immunocontents (microglia marker and active apoptosis marker, respectively) were increased. ERK and PKCaMII signaling pathways, but not Akt and GSK-3β, were decreased. SNAP-25 was decreased after methylphenidate treatment, while GAP-43 and synaptophysin were not altered. Both exploratory activity and object recognition memory were impaired by methylphenidate. These findings provide additional evidence that early-life exposure to methylphenidate can have complex effects, as well as provide new basis for understanding of the biochemical and behavioral consequences associated with chronic use of methylphenidate during central nervous system development.
Collapse
|
113
|
Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration. Neurotox Res 2016; 30:101-9. [DOI: 10.1007/s12640-016-9633-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/31/2023]
|
114
|
Issa NT, Kruger J, Wathieu H, Raja R, Byers SW, Dakshanamurthy S. DrugGenEx-Net: a novel computational platform for systems pharmacology and gene expression-based drug repurposing. BMC Bioinformatics 2016; 17:202. [PMID: 27151405 PMCID: PMC4857427 DOI: 10.1186/s12859-016-1065-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background The targeting of disease-related proteins is important for drug discovery, and yet target-based discovery has not been fruitful. Contextualizing overall biological processes is critical to formulating successful drug-disease hypotheses. Network pharmacology helps to overcome target-based bottlenecks through systems biology analytics, such as protein-protein interaction (PPI) networks and pathway regulation. Results We present a systems polypharmacology platform entitled DrugGenEx-Net (DGE-NET). DGE-NET predicts empirical drug-target (DT) interactions, integrates interaction pairs into a multi-tiered network analysis, and ultimately predicts disease-specific drug polypharmacology through systems-based gene expression analysis. Incorporation of established biological network annotations for protein target-disease, −signaling pathway, −molecular function, and protein-protein interactions enhances predicted DT effects on disease pathophysiology. Over 50 drug-disease and 100 drug-pathway predictions are validated. For example, the predicted systems pharmacology of the cholesterol-lowering agent ezetimibe corroborates its potential carcinogenicity. When disease-specific gene expression analysis is integrated, DGE-NET prioritizes known therapeutics/experimental drugs as well as their contra-indications. Proof-of-concept is established for immune-related rheumatoid arthritis and inflammatory bowel disease, as well as neuro-degenerative Alzheimer’s and Parkinson’s diseases. Conclusions DGE-NET is a novel computational method that predicting drug therapeutic and counter-therapeutic indications by uniquely integrating systems pharmacology with gene expression analysis. DGE-NET correctly predicts various drug-disease indications by linking the biological activity of drugs and diseases at multiple tiers of biological action, and is therefore a useful approach to identifying drug candidates for re-purposing. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1065-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naiem T Issa
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Jordan Kruger
- Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC, 20057, USA
| | - Henri Wathieu
- Georgetown University Medical Center, Washington DC, 20057, USA
| | - Rajarajan Raja
- George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA
| | - Stephen W Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA.,Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC, 20057, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA. .,Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC, 20057, USA.
| |
Collapse
|
115
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
116
|
Krasnova IN, Justinova Z, Cadet JL. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl) 2016; 233:1945-62. [PMID: 26873080 PMCID: PMC5627363 DOI: 10.1007/s00213-016-4235-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcription and immune responses in the brain. METHODS We used the rat model of METH self-administration with extended access (15 h/day for eight consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 h-1 month after cessation of drug exposure. RESULTS Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and postmortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in cAMP response element binding protein (CREB) signaling pathway and in the activation of neuroinflammatory response in the brain. CONCLUSION These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients.
Collapse
Affiliation(s)
- Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA,Corresponding authors: Irina N. Krasnova, Ph.D., Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, Tel. 443-74-2658, Fax 443-740-2856, , Jean Lud Cadet, M.D., Molecular Neuropsychiatry Research Branch, NIDA/NIH/DHHS, 251 Bayview Blvd., Baltimore, MD 21224, Tel. 443-740-2656, Fax 443-740-2856,
| | - Zuzana Justinova
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS Baltimore, MD 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA, NIH, DHHS, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
117
|
Darke S, Farrell M. Which medications are suitable for agonist drug maintenance? Addiction 2016; 111:767-74. [PMID: 26503542 DOI: 10.1111/add.13158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS We examine the feasibility of agonist maintenance treatment for the major psychoactive drug classes: opioids, nicotine, benzodiazepines, cannabis, psychostimulants and alcohol. METHODS Eight clinical criteria for an agonist maintenance drug were assessed for each major drug class. These related to pharmacological aspects of the drug (agonist, pharmacological stability, dose-response, non-toxic) and neurocognitive sequelae (psychiatric, cognitive, craving, salience). RESULTS Opioids and nicotine met all eight criteria for a maintenance drug. While nicotine has not been promoted widely or used for maintenance, it has the potential to fulfil that role. Cannabis met five criteria and has potential, but long-term data on cognitive impairment are required. Benzodiazepine maintenance would appear an option for the high-dose chaotic abuser, also meeting five criteria, although clinic dosing appears the safest option. Psychostimulants (three of eight criteria) and alcohol (one of eight) appear poor propositions for maintenance, in terms of both their pharmacological and their neurocognitive characteristics. CONCLUSIONS Drug classes have properties that distinguish them in their suitability for maintenance treatment. Some classes not yet used for maintenance (notably nicotine and cannabis) have potential to fulfil such a role. Others, however, by their inherent nature, appear unsuitable for such a treatment regimen.
