101
|
Ramírez-Lamelas DT, Benlloch-Navarro S, López-Pedrajas R, Gimeno-Hernández R, Olivar T, Silvestre D, Miranda M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front Pharmacol 2018; 9:469. [PMID: 29867476 PMCID: PMC5954235 DOI: 10.3389/fphar.2018.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.
Collapse
Affiliation(s)
- Dolores T Ramírez-Lamelas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Rosa López-Pedrajas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Dolores Silvestre
- Departamento Farmacia, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
102
|
Bojinova RI, Schorderet DF, Valmaggia C, Türksever C, Schoetzau A, Todorova MG. Higher retinal vessel oxygen saturation: investigating its relationship with macular oedema in retinitis pigmentosa patients. Eye (Lond) 2018; 32:1209-1219. [PMID: 29507331 DOI: 10.1038/s41433-018-0043-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Primary objective-to investigate the effect of retinal vessel oxygen saturation (SO2) on macular oedema (ME) in retinitis pigmentosa (RP) patients. Secondary objective-to link the presence of ME to metabolic (oxygen saturation of retinal vessels, SO2), functional (multifocal electroretinography, mfERG) and structural (Spectral Domain Optical Coherent Tomography, SD-OCT) alterations in RP. DESIGN Prospective, cross-sectional, non-interventional study. SUBJECTS Patients with typical RP (N = 37) and controls (N = 19), who underwent retinal vessel Oximetry (RO), SD-OCT and mfERG, were included. METHODS A computer-based program of the retinal vessel analyser unit (IMEDOS Systems UG, Jena, Germany) was used to measure SO2. We evaluated the mean SO2, in all major retinal arterioles (oxygen saturation in retinal arterioles, A-SO2, %) and venules (oxygen saturation in retinal venules, V-SO2, %). MfERG responses were averaged in zones (zone 1 (0-3°), zone 2 (3-8°) and zone 3 (8-15°)) and compared to corresponding areas of the OCT. The effect of ME on SO2 was evaluated dividing the RP in two subgroups: with clinical appearance of ME (ME-RP) and without it (no-ME-RP). MAIN OUTCOME MEASURES Parallel recording and juxtaposition of metabolic (SO2) to structural (OCT) and functional-(mfERG) measures. Mean ( ± SD) A-SO2 and V-SO2 were higher in no-ME-RP (96.77% (±6.31) and 59.93% (±7.76)) and even higher in the ME-RP (99.82% (±6.21) and 65.63% (±7.63)), compared to controls (93.15% (±3.76) and 53.77% (±3.70), p ≤ 0.006). RESULTS The subgroup ME-RP differed significantly from the subgroup no-ME-RP by increased A-SO2 and V-SO2, p ≤ 0.026. The presence of ME confirmed a different relationship between the altered SO2 and the vessel diameters, against the functional and structural parameters. CONCLUSION Based on our results, the presence of macular oedema indicates a tendency toward greater alteration of the metabolic function in RP patients.
Collapse
Affiliation(s)
- Rossiana I Bojinova
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.,University of Montreal, 495 Prince Arthur West, Montreal, H2X1T4, Canada
| | - Daniel F Schorderet
- IRO-Institute for Research in Ophthalmology, Sion, Switzerland.,Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland.,School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| | | | - Cengiz Türksever
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.,VISTA Klinik, Binningen, Baselland, Switzerland
| | - Andreas Schoetzau
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland
| | - Margarita G Todorova
- Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| |
Collapse
|
103
|
Im M, Werginz P, Fried SI. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type. J Neural Eng 2018; 15:036010. [PMID: 29415876 DOI: 10.1088/1741-2552/aaadc1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. APPROACH We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. MAIN RESULTS We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. SIGNIFICANCE The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.
Collapse
Affiliation(s)
- Maesoon Im
- Department of Ophthalmology, Henry Ford Health System, 1 Ford Place, Detroit, MI 48202, United States of America. Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, United States of America. Department of Electrical and Computer Engineering, Wayne State University College of Engineering, 5050 Anthony Wayne Drive, Detroit, MI 48202, United States of America. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, United States of America
| | | | | |
Collapse
|
104
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
105
|
Wohl SG, Jorstad NL, Levine EM, Reh TA. Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture. Nat Commun 2017; 8:1603. [PMID: 29150673 PMCID: PMC5693933 DOI: 10.1038/s41467-017-01624-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023] Open
Abstract
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKOMG) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKOMG MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Nikolas L Jorstad
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Health Sciences Center, Box 357420, 1959 Pacific Street NE, Seattle, WA, 98195, USA.
| |
Collapse
|
106
|
Ho E, Smith R, Goetz G, Lei X, Galambos L, Kamins TI, Harris J, Mathieson K, Palanker D, Sher A. Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation. J Neurophysiol 2017; 119:389-400. [PMID: 29046428 DOI: 10.1152/jn.00872.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.
Collapse
Affiliation(s)
- Elton Ho
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Richard Smith
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| | - Georges Goetz
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California
| | - Xin Lei
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Theodore I Kamins
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - James Harris
- Department of Electrical Engineering, Stanford University , Stanford, California
| | - Keith Mathieson
- Institute of Photonics, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University , Stanford, California.,Department of Ophthalmology, Stanford University , Stanford, California
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, California
| |
Collapse
|
107
|
Kung F, Wang W, Tran TS, Townes-Anderson E. Sema3A Reduces Sprouting of Adult Rod Photoreceptors In Vitro. Invest Ophthalmol Vis Sci 2017; 58:4318–4331. [PMID: 28806446 PMCID: PMC5555408 DOI: 10.1167/iovs.16-21075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose Rod photoreceptor terminals respond to retinal injury with retraction and sprouting. Since the guidance cue Semaphorin3A (Sema3A) is observed in the retina after injury, we asked whether Sema3A contributes to structural plasticity in rod photoreceptors. Methods We used Western blots and alkaline phosphatase (AP)-tagged neuropilin-1 (NPN-1) to detect the expression of Sema3A in an organotypic model of porcine retinal detachment. We then examined Sema3A binding to cultured salamander rod photoreceptors using AP-tagged Sema3A. For functional analysis, we used a microspritzer to apply a gradient of Sema3A-Fc to isolated salamander rod photoreceptors over 24 hours. Results Sema3A protein was biochemically detected in porcine retinal explants in the retina 7, 24, and 72 hours after detachment. In sections, NPN-1 receptor was bound to the inner and outer retina. For isolated rod photoreceptors, Sema3A localized to synaptic terminals and to neuritic processes after 1 week in vitro. In microspritzed rod photoreceptors, process initiation occurred away from high concentrations of Sema3A. Sema3A significantly decreased the number of processes formed by rod photoreceptors although the average length of processes was not affected. The cellular orientation of rod photoreceptors relative to the microspritzer also significantly changed over time; this effect was reduced with the Sema3A inhibitor, xanthofulvin. Conclusion Sema3A is expressed in the retina after detachment, binds to rod photoreceptors, affects cell orientation, and reduces photoreceptor process initiation in vitro. Our results suggest that Sema3A contributes to axonal retraction in retinal injury, whereas rod neuritic sprouting and regenerative synaptogenesis may require a reduction in semaphorin signaling.