Collapse
Affiliation(s)
- Shane Darke
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Michael Farrell
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
118
|
Andres T, Ernst T, Oishi K, Greenstein D, Nakama H, Chang L. Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users. J Neuroimmune Pharmacol 2016; 11:531-41. [PMID: 27137938 DOI: 10.1007/s11481-016-9675-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022]
Abstract
Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.
Collapse
Affiliation(s)
- Tamara Andres
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Thomas Ernst
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Radiology and Radiological Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - David Greenstein
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Helenna Nakama
- VA Pacific Islands Health Care System, Honolulu, HI, USA
| | - Linda Chang
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
119
|
Persistent Microstructural Deficits of Internal Capsule in One-Year Abstinent Male Methamphetamine Users: a Longitudinal Diffusion Tensor Imaging Study. J Neuroimmune Pharmacol 2016; 11:523-30. [PMID: 27115910 DOI: 10.1007/s11481-016-9673-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
White matter (WM) alterations have been reported in methamphetamine (MA) users. However, knowledge about longitudinal changes in WM during abstinence from MA remains unknown. The present study aimed to examine how WM changes in long-term MA abstinent, in particular, whether the WM deficits would recover as the duration of abstinence extended. Twenty male MA dependent individuals and 19 healthy controls (HCs) were recruited and participated in both clinical assessments and diffusion tensor imaging (DTI) scans. The MA group underwent two DTI scans, a baseline scan with a duration of abstinence of 6.4 months and and a follow-up scan with a duration of abstinence of 13.0 months. Tract-Based Spatial Statistics was utilized to conduct baseline DTI analysis of MA group compared with HCs. The clusters with significant group differences of factional anisotropy (FA) were extracted as region of interests (ROIs). Mean values of DTI measurements (FA, mean diffusivity, axial diffusivity and radial diffusivity) were calculated within the ROIs in each subject's native space at baseline and follow-up. The MA group showed significant lower FA in the right internal capsule and superior corona radiate than HCs. The deficits did not recover when the duration of abstinence from MA reached 13 months. No significant correlations were found between FA and clinical measurements. Our results suggested persistent microstructure deficits of WM tracts surrounding the basal ganglia in MA dependent individuals.
Collapse
|
120
|
Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R. Fragment C Domain of Tetanus Toxin Mitigates Methamphetamine Neurotoxicity and Its Motor Consequences in Mice. Int J Neuropsychopharmacol 2016; 19:pyw021. [PMID: 26945022 PMCID: PMC5006194 DOI: 10.1093/ijnp/pyw021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a nontoxic peptide with demonstrated in vitro and in vivo neuroprotective effects against striatal dopaminergic damage induced by 1-methyl-4-phenylpyridinium and 6-hydoxydopamine, suggesting its possible therapeutic potential in Parkinson's disease. Methamphetamine, a widely abused psychostimulant, has selective dopaminergic neurotoxicity in rodents, monkeys, and humans. This study was undertaken to determine whether Hc-TeTx might also protect against methamphetamine-induced dopaminergic neurotoxicity and the consequent motor impairment. METHODS For this purpose, we treated mice with a toxic regimen of methamphetamine (4mg/kg, 3 consecutive i.p. injections, 3 hours apart) followed by 3 injections of 40 ug/kg of Hc-TeTx into grastrocnemius muscle at 1, 24, and 48 hours post methamphetamine treatment. RESULTS We found that Hc-TeTx significantly reduced the loss of dopaminergic markers tyrosine hydroxylase and dopamine transporter and the increases in silver staining (a well stablished degeneration marker) induced by methamphetamine in the striatum. Moreover, Hc-TeTx prevented the increase of neuronal nitric oxide synthase but did not affect microglia activation induced by methamphetamine. Stereological neuronal count in the substantia nigra indicated loss of tyrosine hydroxylase-positive neurons after methamphetamine that was partially prevented by Hc-TeTx. Importantly, impairment in motor behaviors post methamphetamine treatment were significantly reduced by Hc-TeTx. CONCLUSIONS Here we demonstrate that Hc-TeTx can provide significant protection against acute methamphetamine-induced neurotoxicity and motor impairment, suggesting its therapeutic potential in methamphetamine abusers.
Collapse
Affiliation(s)
| | | | | | | | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain (Drs Mendieta, Granado, and Moratalla); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain (Drs Mendieta, Granado, Aguilera, and Moratalla); Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain (Dr Aguilera); Departament of Pharmacology, Howard University College of Medicine, Washington, DC (Dr Tizabi).
| |
Collapse
|
121
|
Todd G, Pearson-Dennett V, Wilcox RA, Chau MT, Thoirs K, Thewlis D, Vogel AP, White JM. Adults with a history of illicit amphetamine use exhibit abnormal substantia nigra morphology and parkinsonism. Parkinsonism Relat Disord 2016; 25:27-32. [PMID: 26923520 DOI: 10.1016/j.parkreldis.2016.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The sonographic appearance of the substantia nigra is abnormally bright and enlarged (hyperechogenic) in young adults with a history of illicit stimulant use. The abnormality is a risk factor for Parkinson's disease. The aim of the current study was to identify the type of illicit stimulant drug associated with substantia nigra hyperechogenicity and to determine if individuals with a history of illicit stimulant use exhibit clinical signs of parkinsonism. We hypothesised that use of amphetamines (primarily methamphetamine) is associated with substantia nigra hyperechogenicity and clinical signs of parkinsonism. METHODS The area of echogenic signal in the substantia nigra was measured in abstinent human amphetamine users (n = 27; 33 ± 8 years) and in three control groups comprising a) 'ecstasy' users (n = 19; 23 ± 3 years), b) cannabis users (n = 30; 26 ± 8 years), and c) non-drug users (n = 37; 25 ± 7 years). A subset of subjects (n = 55) also underwent a neurological examination comprising the third and fifth part of the Unified Parkinson's Disease Rating Scale. RESULTS Area of substantia nigra echogenicity was significantly larger in the amphetamine group (0.276 ± 0.080 cm(2)) than in the control groups (0.200 ± 0.075, 0.190 ± 0.049, 0.191 ± 0.055 cm(2), respectively; P < 0.002). The score on the clinical rating scale was also significantly higher in the amphetamine group (8.4 ± 8.1) than in pooled controls (3.3 ± 2.8; P = 0.002). CONCLUSION Illicit use of amphetamines is associated with abnormal substantia nigra morphology and subtle clinical signs of parkinsonism. The results support epidemiological findings linking use of amphetamines, particularly methamphetamine, with increased risk of developing Parkinson's disease later in life.
Collapse
Affiliation(s)
- Gabrielle Todd
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Verity Pearson-Dennett
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Robert A Wilcox
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia; Department of Neurology, Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia; Human Physiology, Medical School, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Minh T Chau
- School of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Kerry Thoirs
- School of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Dominic Thewlis
- School of Health Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| | - Adam P Vogel
- Centre for Neuroscience of Speech, 550 Swanston Street, Parkville, The University of Melbourne, VIC 3010, Australia; Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Eberhard Karls Universidad Tübingen, Germany.
| | - Jason M White
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
122
|
Fricks-Gleason AN, German CL, Hoonakker AJ, Friend DM, Ganesh KK, Carver AS, Hanson GR, Fleckenstein AE, Keefe KA. An acute, epitope-specific modification in the dopamine transporter associated with methamphetamine-induced neurotoxicity. Synapse 2016; 70:139-46. [PMID: 26799527 DOI: 10.1002/syn.21891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 11/12/2022]
Abstract
Preclinical studies demonstrate that repeated, high-dose methamphetamine administrations rapidly decrease plasmalemmal dopamine uptake, which may contribute to aberrant dopamine accumulation, reactive species generation, and long-term dopaminergic deficits. The present study extends these findings by demonstrating a heretofore unreported, epitope-specific modification in the dopamine transporter caused by a methamphetamine regimen that induces these deficits. Specifically, repeated, high-dose methamphetamine injections (4 × 10 mg/kg/injection, 2-h intervals) rapidly decreased immunohistochemical detection of striatal dopamine transporter as assessed 1 h after the final methamphetamine exposure. In contrast, neither a single high dose (1 × 10 mg/kg) nor repeated injections of a lower dose (4 × 2 mg/kg/injection) induced this change. The high-dose regimen-induced alteration was only detected using antibodies directed against the N-terminus. Immunohistochemical staining using antibodies directed against the C-terminus did not reveal any changes. The high-dose regimen also did not alter dopamine transporter expression as assessed using [(125) I]RTI-55 autoradiography. These data suggest that the repeated, high-dose methamphetamine regimen alters the N-terminus of the dopamine transporter. Further, these data may be predictive of persistent dopamine deficits caused by the stimulant. Future studies of the signaling cascades involved should provide novel insight into potential mechanisms underlying the physiological and pathophysiological regulation of the dopamine transporter.
Collapse
Affiliation(s)
| | | | | | - Danielle M Friend
- Eating and Addiction Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, 20892.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kamala K Ganesh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Aaron S Carver
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Glen R Hanson
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kristen A Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
123
|
Ren W, Tao J, Wei Y, Su H, Zhang J, Xie Y, Guo J, Zhang X, Zhang H, He J. Time-Dependent Serum Brain-Derived Neurotrophic Factor Decline During Methamphetamine Withdrawal. Medicine (Baltimore) 2016; 95:e2604. [PMID: 26844469 PMCID: PMC4748886 DOI: 10.1097/md.0000000000002604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methamphetamine (METH) is a widely abused illegal psychostimulant, which is confirmed to be neurotoxic and of great damage to human. Studies on the role of brain-derived neurotrophic factor (BDNF) in human METH addicts are limited and inconsistent. The purposes of this study are to compare the serum BDNF levels between METH addicts and healthy controls during early withdrawal, and explore the changes of serum BDNF levels during the first month after METH withdrawal.179 METH addicts and 90 age- and gender-matched healthy controls were recruited in this study. We measured serum BDNF levels at baseline (both METH addicts and healthy controls) and at 1 month after abstinence of METH (METH addicts only).Serum BDNF levels of METH addicts at baseline were significantly higher than controls (1460.28 ± 490.69 vs 1241.27 ± 335.52 pg/mL; F = 14.51, P < 0.001). The serum BDNF levels of 40 METH addicts were re-examined after 1 month of METH abstinence, which were significantly lower than that at baseline (1363.70 ± 580.59 vs 1621.41 ± 591.07 pg/mL; t = 2.26, P = .03), but showed no differences to the controls (1363.70 ± 580.59 vs 1241.27 ± 335.52 pg/mL; F = 2.29, P = 0.13).Our study demonstrated that serum BDNF levels were higher in METH addicts than controls during early withdrawal, and were time dependent decreased during the first month of abstinence. These findings may provide further evidence that increased serum BDNF levels may be associated with the pathophysiology of METH addiction and withdrawal and may be a protective response against the subsequent METH-induced neurotoxicity. Besides, these findings may also promote the development of medicine in the treatment of METH addiction and withdrawal.