Collapse
Affiliation(s)
- Frank Kung
- Joint Program in Biomedical Engineering, Rutgers University, Graduate School of Biomedical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Weiwei Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark College of Arts and Sciences, Newark, New Jersey, United States
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
108
|
Todorova MG. Metabolic, structural and functional alterations in patients with inherited diseases of the retina. Acta Ophthalmol 2017. [DOI: 10.1111/aos.13524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
109
|
Protective effect of clusterin on rod photoreceptor in rat model of retinitis pigmentosa. PLoS One 2017; 12:e0182389. [PMID: 28767729 PMCID: PMC5540409 DOI: 10.1371/journal.pone.0182389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis Pigmentosa (RP) begins with the death of rod photoreceptors and is slowly followed by a gradual loss of cones and a rearrangement of the remaining retinal neurons. Clusterin is a chaperone protein that protects cells and is involved in various pathophysiological stresses, including retinal degeneration. Using a well-established transgenic rat model of RP (rhodopsin S334ter), we investigated the effects of clusterin on rod photoreceptor survival. To investigate the role of clusterin in S334ter-line3 retinas, Voronoi analysis and immunohistochemistry were used to evaluate the geometry of rod distribution. Additionally, immunoblot analysis, Bax activation, STAT3 and Akt phosphorylation were used to evaluate the pathway involved in rod cell protection. In this study, clusterin (10μg/ml) intravitreal treatment produced robust preservation of rod photoreceptors in S334ter-line3 retina. The mean number of rods in 1mm2 was significantly greater in clusterin injected RP retinas (postnatal (P) 30, P45, P60, & P75) than in age-matched saline injected RP retinas (P<0.01). Clusterin activated Akt, STAT3 and significantly reduced Bax activity; in addition to inducing phosphorylated STAT3 in Müller cells, which suggests it may indirectly acts on photoreceptors. Thus, clusterin treatment may interferes with mechanisms leading to rod death by suppressing cell death through activation of Akt and STAT3, followed by Bax suppression. Novel insights into the pathway of how clusterin promotes the rod cell survival suggest this treatment may be a potential therapeutic strategy to slow progression of vision loss in human RP.
Collapse
|
110
|
Davuluri NS, Nimmagadda K, Petrossians A, Humayun MS, Weiland JD. Strategies to improve stimulation efficiency for retinal prostheses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3133-3138. [PMID: 28324979 DOI: 10.1109/embc.2016.7591393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinitis Pigmentosa (RP) is a degenerative disease of the retina that leads to vision loss. Retinal prostheses are being developed in order to restore functional vision in patients suffering from RP. We conducted in-vivo experiments in order to identify strategies to efficiently stimulate the retina. We electrically stimulated the retina and measured electrically evoked potentials (EERs) from the superior colliculus of rats. We compared the strength of EERs when voltage-controlled and current-controlled pulses of varying pulse width and charge levels were applied to the retina. In addition to comparing EER strength, we evaluated improvement in power efficiency afforded by a high surface area platinum-iridium material. Voltage-controlled pulses were more efficient than current-controlled pulses when the pulses have a short duration (<; 1 ms) and current-controlled pulses were more efficient than voltage-controlled pulses when the pulse width was greater than 1 ms. The high surface area platinum-iridium stimulation electrode consumed power significantly lower than a standard platinum-iridium electrode.
Collapse
|
111
|
Edwards MM, McLeod DS, Bhutto IA, Grebe R, Duffy M, Lutty GA. Subretinal Glial Membranes in Eyes With Geographic Atrophy. Invest Ophthalmol Vis Sci 2017; 58:1352-1367. [PMID: 28249091 PMCID: PMC5358932 DOI: 10.1167/iovs.16-21229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Müller cells create the external limiting membrane (ELM) by forming junctions with photoreceptor cells. This study evaluated the relationship between focal photoreceptors and RPE loss in geographic atrophy (GA) and Müller cell extension into the subretinal space. Methods Human donor eyes with no retinal disease or geographic atrophy (GA) were fixed and the eye cups imaged. The retinal posterior pole was stained for glial fibrillary acidic protein (GFAP; astrocytes and activated Müller cells) and vimentin (Müller cells) while the submacular choroids were labeled with Ulex Europaeus Agglutinin lectin (blood vessels). Choroids and retinas were imaged using a Zeiss 710 confocal microscope. Additional eyes were cryopreserved or processed for transmission electron microscopy (TEM) to better visualize the Müller cells. Results Vimentin staining of aged control retinas (n = 4) revealed a panretinal cobblestone-like ELM. While this pattern was also observed in the GA retinas (n = 7), each also had a distinct area in which vimentin+ and vimentin+/GFAP+ processes created a subretinal membrane. Subretinal glial membranes closely matched areas of RPE atrophy in the gross photos. Choroidal vascular loss was also evident in these atrophic areas. Smaller glial projections were noted, which correlated with drusen in gross photos. The presence of glia in the subretinal space was confirmed by TEM and cross cross-section immunohistochemistry. Conclusions In eyes with GA, subretinal Müller cell membranes present in areas of RPE atrophy may be a Müller cell attempt to replace the ELM. These membranes could interfere with treatments such as stem cell therapy.
Collapse
Affiliation(s)
- Malia M Edwards
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - D Scott McLeod
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Imran A Bhutto
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rhonda Grebe
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Maeve Duffy
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gerard A Lutty
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
112
|
Suzuki T, Akimoto M, Imai H, Ueda Y, Mandai M, Yoshimura N, Swaroop A, Takahashi M. Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration. Cell Transplant 2017; 16:493-503. [PMID: 17708339 DOI: 10.3727/000000007783464966] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although recent studies revealed chondroitinase ABC (ChABC), an enzyme that degrades chondroitin sulfate proteoglycans, promotes CNS regeneration in vivo, the usefulness of its application for transplantation is not clear. We investigated if treatment with ChABC can promote synapse formation between graft and host neurons following retinal transplantation. Dissociated retinal cells were prepared from neonatal Nrl-GFP transgenic mice in which rod photoreceptors and their progenitor cells are labeled with GFP. Each cell suspension with or without ChABC (Nrl/ChABC group and Nrl group, respectively) was injected subretinally into the eyes of mice following chemically induced photoreceptor degeneration. The survival and functional integration of the transplanted photoreceptors were examined by histologically and electrophysio-logically. Up to 4 weeks after transplantation, almost all the grafted GFP+ photoreceptor cells were widely distributed at the outer margin of the host retina where the photoreceptor layer was located originally. In the Nrl/ChABC group, 33.6% of the GFP+ photoreceptors elaborated neurites horizontally or vertically, and 4.6% elaborated neurites toward the retina. These neurites extended over the glial seal at the graft–host interface, and established synaptic contacts with neurons in the host retina as determined by confocal microscopy and three-dimensional analysis. Although 30.7% cells (p = 0.68) elaborated neurites in the Nrl group, only 1.2% cells (p < 0.05) projected neurites towards the host tissue and synaptic contacts were rare. Our results illustrate the potential utility of ChABC for enhancing synaptogenesis between transplanted neurons and host retina.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Opthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Fernández-Sánchez L, Bravo-Osuna I, Lax P, Arranz-Romera A, Maneu V, Esteban-Pérez S, Pinilla I, Puebla-González MDM, Herrero-Vanrell R, Cuenca N. Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats. PLoS One 2017; 12:e0177998. [PMID: 28542454 PMCID: PMC5444790 DOI: 10.1371/journal.pone.0177998] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Successful drug therapies for treating ocular diseases require effective concentrations of neuroprotective compounds maintained over time at the site of action. The purpose of this work was to assess the efficacy of intravitreal controlled delivery of tauroursodeoxycholic acid (TUDCA) encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres for the treatment of the retina in a rat model of retinitis pigmentosa. PLGA microspheres (MSs) containing TUDCA were produced by the O/W emulsion-solvent evaporation technique. Particle size and morphology were assessed by light scattering and scanning electronic microscopy, respectively. Homozygous P23H line 3 rats received a treatment of intravitreal injections of TUDCA-PLGA MSs. Retinal function was assessed by electroretinography at P30, P60, P90 and P120. The density, structure and synaptic contacts of retinal neurons were analyzed using immunofluorescence and confocal microscopy at P90 and P120. TUDCA-loaded PLGA MSs were spherical, with a smooth surface. The production yield was 78%, the MSs mean particle size was 23 μm and the drug loading resulted 12.5 ± 0.8 μg TUDCA/mg MSs. MSs were able to deliver the loaded active compound in a gradual and progressive manner over the 28-day in vitro release study. Scotopic electroretinografic responses showed increased ERG a- and b-wave amplitudes in TUDCA-PLGA-MSs-treated eyes as compared to those injected with unloaded PLGA particles. TUDCA-PLGA-MSs-treated eyes showed more photoreceptor rows than controls. The synaptic contacts of photoreceptors with bipolar and horizontal cells were also preserved in P23H rats treated with TUDCA-PLGA MSs. This work indicates that the slow and continuous delivery of TUDCA from PLGA-MSs has potential neuroprotective effects that could constitute a suitable therapy to prevent neurodegeneration and visual loss in retinitis pigmentosa.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Alicia Arranz-Romera
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Sergio Esteban-Pérez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - María del Mar Puebla-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Industrial Pharmacy Institute, Complutense University of Madrid, Madrid, Spain
- * E-mail: (NS); (RHV)
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- * E-mail: (NS); (RHV)
| |
Collapse
|
114
|
Bojinova RI, Türksever C, Schötzau A, Valmaggia C, Schorderet DF, Todorova MG. Reduced metabolic function and structural alterations in inherited retinal dystrophies: investigating the effect of peripapillary vessel oxygen saturation and vascular diameter on the retinal nerve fibre layer thickness. Acta Ophthalmol 2017; 95:252-261. [PMID: 27682439 DOI: 10.1111/aos.13247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 07/31/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the relationship between the peripapillary metabolic alterations [retinal vessel Oximetry (RO)] and the structural findings [retinal vessel diameter and retinal nerve fibre layer thickness (RNFL)] in patients with inherited retinal dystrophies (IRD). METHODS Patients with IRD [24 patients with rod-cone dystrophy (RCD), 15 patients with cone-rod dystrophy, 13 patients with inherited maculopathy] and 18 age-matched controls, who underwent RO imaging and spectral domain optical coherence tomography, were included. The average and quadrant oxygen saturation in all four major peripapillary retinal arterioles (A-SO2 ) and venules (V-SO2 ) were measured, and their difference (A-V SO2 ) was calculated. The corresponding retinal vessel diameter of these arterioles (D-A) and venules (D-V) was measured. The data were compared to the peripapillary RNFL thickness within the IRD subgroups and to the data obtained in the controls. RESULTS In general, patients with IRD had higher average V-SO2 values when compared to controls (p ≤ 0.029). Rod-cone dystrophy (RCD) patients differed from controls, but also from patients with other IRDs, when the average and quadrant oxygen saturation values (A-SO2 and V-SO2 ) were evaluated (p ≤ 0.026). Within the RCD group, the correlations of RNFL thickness to V-SO2 , A-V SO2 , D-A and D-V were significant (p ≤ 0.030), thus indicating a different relationship between the RNFL thickness and the examined parameters, when compared to the other groups. CONCLUSION It becomes evident from our combined metabolic-structural approach that a prediction model, to identify which individual is at risk of developing a photoreceptor degeneration of RCD type, can be proposed. It will take into account the peripapillary retinal oxygen saturation, the retinal vessel diameter and the RNFL thickness values.
Collapse
Affiliation(s)
- Rossiana I. Bojinova
- Department of Ophthalmology; University of Basel; Basel Switzerland
- McGill University; Montreal Canada
| | - Cengiz Türksever
- Department of Ophthalmology; University of Basel; Basel Switzerland
| | - Andreas Schötzau
- Department of Ophthalmology; University of Basel; Basel Switzerland
| | | | - Daniel F. Schorderet
- IRO - Institute for Research in Ophthalmology; Sion Switzerland
- Department of Ophthalmology; University of Lausanne; Lausanne Switzerland
- School of Life Sciences; Federal Institute of Technology; Lausanne Switzerland
| | | |
Collapse
|
115
|
Yu WQ, Grzywacz NM, Lee EJ, Field GD. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. J Neurophysiol 2017; 118:434-454. [PMID: 28424296 PMCID: PMC5506261 DOI: 10.1152/jn.00826.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
We have determined the impact of rod death and cone reorganization on the spatiotemporal receptive fields (RFs) and spontaneous activity of distinct retinal ganglion cell (RGC) types. We compared RGC function between healthy and retinitis pigmentosa (RP) model rats (S334ter-3) at a time when nearly all rods were lost but cones remained. This allowed us to determine the impact of rod death on cone-mediated visual signaling, a relevant time point because the diagnosis of RP frequently occurs when patients are nightblind but daytime vision persists. Following rod death, functionally distinct RGC types persisted; this indicates that parallel processing of visual input remained largely intact. However, some properties of cone-mediated responses were altered ubiquitously across RGC types, such as prolonged temporal integration and reduced spatial RF area. Other properties changed in a cell type-specific manner, such as temporal RF shape (dynamics), spontaneous activity, and direction selectivity. These observations identify the extent of functional remodeling in the retina following rod death but before cone loss. They also indicate new potential challenges to restoring normal vision by replacing lost rod photoreceptors.NEW & NOTEWORTHY This study provides novel and therapeutically relevant insights to retinal function following rod death but before cone death. To determine changes in retinal output, we used a large-scale multielectrode array to simultaneously record from hundreds of retinal ganglion cells (RGCs). These recordings of large-scale neural activity revealed that following the death of all rods, functionally distinct RGCs remain. However, the receptive field properties and spontaneous activity of these RGCs are altered in a cell type-specific manner.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Department of Electrical Engineering, University of Southern California, Los Angeles, California.,Department of Neuroscience, Department of Physics, and Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia
| | - Eun-Jin Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
116
|
Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision. J Neurosci 2017; 37:4635-4644. [PMID: 28373392 DOI: 10.1523/jneurosci.2570-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring.SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support the idea that bipolar cells might be able to synapse with reintroduced photoreceptors, thereby restoring vision in patients blinded by retinal degeneration.
Collapse
|
117
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
118
|
Shang YM, Wang GS, Sliney DH, Yang CH, Lee LL. Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. Int J Ophthalmol 2017; 10:191-202. [PMID: 28251076 DOI: 10.18240/ijo.2017.02.03] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To examine light-emitting-diode (LED)-induced retinal neuronal cell damage and its wavelength-driven pathogenic mechanisms. METHODS Sprague-Dawley rats were exposed to blue LEDs (460 nm), green LEDs (530 nm), and red LEDs (620 nm). Electroretinography (ERG), Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunohistochemical (IHC) staining, Western blotting (WB) and the detection of superoxide anion (O2-·), hydrogen peroxide (H2O2), total iron, and ferric (Fe3+) levels were applied. RESULTS ERG results showed the blue LED group induced more functional damage than that of green or red LED groups. H&E staining, TUNEL, IHC, and TEM revealed apoptosis and necrosis of photoreceptors and RPE, which indicated blue LED also induced more photochemical injury. Free radical production and iron-related molecular marker expressions demonstrated that oxidative stress and iron-overload were associated with retinal injury. WB assays correspondingly showed that defense gene expression was up-regulated after the LED light exposure with a wavelength dependency. CONCLUSION The study results indicate that LED blue-light exposure poses a great risk of retinal injury in awake, task-oriented rod-dominant animals. The wavelength-dependent effect should be considered carefully when switching to LED lighting applications.
Collapse
Affiliation(s)
- Yu-Man Shang
- Institute of Environmental Health, National Taiwan University, Taipei 10051, Taiwan, China
| | - Gen-Shuh Wang
- Institute of Environmental Health, National Taiwan University, Taipei 10051, Taiwan, China
| | - David H Sliney
- Army Medical Department, Consulting Medical Physicist, Aberdeen Proving Ground, Maryland, MD 21010-5403, USA
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University School of Medicine, Taipei 10051, Taiwan, China; Department of Ophthalmology, National Taiwan University Hospital, Taipei 10051, Taiwan, China
| | - Li-Ling Lee
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan, China
| |
Collapse
|
119
|
Dotan G, Khetan V, Marshall JD, Affel E, Armiger-George D, Naggert JK, Collin GB, Levin AV. Spectral-domain optical coherence tomography findings in Alström syndrome. Ophthalmic Genet 2017; 38:440-445. [PMID: 28112973 DOI: 10.1080/13816810.2016.1257029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Alström syndrome is a multi-system recessive disorder caused by mutations in ALMS1 gene. The aim of this study was to characterize morphological retinal changes in Alström patients using spectral-domain optical coherence tomography. METHODS We studied volunteer patients attending the conference of Alström Syndrome International, a support group for affected families, using hand-held spectral-domain optical coherence tomography (SD-OCT) in an office setting. Patients had a clinical dilated retinal examination. Past medical records were reviewed. RESULTS Twenty-two Alström patients (mean age 17 years, range 2-38 years, 12 males) were studied. OCT imaging demonstrated that central macular OCT changes are often mild during the first decade of life and gradually progress, demonstrating disruption of normal retinal architecture, and progressive loss of photoreceptors and retinal pigment epithelium. Other changes found included hyperreflectivities in all retinal layers, severe retinal wrinkling, optic nerve drusen, and vitreoretinal separation. Vision correlated with severity of OCT macular changes (r = 0.89, p = 0.002). CONCLUSIONS This study reports on OCT findings in a large group of patients with Alström syndrome. We document a panretinal gradual progression of retinal changes, which are often mild during the first years of life. Previously unreported observations include intraretinal opacities, optic nerve drusen, and foveal contour abnormalities. Morphological retinal changes demonstrated by SD-OCT may help in understanding the pathophysiology of the disease and defining strategies for treatment such as gene therapy.
Collapse
Affiliation(s)
- Gad Dotan
- a Ophthalmology Department, Tel Aviv Medical Center, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel.,b Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital , Philadelphia , Pennsylvania , USA
| | - Vikas Khetan
- b Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital , Philadelphia , Pennsylvania , USA.,c Department of Vitreoretina and Ocular Oncology , Sankara Nethralaya , Chennai , India
| | | | - Elizabeth Affel
- e Diagnostic Center, Wills Eye Hosptial , Philadelphia , Pennsylvania , USA
| | | | | | | | - Alex V Levin
- b Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital , Philadelphia , Pennsylvania , USA.,g Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , Pennsylvania , USA
| |
Collapse
|
120
|
Rountree CM, Raghunathan A, Troy JB, Saggere L. Prototype chemical synapse chip for spatially patterned neurotransmitter stimulation of the retina ex vivo. MICROSYSTEMS & NANOENGINEERING 2017; 3:17052. [PMID: 31057878 PMCID: PMC6445002 DOI: 10.1038/micronano.2017.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/06/2017] [Accepted: 07/02/2017] [Indexed: 05/04/2023]
Abstract
Biomimetic stimulation of the retina with neurotransmitters, the natural agents of communication at chemical synapses, could be more effective than electrical stimulation for treating blindness from photoreceptor degenerative diseases. Recent studies have demonstrated the feasibility of neurotransmitter stimulation by injecting glutamate, a primary retinal neurotransmitter, into the retina at isolated single sites. Here, we demonstrate spatially patterned multisite stimulation of the retina with glutamate, offering the first experimental evidence for applicability of this strategy for translating visual patterns into afferent neural signals. To accomplish pattern stimulation, we fabricated a special microfluidic device comprising an array of independently addressable microports connected to tiny on-chip glutamate reservoirs via microchannels. The device prefilled with glutamate was interfaced with explanted rat retinas placed over a multielectrode array (MEA) with the retinal ganglion cells (RGC) contacting the electrodes and photoreceptor surface contacting the microports. By independently and simultaneously activating a subset of the microports with modulated pressure pulses, small boluses of glutamate were convectively injected at multiple sites in alphabet patterns over the photoreceptor surface. We found that the glutamate-driven RGC responses recorded through the MEA system were robust and spatially laid out in patterns strongly resembling the injection patterns. The stimulations were also highly localized with spatial resolutions comparable to or better than electrical retinal prostheses. Our findings suggest that surface stimulation of the retina with neurotransmitters in pixelated patterns of visual images is feasible and an artificial chemical synapse chip based on this approach could potentially circumvent the limitations of electrical retinal prostheses.
Collapse
Affiliation(s)
- Corey M. Rountree
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ashwin Raghunathan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John B. Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
121
|
Chen X, Chen Z, Li Z, Zhao C, Zeng Y, Zou T, Fu C, Liu X, Xu H, Yin ZQ. Grafted c-kit +/SSEA1 - eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses. Stem Cell Res Ther 2016; 7:191. [PMID: 28038685 PMCID: PMC5203726 DOI: 10.1186/s13287-016-0451-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Methods Eye-wall c-kit+/stage-specific embryonic antigen 1 (SSEA1)− cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit+/SSEA1− cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Results Eye-wall c-kit+/SSEA1− cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit+/SSEA1− cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit+/SSEA1− cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit+/SSEA1− cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit+/SSEA1− cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Conclusions Grafted c-kit+/SSEA1− cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.,School of Medicine, Nankai University, Tianjin, 300071, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zehua Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Chen Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
122
|
Jha KA, Nag TC, Wadhwa S, Roy TS. Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods. J Biosci 2016; 41:667-676. [PMID: 27966487 DOI: 10.1007/s12038-016-9637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
123
|
Rountree CM, Inayat S, Troy JB, Saggere L. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation. Sci Rep 2016; 6:38505. [PMID: 27929043 PMCID: PMC5144088 DOI: 10.1038/srep38505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.