Collapse
Affiliation(s)
- Wenwei Ren
- From the Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou (WR, JT, HS, JZ, YX, JH); Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou (YW); Sanyang Detoxification Institute, Wenzhou (JG); Beijing HuiLongGuan Hospital, Peking University, Beijing, China (XZ); Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX (XZ); and Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (HZ)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res 2016; 1641:258-73. [PMID: 26820641 DOI: 10.1016/j.brainres.2016.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson's disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Carlos A Mejias-Aponte
- National Institute on Drug Abuse Histology Core, Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
125
|
Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC. Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 2016; 13:12. [PMID: 26780950 PMCID: PMC4717833 DOI: 10.1186/s12974-016-0478-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activation of NADPH oxidase (PHOX) plays a critical role in mediating dopaminergic neuroinflammation. In the present study, we investigated the role of PHOX in methamphetamine (MA)-induced neurotoxic and inflammatory changes in mice. METHODS We examined changes in mitogen-activated protein kinases (MAPKs), mitochondrial function [i.e., mitochondrial membrane potential, intramitochondrial Ca(2+) accumulation, mitochondrial oxidative burdens, mitochondrial superoxide dismutase expression, and mitochondrial translocation of the cleaved form of protein kinase C delta type (cleaved PKCδ)], microglial activity, and pro-apoptotic changes [i.e., cytosolic cytochrome c release, cleaved caspase 3, and terminal deoxynucleotidyl transferase dUDP nick-end labeling (TUNEL) positive populations] after a neurotoxic dose of MA in the striatum of mice to achieve a better understanding of the effects of apocynin, a non-specific PHOX inhibitor, or genetic inhibition of p47phox (by using p47phox knockout mice or p47phox antisense oligonucleotide) against MA-induced dopaminergic neurotoxicity. RESULTS Phosphorylation of extracellular signal-regulated kinases (ERK1/2) was most pronounced out of MAPKs after MA. We observed MA-induced phosphorylation and membrane translocation of p47phox in the striatum of mice. The activation of p47phox promoted mitochondrial stresses followed by microglial activation into the M1 phenotype, and pro-apoptotic changes, and led to dopaminergic impairments. ERK activated these signaling pathways. Apocynin or genetic inhibition of p47phox significantly protected these signaling processes induced by MA. ERK inhibitor U0126 did not exhibit any additional positive effects against protective activity mediated by apocynin or p47phox genetic inhibition, suggesting that ERK regulates p47phox activation, and ERK constitutes the crucial target for apocynin-mediated inhibition of PHOX activation. CONCLUSIONS Our results indicate that the neuroprotective mechanism of apocynin against MA insult is via preventing mitochondrial burdens, microglial activation, and pro-apoptotic signaling process by the ERK-dependent activation of p47phox.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, South Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, Japan. .,NPO, Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea.
| |
Collapse
|
126
|
The potential utility of some legal highs in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:267-74. [PMID: 26232510 DOI: 10.1016/j.pnpbp.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders.
Collapse
|
127
|
Mursaleen LR, Stamford JA. Drugs of abuse and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:209-17. [PMID: 25816790 DOI: 10.1016/j.pnpbp.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
Abstract
The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Leah R Mursaleen
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom; The University of Sussex, Life Sciences, Brighton BN1 9RH, United Kingdom
| | - Jonathan A Stamford
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom.
| |
Collapse
|
128
|
Kakish J, Lee D, Lee JS. Drugs That Bind to α-Synuclein: Neuroprotective or Neurotoxic? ACS Chem Neurosci 2015; 6:1930-40. [PMID: 26378986 DOI: 10.1021/acschemneuro.5b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Drugs that bind to α-synuclein and form a loop structure between the N- and C-terminus tend to be neuroprotective, whereas others that cause a more compact structure tend to be neurotoxic. The binding of several natural products and other drugs that are involved in dopamine metabolism were investigated by nanopore analysis and isothermal titration calorimetry. The antinausea drugs, cinnarizine and metoclopramide, do not bind to α-synuclein, whereas amphetamine and the herbicides, paraquat and rotenone, bind tightly and cause α-synuclein to adopt a more compact conformation. The recreational drug, cocaine, binds to α-synuclein, whereas heroin and methadone do not. Metformin, which is prescribed for diabetes and is neuroprotective, binds well without causing α-synuclein to adopt a more compact conformation. Methylphenidate (ritalin) binds to sites in both the N- and C-terminus and causes α-synuclein to adopt a loop conformation. In contrast, amphetamine only binds to the N-terminus. Except for cinnarizine and metoclopramide, there is a good correlation between the mode of binding to α-synuclein and whether a drug is neuroprotective or neurotoxic.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Dongsoo Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada, S7N 0W0
| |
Collapse
|
129
|
Killinger BA, Moszczynska A. Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers. J Neurochem 2015; 136:510-25. [PMID: 26465779 DOI: 10.1111/jnc.13391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include decreasing the levels of DAergic markers in the striatum. We have determined that high-dose METH destabilizes microtubules in this pathway, which is manifested by decreased levels of acetylated (Acetyl) and detyrosinated (Detyr) α-tubulin (I). A microtubule stabilizing agent epothilone D protects striatal microtubules form the METH-induced loss of DAergic markers (II). These findings provide a new strategy for protection form METH - restoration of proper axonal transport.