Collapse
Affiliation(s)
- Corey M Rountree
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Samsoon Inayat
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Laxman Saggere
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
124
|
Photoreceptor degeneration by intravitreal injection of N-methyl-N-nitrosourea (MNU) in rabbits: a pilot study. Graefes Arch Clin Exp Ophthalmol 2016; 255:317-331. [PMID: 27866331 DOI: 10.1007/s00417-016-3531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Pilot study on the attempt to induce selective photoreceptor degeneration in the rabbit eye by intravitreal injection of MNU, facing the difficulties of the evaluation of retinal degeneration by different in-vivo and in-vitro methods in such a large eye animal model. METHODS Eight pigmented Chinchilla Bastard rabbits were injected intravitreally with MNU (1 × 1mg/kg body weight (BW), 1 × 2mg/kg BW, 3 × 3mg/kg BW, 1 × 4mg/kg BW, 1 × 6mg/kg BW, and 1 × DMSO + PBS as control). One, 2, and 3 weeks after injection, the effects on the rabbit retina were examined in vivo using clinical observation (macroscopic images, funduscopy, weighing of the animals), measurement of intraocular pressure (IOP), full-field Electroretinography (ffERG), and spectral-domain Optical Coherence Tomography (sd-OCT). After 3 weeks follow-up, blood samples were taken to evaluate the general health status of the animals, and immunohistochemistry (IH) was performed on sections obtained from six different regions throughout the whole retina to evaluate MNU effects in more detail. RESULTS It was difficult to observe the effects of MNU on retinal structure by OCT in vivo. Only the temporal quadrant of the retina could be visualized. Therefore, it was indispensible to evaluate the effects of MNU on the retina in vitro by examining six areas of the retina using immunohistochemistry. Furthermore, immunohistochemistry plays a decisive role to evaluate the effects on retinal cells other than photoreceptors while in H&E staining, namely the cell count of the ONL can be observed. The results obtained in vivo and in vitro in this study mainly follow the results of a previous study in mice. The low doses of MNU (1, 2 mg/kg BW) had no effects on retinal function and morphology, while high doses (4, 6 mg/kg BW) led to retinal changes in combination with significant side-effects (e.g., cataractous changes). Injection of 3 mg/kg BW MNU induced selective photoreceptor degeneration. However, the degree of degeneration varied between different parts of the same retina and between retinae of different animals. In two of three animals, a complete loss of ERG potentials was observed. Negative effects on the contralateral eye or on general welfare of the animal were never observed. CONCLUSIONS In rabbits, the intravitreal injection of 3 mg/kg BW MNU leads to selective but inhomogeneous photoreceptor degeneration.
Collapse
|
125
|
Jensen RJ. Effects of Antipsychotic Drugs Haloperidol and Clozapine on Visual Responses of Retinal Ganglion Cells in a Rat Model of Retinitis Pigmentosa. J Ocul Pharmacol Ther 2016; 32:685-690. [PMID: 27788033 DOI: 10.1089/jop.2016.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE In the P23H rat model of retinitis pigmentosa, the dopamine D2 receptor antagonists sulpiride and eticlopride appear to improve visual responses of retinal ganglion cells (RGCs) by increasing light sensitivity of RGCs and transforming abnormal, long-latency ON-center RGCs into OFF-center cells. Antipsychotic drugs are believed to mediate their therapeutic benefits by blocking D2 receptors. This investigation was conducted to test whether haloperidol (a typical antipsychotic drug) and clozapine (an atypical antipsychotic drug) could similarly alter the light responses of RGCs in the P23H rat retina. METHODS Extracellular recordings were made from RGCs in isolated P23H rat retinas. Responses of RGCs to flashes of light were evaluated before and during bath application of a drug. RESULTS Both haloperidol and clozapine increased light sensitivity of RGCs on average by ∼0.3 log unit. For those ON-center RGCs that exhibit an abnormally long-latency response to the onset of a small spot of light, both haloperidol and clozapine brought out a short-latency OFF response and markedly reduced the long-latency ON response. The selective serotonin 5-HT2A antagonist MDL 100907 had similar effects on RGCs. CONCLUSIONS The effects of haloperidol on light responses of RGCs can be explained by its D2 receptor antagonism. The effects of clozapine on light responses of RGCs on the other hand may largely be due to its 5-HT2A receptor antagonism. Overall, the results suggest that antipsychotic drugs may be useful in improving vision in patients with retinitis pigmentosa.
Collapse
|
126
|
Park DJ, Senok SS, Goo YS. Degeneration stage-specific response pattern of retinal ganglion cell spikes in rd10 mouse retina. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3351-4. [PMID: 26737010 DOI: 10.1109/embc.2015.7319110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is known that with retinal degeneration there is rewiring of retinal networks. Consequently, electrical stimulation of the degenerating retina produces responses that differ according to the stage of retinal degeneration. We sought to delineate a degeneration stage-specific parameter for the response pattern of retinal ganglion cell (RGC) spikes as a strategy for stage-specific electrical stimulation for perceptual efficiency of prosthetic vision devices. Electrically-evoked RGC spikes were recorded at different degeneration stages in the rd10 mouse model for human retinitis pigmentosa (RP). Retinal explants mounted on an 8×8 multi-electrode array were stimulated by applying 1 Hz cathodic-phase first biphasic current pulses. RGC firing rate during the first 100 ms post-stimulus was compared to that during the 100-1000 ms period and a response ratio of 100 ms (RR100 ms) was calculated through the different postnatal weeks. Our results show that during post-stimulus 100-1000 ms, the degree of correlation between pulse amplitude and evoked RGC spikes drastically decreases at PNW 4.5. This pattern was closely matched by the RR100 ms curve at this stage. We conclude that the RR100 ms might be a good indicator of the therapeutic potential of a retinal electrical prosthesis.
Collapse
|
127
|
Humayun MS, de Juan E, Dagnelie G. The Bionic Eye. Ophthalmology 2016; 123:S89-S97. [DOI: 10.1016/j.ophtha.2016.06.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022] Open
|
128
|
Dampening Spontaneous Activity Improves the Light Sensitivity and Spatial Acuity of Optogenetic Retinal Prosthetic Responses. Sci Rep 2016; 6:33565. [PMID: 27650332 PMCID: PMC5030712 DOI: 10.1038/srep33565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023] Open
Abstract
Retinitis pigmentosa is a progressive retinal dystrophy that causes irreversible visual impairment and blindness. Retinal prostheses currently represent the only clinically available vision-restoring treatment, but the quality of vision returned remains poor. Recently, it has been suggested that the pathological spontaneous hyperactivity present in dystrophic retinas may contribute to the poor quality of vision returned by retinal prosthetics by reducing the signal-to-noise ratio of prosthetic responses. Here, we investigated to what extent blocking this hyperactivity can improve optogenetic retinal prosthetic responses. We recorded activity from channelrhodopsin-expressing retinal ganglion cells in retinal wholemounts in a mouse model of retinitis pigmentosa. Sophisticated stimuli, inspired by those used in clinical visual assessment, were used to assess light sensitivity, contrast sensitivity and spatial acuity of optogenetic responses; in all cases these were improved after blocking spontaneous hyperactivity using meclofenamic acid, a gap junction blocker. Our results suggest that this approach significantly improves the quality of vision returned by retinal prosthetics, paving the way to novel clinical applications. Moreover, the improvements in sensitivity achieved by blocking spontaneous hyperactivity may extend the dynamic range of optogenetic retinal prostheses, allowing them to be used at lower light intensities such as those encountered in everyday life.