Collapse
Affiliation(s)
- Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
130
|
Frau L, Costa G, Porceddu PF, Khairnar A, Castelli MP, Ennas MG, Madeddu C, Wardas J, Morelli M. Influence of caffeine on 3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent. J Neurochem 2015; 136:148-62. [DOI: 10.1111/jnc.13377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Lucia Frau
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Giulia Costa
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
| | - Amit Khairnar
- Applied Neuroscience Research Group; CEITEC - Central European Institute of Technology; Masaryk University; Brno Czech Republic
| | - Maria Paola Castelli
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Maria Grazia Ennas
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Camilla Madeddu
- Department of Biomedical Sciences; Section of Neuroscience and Clinical Pharmacology; University of Cagliari; Monserrato (CA) Italy
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology; Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Micaela Morelli
- Department of Biomedical Sciences; Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- CNR; Institute of Neuroscience; Cagliari Italy
| |
Collapse
|
131
|
Volkow ND, Wang GJ, Smith L, Fowler JS, Telang F, Logan J, Tomasi D. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
132
|
|
133
|
Chen C, Qincao L, Xu J, Du S, Huang E, Liu C, Lin Z, Xie WB, Wang H. Role of PUMA in methamphetamine-induced neuronal apoptosis. Toxicol Lett 2015; 240:149-60. [PMID: 26524635 DOI: 10.1016/j.toxlet.2015.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/29/2015] [Accepted: 10/25/2015] [Indexed: 01/26/2023]
Abstract
Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.
Collapse
Affiliation(s)
- Chuanxiang Chen
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Litao Qincao
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jingtao Xu
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Sihao Du
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Enping Huang
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, People's Republic of China
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Wei-Bing Xie
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Huijun Wang
- Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
134
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
135
|
Vieira-Brock PL, McFadden LM, Nielsen SM, Ellis JD, Walters ET, Stout KA, McIntosh JM, Wilkins DG, Hanson GR, Fleckenstein AE. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits. J Pharmacol Exp Ther 2015; 355:463-72. [PMID: 26391161 DOI: 10.1124/jpet.114.221945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/18/2015] [Indexed: 01/14/2023] Open
Abstract
Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection.
Collapse
Affiliation(s)
- Paula L Vieira-Brock
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Lisa M McFadden
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Shannon M Nielsen
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Jonathan D Ellis
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Elliot T Walters
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Kristen A Stout
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Diana G Wilkins
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Glen R Hanson
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Annette E Fleckenstein
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
136
|
Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochem Biophys Res Commun 2015; 465:368-73. [PMID: 26271595 DOI: 10.1016/j.bbrc.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 01/10/2023]
Abstract
Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathway in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway.
Collapse
|
137
|
Gupta R, Kim C, Agarwal N, Lieber B, Monaco EA. Understanding the Influence of Parkinson Disease on Adolf Hitler's Decision-Making during World War II. World Neurosurg 2015; 84:1447-52. [PMID: 26093359 DOI: 10.1016/j.wneu.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 01/29/2023]
Abstract
Parkinson disease (PD) is a common neurodegenerative disorder characterized by the presence of Lewy bodies and a reduction in the number of dopaminergic neurons in the substantia nigra of the basal ganglia. Common symptoms of PD include a reduction in control of voluntary movements, rigidity, and tremors. Such symptoms are marked by a severe deterioration in motor function. The causes of PD in many cases are unknown. PD has been found to be prominent in several notable people, including Adolf Hitler, the Chancellor of Germany and Führer of Nazi Germany during World War II. It is believed that Adolf Hitler suffered from idiopathic PD throughout his life. However, the effect of PD on Adolf Hitler's decision making during World War II is largely unknown. Here we examine the potential role of PD in shaping Hitler's personality and influencing his decision-making. We purport that Germany's defeat in World War II was influenced by Hitler's questionable and risky decision-making and his inhumane and callous personality, both of which were likely affected by his condition. Likewise his paranoid disorder marked by intense anti-Semitic beliefs influenced his treatment of Jews and other non-Germanic peoples. We also suggest that the condition played an important role in his eventual political decline.
Collapse
Affiliation(s)
- Raghav Gupta
- Department of Biology, College of New Jersey, Ewing, New Jersey, USA
| | - Christopher Kim
- Department of Biology, College of New Jersey, Ewing, New Jersey, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Bryan Lieber
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Edward A Monaco
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
138
|
Lohr KM, Stout KA, Dunn AR, Wang M, Salahpour A, Guillot TS, Miller GW. Increased Vesicular Monoamine Transporter 2 (VMAT2; Slc18a2) Protects against Methamphetamine Toxicity. ACS Chem Neurosci 2015; 6:790-9. [PMID: 25746685 DOI: 10.1021/acschemneuro.5b00010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The psychostimulant methamphetamine (METH) is highly addictive and neurotoxic to dopamine terminals. METH toxicity has been suggested to be due to the release and accumulation of dopamine in the cytosol of these terminals. The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is a critical mediator of dopamine handling. Mice overexpressing VMAT2 (VMAT2-HI) have an increased vesicular capacity to store dopamine, thus augmenting striatal dopamine levels and dopamine release in the striatum. Based on the altered compartmentalization of intracellular dopamine in the VMAT2-HI mice, we assessed whether enhanced vesicular function was capable of reducing METH-induced damage to the striatal dopamine system. While wildtype mice show significant losses in striatal levels of the dopamine transporter (65% loss) and tyrosine hydroxylase (46% loss) following a 4 × 10 mg/kg METH dosing regimen, VMAT2-HI mice were protected from this damage. VMAT2-HI mice were also spared from the inflammatory response that follows METH treatment, showing an increase in astroglial markers that was approximately one-third of that of wildtype animals (117% vs 36% increase in GFAP, wildtype vs VMAT2-HI). Further analysis also showed that elevated VMAT2 level does not alter the ability of METH to increase core body temperature, a mechanism integral to the toxicity of the drug. Finally, the VMAT2-HI mice showed no difference from wildtype littermates on both METH-induced conditioned place preference and in METH-induced locomotor activity (1 mg/kg METH). These results demonstrate that elevated VMAT2 protects against METH toxicity without enhancing the rewarding effects of the drug. Since the VMAT2-HI mice are protected from METH despite higher basal dopamine levels, this study suggests that METH toxicity depends more on the proper compartmentalization of synaptic dopamine than on the absolute amount of dopamine in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Ali Salahpour
- Department
of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
139
|
Abstract
Psychostimulants are a diverse group of substances with their main psychomotor effects resembling those of amphetamine, methamphetamine, cocaine, or cathinone. Due to their potential as drugs of abuse, recreational use of most of these substances is illegal since 1971 Convention on Psychotropic Substances. In recent years, new psychoactive substances have emerged mainly as synthetic cathinones with new molecules frequently complementing the list. Psychostimulant related movement disorders are a known entity often seen in emergency rooms around the world. These admissions are becoming more frequent as are fatalities associated with drug abuse. Still the legal constraints of the novel synthetic molecules are bypassed. At the same time, chronic and permanent movement disorders are much less frequently encountered. These disorders frequently manifest as a combination of movement disorders. The more common symptoms include agitation, tremor, hyperkinetic and stereotypical movements, cognitive impairment, and also hyperthermia and cardiovascular dysfunction. The pathophysiological mechanisms behind the clinical manifestations have been researched for decades. The common denominator is the monoaminergic signaling. Dopamine has received the most attention but further research has demonstrated involvement of other pathways. Common mechanisms linking psychostimulant use and several movement disorders exist.
Collapse
Affiliation(s)
- Andres Asser
- Department of Neurology and Neurosurgery, University of Tartu , Tartu , Estonia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu , Tartu , Estonia
| |
Collapse
|
140
|
Sung YH, Yurgelun-Todd DA, Kondo DG, Shi XF, Lundberg KJ, Hellem TL, Huber RS, McGlade EC, Jeong EK, Renshaw PF. Gender differences in the effect of tobacco use on brain phosphocreatine levels in methamphetamine-dependent subjects. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:281-9. [PMID: 25871447 DOI: 10.3109/00952990.2015.1019673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A high prevalence of tobacco smoking has been observed in methamphetamine users, but there have been no in vivo brain neurochemistry studies addressing gender effects of tobacco smoking in methamphetamine users. Methamphetamine addiction is associated with increased risk of depression and anxiety in females. There is increasing evidence that selective analogues of nicotine, a principal active component of tobacco smoking, may ease depression and improve cognitive performance in animals and humans. OBJECTIVES To investigate the effects of tobacco smoking and gender on brain phosphocreatine (PCr) levels, a marker of brain energy metabolism reported to be reduced in methamphetamine-dependent subjects. METHODS Thirty female and 27 male methamphetamine-dependent subjects were evaluated with phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) to measure PCr levels within the pregenual anterior cingulate, which has been implicated in methamphetamine neurotoxicity. RESULTS Analysis of covariance revealed that there were statistically significant slope (PCr versus lifetime amount of tobacco smoking) differences between female and male methamphetamine-dependent subjects (p = 0.03). In females, there was also a statistically significant interaction between lifetime amounts of tobacco smoking and methamphetamine in regard to PCr levels (p = 0.01), which suggests that tobacco smoking may have a more significant positive impact on brain PCr levels in heavy, as opposed to light to moderate, methamphetamine-dependent females. CONCLUSION These results indicate that tobacco smoking has gender-specific effects in terms of increased anterior cingulate high energy PCr levels in methamphetamine-dependent subjects. Cigarette smoking in methamphetamine-dependent women, particularly those with heavy methamphetamine use, may have a potentially protective effect upon neuronal metabolism.