Collapse
|
129
|
Abstract
Using a targeted chemogenetic approach, a new study provides evidence for a unique pathway for neural processing of light information from melanopsin ganglion cells. These results suggest how light can have both alerting and sleep-promoting effects in mice.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Departments of Ophthalmology and Biological Structure, University of Washington School of Medicine, Seattle, WA 981104, USA.
| |
Collapse
|
130
|
Goetz GA, Palanker DV. Electronic approaches to restoration of sight. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:096701. [PMID: 27502748 PMCID: PMC5031080 DOI: 10.1088/0034-4885/79/9/096701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.
Collapse
Affiliation(s)
- G A Goetz
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA. Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
131
|
Pfeiffer RL, Marc RE, Kondo M, Terasaki H, Jones BW. Müller cell metabolic chaos during retinal degeneration. Exp Eye Res 2016; 150:62-70. [PMID: 27142256 PMCID: PMC5031519 DOI: 10.1016/j.exer.2016.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
Abstract
Müller cells play a critical role in retinal metabolism and are among the first cells to demonstrate metabolic changes in retinal stress or disease. The timing, extent, regulation, and impacts of these changes are not yet known. We evaluated metabolic phenotypes of Müller cells in the degenerating retina. Retinas harvested from wild-type (WT) and rhodopsin Tg P347L rabbits were fixed in mixed aldehydes and resin embedded for computational molecular phenotyping (CMP). CMP facilitates small molecule fingerprinting of every cell in the retina, allowing evaluation of metabolite levels in single cells. CMP revealed signature variations in metabolite levels across Müller cells from TgP347L retina. In brief, neighboring Müller cells demonstrated variability in taurine, glutamate, glutamine, glutathione, glutamine synthetase (GS), and CRALBP. This variability showed no correlation across metabolites, implying the changes are functionally chaotic rather than simply heterogeneous. The inability of any clustering algorithm to classify Müller cell as a single class in the TgP347L retina is a formal proof of metabolic variability in the present in degenerating retina. Although retinal degeneration is certainly the trigger, Müller cell metabolic alterations are not a coherent response to the microenvironment. And while GS is believed to be the primary enzyme responsible for the conversion of glutamate to glutamine in the retina, alternative pathways appear to be unmasked in degenerating retina. Somehow, long term remodeling involves loss of Müller cell coordination and identity, which has negative implications for therapeutic interventions that target neurons alone.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| | - Robert E Marc
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Bryan W Jones
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
132
|
Preserved functional and structural integrity of the papillomacular area correlates with better visual acuity in retinitis pigmentosa. Eye (Lond) 2016; 30:1310-1323. [PMID: 27494084 DOI: 10.1038/eye.2016.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/05/2016] [Indexed: 12/25/2022] Open
Abstract
PurposeLinking multifocal electroretinography (mfERG) and optical coherence tomography (OCT) findings with visual acuity in retinitis pigmentosa (RP) patients.DesignProspective, cross-sectional, nonintervention study.SubjectsPatients with typical RP and age-matched controls, who underwent SD-OCT (spectral domain OCT) and mfERG, were included.MethodsMfERG responses were averaged in three zones (zone 1 (0°-3°), zone 2 (3°-8°), and zone 3 (8°-15°)). Baseline-to-trough- (N1) and trough-to-peak amplitudes (N1P1) of the mfERG were compared with corresponding areas of the OCT. The papillomacular area (PMA) was analyzed separately. Correlations between best-corrected visual acuity (BCVA, logMAR) and each parameter were determined.Main outcome measuresComparing structural (OCT) and functional (mfERG) measures with the BCVA.ResultsIn RP patients, the N1 and N1P1 responses showed positive association with the central retinal thickness outside zone 1 (P≤0.002), while the central N1 and the N1P1 responses in zones 1, 2, and 3-with the BCVA (P≤0.007). The integrity of the IS/OS line on OCT showed also a positive association with the BCVA (P<0.001). Isolated analysis of the PMA strengthened further the structure-function association with the BCVA (P≤0.037). Interactions between the BCVA and the OCT, respectively, the mfERG parameters were more pronounced in the RP subgroup without macular edema (P≤0.020).ConclusionIn RP patients, preserved structure-function of PMA, measured by mfERG amplitude and OCT retinal thickness, correlated well with the remaining BCVA. The subgroup analyses revealed stronger links between the examined parameters, in the RP subgroup without appearance of macular edema.
Collapse
|
133
|
Stutzki H, Helmhold F, Eickenscheidt M, Zeck G. Subretinal electrical stimulation reveals intact network activity in the blind mouse retina. J Neurophysiol 2016; 116:1684-1693. [PMID: 27486110 DOI: 10.1152/jn.01095.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/12/2016] [Indexed: 11/22/2022] Open
Abstract
Retinal degeneration (rd) leads to progressive photoreceptor cell death, resulting in vision loss. Stimulation of the inner-retinal neurons by neuroprosthetic implants is one of the clinically approved vision-restoration strategies, providing basic visual percepts to blind patients. However, little is understood as to what degree the degenerating retinal circuitry and the resulting aberrant hyperactivity may prevent the stimulation of physiological electrical activity. Therefore, we electrically stimulated ex vivo retinas from wild-type (wt; C57BL/6J) and blind (rd10 and rd1) mice using an implantable subretinal microchip and simultaneously recorded and analyzed the retinal ganglion cell (RGC) output with a flexible microelectrode array. We found that subretinal anodal stimulation of the rd10 retina and wt retina evoked similar spatiotemporal RGC-spiking patterns. In both retinas, electrically stimulated ON and a small percentage of OFF RGC responses were detected. The spatial selectivity of the retinal network to electrical stimuli reveals an intact underlying network with a median receptive-field center of 350 μm in both retinas. An antagonistic surround is activated by stimulation with large electrode fields. However, in rd10 and to a higher percentage, in rd1 retinas, rhythmic and spatially unconfined RGC patterns were evoked by anodal or by cathodal electrical stimuli. Our findings demonstrate that the surviving retinal circuitry in photoreceptor-degenerated retinas is preserved in a way allowing for the stimulation of temporally diverse and spatially confined RGC activity. Future vision restoration strategies can build on these results but need to avoid evoking the easily inducible rhythmic activity in some retinal circuits.
Collapse
Affiliation(s)
- Henrike Stutzki
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; and Graduate School of Neural and Behavioural Sciences/International Max Planck Research School, Tübingen, Germany
| | - Florian Helmhold
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; and
| | - Max Eickenscheidt
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; and
| | - Günther Zeck
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; and
| |
Collapse
|
134
|
Lassiale S, Valamanesh F, Klein C, Hicks D, Abitbol M, Versaux-Botteri C. Changes in aquaporin-4 and Kir4.1 expression in rats with inherited retinal dystrophy. Exp Eye Res 2016; 148:33-44. [DOI: 10.1016/j.exer.2016.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
135
|
Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina. Brain Res 2016; 1646:522-534. [PMID: 27369448 DOI: 10.1016/j.brainres.2016.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 11/24/2022]
Abstract
Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.