Collapse
|
141
|
Lees A, Sikk K, Taba P. The Story of "Speed" from "Cloud Nine" to Brain Gain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:1-7. [PMID: 26070750 DOI: 10.1016/bs.irn.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substituted amphetamines have had a checkered medical history intertwined with a sensational cultural history. Mankind's insatiable fascination with speed has led to widespread misuse sometimes with disastrous neurological and psychiatric consequences that may cause a permanent harm but their potential to enhance cognition should not be dismissed or forgotten. Further, smarter research could perhaps still lead to an expanded beneficial role for stimulant use in modern society.
Collapse
Affiliation(s)
- Andrew Lees
- The National Hospital, Queen Square, London, United Kingdom.
| | - Katrin Sikk
- Department of Neurology, North Estonian Regional Hospital, Tallinn, Estonia
| | - Pille Taba
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia
| |
Collapse
|
142
|
Harro J. Neuropsychiatric Adverse Effects of Amphetamine and Methamphetamine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 120:179-204. [PMID: 26070758 DOI: 10.1016/bs.irn.2015.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Administration of amphetamine and methamphetamine can elicit psychiatric adverse effects at acute administration, binge use, withdrawal, and chronic use. Most troublesome of these are psychotic states and aggressive behavior, but a large variety of undesirable changes in cognition and affect can be induced. Adverse effects occur more frequently with higher dosages and long-term use. They can subside over time but some persist long-term. Multiple alterations in the gray and white matter of the brain assessed as changes in tissue volume or metabolism, or at molecular level, have been associated with amphetamine and methamphetamine use and the psychiatric adverse effects, but further studies are required to clarify their causal role, specificity, and relationship with preceding states and traits and comorbidities. The latter include other substance use disorders, mood and anxiety disorders, attention deficit hyperactivity disorder, and antisocial personality disorder. Amphetamine- and methamphetamine-related psychosis is similar to schizophrenia in terms of symptomatology and pathogenesis, and these two disorders share predisposing genetic factors.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
143
|
Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015; 2015:103969. [PMID: 25861156 PMCID: PMC4377385 DOI: 10.1155/2015/103969] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
Collapse
|
144
|
Pifl C, Reither H, Hornykiewicz O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol 2015; 755:119-26. [PMID: 25771452 DOI: 10.1016/j.ejphar.2015.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
Abstract
Mephedrone (4-methylmethcathinone, MMC) and 3,4-methylenedioxymethamphetamine (MDMA) are constituents of popular party drugs with psychoactive effects. Structurally they are amphetamine-like substances with monoamine neurotransmitter enhancing actions. We therefore compared their effects on the human monoamine transporters using human cell lines stably expressing the human noradrenaline, dopamine and serotonin transporter (NET, DAT and SERT); preparations of synaptic vesicles from human striatum in uptake experiments; and a superfusion system where releasing effects can be reliably measured. MMC and MDMA were equally potent in inhibiting noradrenaline uptake at NET, with IC50 values of 1.9 and 2.1 µM, respectively. Compared to their NET inhibition potency, both drugs were weaker uptake inhibitors at DAT and SERT, with MMC being more potent than MDMA at DAT (IC50: 5.9 vs 12.6 µM) and less potent than MDMA at SERT (IC50: 19.3 vs 7.6 µM). MMC and MDMA both induced concentration-dependently [(3)H]1-methyl-4-phenylpyridinium-release from NET-, DAT or SERT-expressing cells which was clearly transporter-mediated release as demonstrated by the selective inhibitory effects of nmolar to low µmolar concentrations of desipramine, GBR 12909 and fluoxetine, respectively. MMC and MDMA differed most in their inhibition of [(3)H]dopamine uptake by synaptic vesicles from human striatum with MDMA being 10-fold more potent than MMC (IC50: 20 vs 223 µM) and their ability to release [(3)H]dopamine from human vesicular monoamine transporter expressing SH-SY5Y neuroblastoma cells in which MDMA seems to have a stronger effect. Our findings give a molecular explanation to the lower long-term neurotoxicity of MMC compared to MDMA.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Oleh Hornykiewicz
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
145
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
146
|
Functional neuroimaging of amphetamine-induced striatal neurotoxicity in the pleiotrophin knockout mouse model. Neurosci Lett 2015; 591:132-137. [PMID: 25703219 DOI: 10.1016/j.neulet.2015.02.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 11/20/2022]
Abstract
Amphetamine-induced neurotoxic effects have traditionally been studied using immunohistochemistry and other post-mortem techniques, which have proven invaluable for the definition of amphetamine-induced dopaminergic damage in the nigrostriatal pathway. However, these approaches are limited in that they require large numbers of animals and do not provide the temporal data that can be collected in longitudinal studies using functional neuroimaging techniques. Unfortunately, functional imaging studies in rodent models of drug-induced neurotoxicity are lacking. The aim of this study was to evaluate in vivo the changes in brain glucose metabolism caused by amphetamine in the pleiotrophin knockout mouse (PTN-/-), a genetic model with increased vulnerability to amphetamine-induced neurotoxic effects. We showed that administration of amphetamine causes a significantly greater loss of striatal tyrosine hydroxylase content in PTN-/- mice than in wild-type (WT) mice. In addition, [(18)F]-FDG-PET shows that amphetamine produces a significant decrease in glucose metabolism in the striatum and prefrontal cortex in the PTN-/- mice, compared to WT mice. These findings suggest that [(18)F]-FDG uptake measured by PET is useful for detecting amphetamine-induced changes in glucose metabolism in vivo in specific brain areas, including the striatum, a key feature of amphetamine-induced neurotoxicity.