Collapse
|
136
|
Spontaneous neural activity in the primary visual cortex of retinal degenerated rats. Neurosci Lett 2016; 623:42-6. [PMID: 27132087 DOI: 10.1016/j.neulet.2016.04.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/16/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022]
Abstract
Retinal degeneration (RD) models have been widely used to study retinal degenerative diseases for a long time. The biological and electrophysiological presentations of changes in the retina during degeneration progress have been well investigated; thus, the present study is aimed at investigating the electrophysiological effects of RD in the primary visual cortex. We extracellularly recorded the spontaneous neural activities in the primary visual cortex of RD rats. The firing rate, interspike interval (ISI) and Lempel-Ziv (LZ) complexity of spontaneous neural activities were subsequently analyzed. When compared to the control group, it was found that the neurons in primary visual cortex of the RD model fired more frequently. In addition, there was a decrease in LZ complexity of spontaneous neural firing in the RD model. These results suggest that the progress of RD may not only affect the retina itself but also the primary visual cortex, which may result in an unbalanced inhibition-excitation system as well as the decreased arising rate of new patterns of spontaneous activities.
Collapse
|
137
|
Chen K, Wang Y, Liang X, Zhang Y, Ng TK, Chan LLH. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats. Sci Rep 2016; 6:26793. [PMID: 27225415 PMCID: PMC4880896 DOI: 10.1038/srep26793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Yi Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Xiaohua Liang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihuai Zhang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong
| |
Collapse
|
138
|
Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Tucker J, Marc RE. Retinal Remodeling and Metabolic Alterations in Human AMD. Front Cell Neurosci 2016; 10:103. [PMID: 27199657 PMCID: PMC4848316 DOI: 10.3389/fncel.2016.00103] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive retinal degeneration resulting in central visual field loss, ultimately causing debilitating blindness. AMD affects 18% of Americans from 65 to 74, 30% older than 74 years of age and is the leading cause of severe vision loss and blindness in Western populations. While many genetic and environmental risk factors are known for AMD, we currently know less about the mechanisms mediating disease progression. The pathways and mechanisms through which genetic and non-genetic risk factors modulate development of AMD pathogenesis remain largely unexplored. Moreover, current treatment for AMD is palliative and limited to wet/exudative forms. Retina is a complex, heterocellular tissue and most retinal cell classes are impacted or altered in AMD. Defining disease and stage-specific cytoarchitectural and metabolic responses in AMD is critical for highlighting targets for intervention. The goal of this article is to illustrate cell types impacted in AMD and demonstrate the implications of those changes, likely beginning in the retinal pigment epithelium (RPE), for remodeling of the the neural retina. Tracking heterocellular responses in disease progression is best achieved with computational molecular phenotyping (CMP), a tool that enables acquisition of a small molecule fingerprint for every cell in the retina. CMP uncovered critical cellular and molecular pathologies (remodeling and reprogramming) in progressive retinal degenerations such as retinitis pigmentosa (RP). We now applied these approaches to normal human and AMD tissues mapping progression of cellular and molecular changes in AMD retinas, including late-stage forms of the disease.
Collapse
Affiliation(s)
- Bryan W Jones
- Department of Ophthalmology, Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Rebecca L Pfeiffer
- Department of Ophthalmology, Moran Eye Center, University of UtahSalt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of UtahSalt Lake City, UT, USA
| | - William D Ferrell
- Department of Ophthalmology, Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - Carl B Watt
- Department of Ophthalmology, Moran Eye Center, University of Utah Salt Lake City, UT, USA
| | - James Tucker
- Department of Ophthalmology, University of California, Davis Davis, CA, USA
| | - Robert E Marc
- Department of Ophthalmology, Moran Eye Center, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
139
|
Abstract
Rectangular electrical pulses are the primary stimulus waveform used in retinal prosthetics as well as many other neural stimulation applications. Unfortunately, the utility of pulsatile stimuli is limited by the inability to avoid the activation of passing axons, which can result in the distortion of the spatial patterns of elicited neural activity. Because avoiding axons would likely improve clinical outcomes, the examination of alternate stimulus waveforms is warranted. Here, we studied the response of rabbit retinal ganglion cells (RGCs) to sinusoidal electrical stimulation applied at frequencies of 5, 10, 25, and 100 Hz. Targeted RGCs were restricted to 4 common types: OFF-Brisk Transient, OFF-Sustained, ON-Brisk Transient, and ON-Sustained. Interestingly, response patterns varied between different types; the most notable difference was the relatively weak response of ON-Sustained cells to low frequencies. Calculation of total spike counts per trial revealed that lower frequencies are more charge efficient than high frequencies. Finally, experiments utilizing synaptic blockers revealed that 5 and 10 Hz activate photoreceptors while 25 and 100 Hz activate RGCs. Taken together, our results suggest that while sinusoidal electrical stimulation may provide a useful research tool, its clinical utility may be limited.
Collapse
|
140
|
Schweikert LE, Fasick JI, Grace MS. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. J Comp Neurol 2016; 524:2873-85. [DOI: 10.1002/cne.23996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Lorian E. Schweikert
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| | - Jeffry I. Fasick
- Department of Biological SciencesThe University of TampaTampa Florida33606
| | - Michael S. Grace
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| |
Collapse
|
141
|
Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; 150:149-65. [PMID: 27020758 DOI: 10.1016/j.exer.2016.03.018] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.
Collapse
Affiliation(s)
- B W Jones
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA.
| | - R L Pfeiffer
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - W D Ferrell
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - C B Watt
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - M Marmor
- Dept. Ophthalmology, Stanford University, USA
| | - R E Marc
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| |
Collapse
|
142
|
Yu WQ, Eom YS, Shin JA, Nair D, Grzywacz SXZ, Grzywacz NM, Craft CM, Lee EJ. Reshaping the Cone-Mosaic in a Rat Model of Retinitis Pigmentosa: Modulatory Role of ZO-1 Expression in DL-Alpha-Aminoadipic Acid Reshaping. PLoS One 2016; 11:e0151668. [PMID: 26977812 PMCID: PMC4792433 DOI: 10.1371/journal.pone.0151668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rearrangement of cones into mosaics of rings while the fibrotic processes of Müller cells remodel to fill the center of the rings. In contrast, previous work established that DL-alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabolism, abolishes these highly structured cone rings. Simultaneously, adherens-junction associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA treatment alters the cone mosaic rings by disrupting the distal sealing formed by these fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1. Therefore, we examined these processes and ZO-1 expression at the outer retina after intravitreal injection of AAA and observed that AAA treatment transiently disrupts the distal glial sealing in RP retina, plus induces cones in rings to become more homogeneous. Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which coincided with cone ring disruption. Similar modifications of glial sealing and cone distribution were observed after injection of siRNA to inhibit ZO-1 expression. These findings support our hypothesis and provide additional information about the critical role played by ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent important advancements in the understanding of retinal degeneration's etiology and pathophysiology.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Structure, University of Washington, Seattle, United States of America
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Divya Nair
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Sara X. Z. Grzywacz
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Norberto M. Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Neuroscience, Georgetown University, Washington D.C., United States of America
- Department of Physics, Georgetown University, Washington D.C., United States of America
| | - Cheryl Mae Craft
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
143
|
Krishnamoorthy V, Cherukuri P, Poria D, Goel M, Dagar S, Dhingra NK. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects. Front Cell Neurosci 2016; 10:38. [PMID: 26924962 PMCID: PMC4756099 DOI: 10.3389/fncel.2016.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies.