Collapse
|
147
|
Kakish J, Tavassoly O, Lee JS. Rasagiline, a suicide inhibitor of monoamine oxidases, binds reversibly to α-synuclein. ACS Chem Neurosci 2015; 6:347-55. [PMID: 25514361 DOI: 10.1021/cn5002914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rasagiline (N-propargyl-1-R-aminoindan) and selegiline (1-deprenyl) are MAO-B inhibitors which are used in the treatment of Parkinson's disease. The binding of rasagiline, selegiline, and their metabolites including 1-aminoindan, 2-aminoindan, and methamphetamine to α-synuclein was investigated by nanopore analysis and isothermal titration calorimetry. Blockade current histograms of α-synuclein alone give a peak at -86 pA which is due to translocation of the protein through the pore. In the presence of rasagiline and R-1-aminoindan, this peak shifts to about -80 pA. In the presence of selegiline and R-methamphetamine, the number of events at -86 pA is reduced and there is a higher proportion of bumping events at about -25 pA which are due to a more compact conformation. Rasagiline can also bind to sites in both the N- and C-terminal regions of α-synuclein. The binding constants of rasagiline and selegiline were estimated by isothermal titration calorimetry to be about 5 × 10(5) and <10(4) M(-1), respectively. A model is presented in which both rasagiline and R-1-aminoindan bind to α-synuclein, forming a loop structure which is less likely to aggregate or form fibrils. In contrast, selegiline binds and forms a more compact structure similar to that formed by methamphetamine.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, University of Saskatchewan, 107
Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Omid Tavassoly
- Department of Biochemistry, University of Saskatchewan, 107
Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, University of Saskatchewan, 107
Wiggins Road, Saskatoon, Canada S7N 0W0
| |
Collapse
|
148
|
Pitaksalee R, Sanvarinda Y, Sinchai T, Sanvarinda P, Thampithak A, Jantaratnotai N, Jariyawat S, Tuchinda P, Govitrapong P, Sanvarinda P. Autophagy Inhibition by Caffeine Increases Toxicity of Methamphetamine in SH-SY5Y Neuroblastoma Cell Line. Neurotox Res 2015; 27:421-9. [DOI: 10.1007/s12640-014-9513-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/29/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
|
149
|
Definition and Demographics of Addiction. Subst Abus 2015. [DOI: 10.1007/978-1-4939-1951-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
150
|
Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug Alcohol Depend 2015; 146:30-8. [PMID: 25479916 PMCID: PMC4295903 DOI: 10.1016/j.drugalcdep.2014.10.027] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite widespread use of methamphetamine and other amphetamine-type stimulants (METH/AMPH), little is known about the long-term medical consequences of METH/AMPH abuse and dependence. Preclinical neurotoxicity findings raise public health concerns that these stimulants may damage dopamine neurons, resulting in dopamine-related disorders such as Parkinson's disease (PD). METHODS A retrospective design was used to examine statewide medical records (1996 through 2011) linked to the Utah Population Database. Individuals 30 years or older on December 31, 2011 were assigned to a METH/AMPH cohort (ICD-9-CM 304.4, 305.7, 969.7, E854.2; N=4935), a cocaine cohort (ICD-9-CM 304.2, 305.6, 968.5, E855.2; N=1867) or a population cohort unexposed to drugs or alcohol for control selection. A competing-risks, proportional hazards model was used to determine whether the METH/AMPH or cocaine cohorts were at increased risk of developing PD (ICD-9-CM 332.0) or PD/parkinsonism/essential tremor (PD/PT; ICD-9-CM 332.0, 332.1, 333.0, 333.1) compared to individually sex- and age-matched controls (5:1 control to case ratio; N=34,010). RESULTS In METH/AMPH users, we observed an increased risk of PD and PD/PT (HRPD=2.8, 95%CI 1.6-4.8, P<10(-3); HRPD/PT=3.1, 95%CI 1.9-4.9, P<10(-4)) compared to population-based controls. Conversely, cocaine users exhibited no elevated risk of PD compared to controls. CONCLUSIONS We observed a near three-fold increased risk of PD in METH/AMPH users vs. controls which confirms prior observations and supports that PD risk in users may be higher than previous estimates. A suggestion that female and male users may differ in PD susceptibility warrants further study.
Collapse
Affiliation(s)
- Karen Curtin
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, United States; Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States.
| | - Annette E. Fleckenstein
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, United States
| | - Reid J. Robison
- Intermountain Healthcare, Salt Lake City, UT 84111, United States,Utah Foundation for Biomedical Research, Provo, UT 84601, United States
| | | | - Ken R. Smith
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States,Department of Family and Consumer Studies, University of Utah, Salt Lake City, UT 84112, United States
| | - Glen R. Hanson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, United States,School of Dentistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|