Collapse
Affiliation(s)
| | - Pitchaiah Cherukuri
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen Göttingen, Germany
| | - Deepak Poria
- National Brain Research Centre Manesar, Haryana, India
| | - Manvi Goel
- National Brain Research Centre Manesar, Haryana, India
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Heinrich-Heine University Düsseldorf, Germany
| | | |
Collapse
|
144
|
Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat Commun 2016; 7:10590. [PMID: 26838932 PMCID: PMC4742908 DOI: 10.1038/ncomms10590] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage. Neurons in the zebrafish retina regenerate. Here, Yoshimatsu and colleagues show that retinal horizontal cells maintain their synaptic preferences for a limited period before circuit remodeling is triggered after photoreceptor loss.
Collapse
|
145
|
Tu HY, Chen YJ, McQuiston AR, Chiao CC, Chen CK. A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model. Front Cell Neurosci 2016; 9:513. [PMID: 26793064 PMCID: PMC4709559 DOI: 10.3389/fncel.2015.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
It has been shown in rd1 and rd10 models of photoreceptor degeneration (PD) that inner retinal neurons display spontaneous and rhythmic activities. Furthermore, the rhythmic activity has been shown to require the gap junction protein connexin 36, which is likely located in AII amacrine cells (AII-ACs). In the present study, an autosomal dominant PD model called rhoΔCTA, whose rods overexpress a C-terminally truncated mutant rhodopsin and degenerate with a rate similar to that of rd1, was used to investigate the generality and mechanisms of heightened inner retinal activity following PD. To fluorescently identify cholinergic starburst amacrine cells (SACs), the rhoΔCTA mouse was introduced into a combined ChAT-IRES-Cre and Ai9 background. In this mouse, we observed excitatory postsynaptic current (EPSC) oscillation and non-rhythmic inhibitory postsynaptic current (IPSC) in both ON- and OFF-SACs. The IPSCs were more noticeable in OFF- than in ON-SACs. Similar to reported retinal ganglion cell (RGC) oscillation in rd1 mice, EPSC oscillation was synaptically driven by glutamate and sensitive to blockade of NaV channels and gap junctions. These data suggest that akin to rd1 mice, AII-AC is a prominent oscillator in rhoΔCTA mice. Surprisingly, OFF-SAC but not ON-SAC EPSC oscillation could readily be enhanced by GABAergic blockade. More importantly, weakening the AII-AC gap junction network by activating retinal dopamine receptors abolished oscillations in ON-SACs but not in OFF-SACs. Furthermore, the latter persisted in the presence of flupirtine, an M-type potassium channel activator recently reported to dampen intrinsic AII-AC bursting. These data suggest the existence of a novel oscillation mechanism in mice with PD.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA; Institute of Molecular Medicine, National Tsing Hua UniversityHsinchu, Taiwan; Department of Life Science, National Tsing Hua UniversityHsinchu, Taiwan
| | - Yu-Jiun Chen
- Department of Ophthalmology, Baylor College of Medicine Houston, TX, USA
| | - Adam R McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Richmond, VA, USA
| | - Chuan-Chin Chiao
- Institute of Molecular Medicine, National Tsing Hua UniversityHsinchu, Taiwan; Department of Life Science, National Tsing Hua UniversityHsinchu, Taiwan; Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of MedicineHouston, TX, USA; Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX, USA; Department of Neuroscience, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
146
|
iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: A Follow-Up Study. Stem Cells Int 2016; 2016:8470263. [PMID: 26880994 PMCID: PMC4736415 DOI: 10.1155/2016/8470263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/20/2015] [Indexed: 01/10/2023] Open
Abstract
Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE) cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD), a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE) viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes.
Collapse
|
147
|
Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front Cell Neurosci 2015; 9:484. [PMID: 26733810 PMCID: PMC4686678 DOI: 10.3389/fncel.2015.00484] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.
Collapse
Affiliation(s)
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Aragon Institute for Health Research, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain; Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
148
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
149
|
Euler T, Schubert T. Multiple Independent Oscillatory Networks in the Degenerating Retina. Front Cell Neurosci 2015; 9:444. [PMID: 26617491 PMCID: PMC4637421 DOI: 10.3389/fncel.2015.00444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023] Open
Abstract
During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina’s first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O’Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self-sustained networks may hamper visual restoration strategies employing, for example, microelectronic implants, optogenetics or stem cells, and briefly; and (iii) how the finding of diverse (independent) networks in the degenerative retina may relate to other parts of the neurodegenerative central nervous system.
Collapse
Affiliation(s)
- Thomas Euler
- Werner Reichardt Centre for Integrative Neuroscience (CIN)/Institute for Ophathalmic Research, University of Tübingen Tübingen, Germany ; Bernstein Centre for Computational Neuroscience, University of Tübingen Tübingen, Germany
| | - Timm Schubert
- Werner Reichardt Centre for Integrative Neuroscience (CIN)/Institute for Ophathalmic Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
150
|
Lopez Torres LT, Türksever C, Schötzau A, Orgül S, Todorova MG. Peripapillary retinal vessel diameter correlates with mfERG alterations in retinitis pigmentosa. Acta Ophthalmol 2015; 93:e527-33. [PMID: 25809154 DOI: 10.1111/aos.12707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate relationship between the peripapillary retinal vessel diameter and the residual retinal function, measured by mfERG, in patients with retinitis pigmentosa (RP). PATIENTS AND METHODS A cross-sectional study based on 23 patients with RP (43 eyes) and 20 controls (40 eyes) was performed. Retinal vessel diameters were measured using a computer-based program of the retinal vessel analyser (RVA; IMEDOS Systems UG, Jena, Germany). We evaluated the mean diameter in all four major retinal arterioles (D-A) and venules (D-V) within 1.0-1.5 optic disc diameters from the disc margin. The data were compared with the N1 amplitudes (measured from the baseline to the trough of the first negative wave), with the N1P1 amplitudes (measured from the trough of the first negative wave to the peak of the first positive wave) of the mfERG overall response and with the mfERG responses averaged in zones [zone 1 (0°-3°), zone 2 (3°-8°), zone 3 (8°-15°) and zone 4 (15°-24°)]. RESULTS Mean (±SD) D-A and D-V were narrower in patients with RP [84.86 μm (±13.37 μm) and 103.35 μm (±13.65 μm), respectively] when compared to controls [92.81 μm (±11.49 μm) and 117.67 μm (±11.93 μm), respectively; the p-values between groups were p = 0.003 for D-A and p < 0.001 for D-V, linear mixed-effects model]. The RP group revealed clear differences compared to the controls: D-A and D-V became narrower with reduced mfERG responses. D-V correlated significantly with the overall mfERG N1 amplitudes (p = 0.013) and with N1P1 amplitudes (p = 0.016). D-V correlated with the mfERG amplitudes averaged in zones: (zone 2, 3 and 4; p ≤ 0.040) and N1P1 mfERG amplitudes (zones 1, 2, 3 and 4; p ≤ 0.013). CONCLUSIONS Peripapillary retinal vessel diameter is reduced in RP proportionally to functional alterations.
Collapse
Affiliation(s)
| | - Cengiz Türksever
- Department of Ophthalmology; University of Basel; Basel Switzerland
| | - Andreas Schötzau
- Department of Ophthalmology; University of Basel; Basel Switzerland
| | - Selim Orgül
- Department of Ophthalmology; University of Basel; Basel Switzerland
| | | |
Collapse
|