101
|
Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology (Reading) 2010; 156:1476-1486. [DOI: 10.1099/mic.0.037549-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal-mediated interactions between the human opportunistic pathogens Pseudomonas aeruginosa and Candida albicans affect virulence traits in both organisms. Phenotypic studies revealed that bacterial supernatant from four P. aeruginosa strains strongly reduced the ability of C. albicans to form biofilms on silicone. This was largely a consequence of inhibition of biofilm maturation, a phenomenon also observed with supernatant prepared from non-clinical bacterial species. The effects of supernatant on biofilm formation were not mediated via interference with the yeast–hyphal morphological switch and occurred regardless of the level of homoserine lactone (HSL) produced, indicating that the effect is HSL-independent. A transcriptome analysis to dissect the effects of the P. aeruginosa supernatants on gene expression in the early stages of C. albicans biofilm formation identified 238 genes that exhibited reproducible changes in expression in response to all four supernatants. In particular, there was a strong increase in the expression of genes related to drug or toxin efflux and a decrease in expression of genes associated with adhesion and biofilm formation. Furthermore, expression of YWP1, which encodes a protein known to inhibit biofilm formation, was significantly increased. Biofilm formation is a key aspect of C. albicans infections, therefore the capacity of P. aeruginosa to antagonize this has clear biomedical implications.
Collapse
|
102
|
Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. PLoS Pathog 2010; 6:e1000810. [PMID: 20300606 PMCID: PMC2837411 DOI: 10.1371/journal.ppat.1000810] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/05/2010] [Indexed: 12/28/2022] Open
Abstract
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. Bacterial cells can communicate with one another about their surrounding environment. This information can be in the form of small self-secreted molecules acting as signals to activate or inhibit the expression of genes. Pseudomonas aeruginosa is an environmental bacterium that infects diverse organisms from plants to humans. Our results show that this pathogen uses two highly sensitive networks, namely MvfR and LasR/RhlR pathways, to modulate its virulence functions by titrating the concentration of the small molecules HHQ and PQS in a manner that depends upon the presence or absence of iron. Via negative and positive feedback loops, this bacterium processes the signaled information to regulate its virulence functions and homeostatically balance the production of the small molecules required for the activation of the MvfR virulence network. Our study sheds light on paradigmatic complex networks that maintain a homeostatic bacterial virulence response.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gaoping Xiao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Yiorgos Apidianakis
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Biliana Lesic
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christos Astrakas
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
103
|
Abstract
There is a profound cellular dysfunction in sepsis, that clinically manifests as a continuum from simple, uncomplicated sepsis to severe sepsis, and finally to septic shock. Septic shock remains a significant challenge for clinicians. Recent advances in cellular and molecular biology have significantly improved our understanding of its pathogenetic mechanisms. These improvements will translate to better care and improved outcomes for these patients.
Collapse
Affiliation(s)
- O Okorie Nduka
- Division of Critical Care Medicine, Department of Internal Medicine, Cooper University Hospital, Camden, NJ, USA.
| | | |
Collapse
|
104
|
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 2010; 107:3210-5. [PMID: 20133764 DOI: 10.1073/pnas.0911934107] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.
Collapse
|
105
|
Wang JH, Quan CS, Qi XH, Li X, Fan SD. Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal Bioanal Chem 2010; 396:1773-9. [PMID: 20062980 DOI: 10.1007/s00216-009-3379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/29/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
Abstract
Bacteria communicate with each other by a process termed "quorum sensing" (QS), and diffusible, low-molecular-weight chemicals, called signal molecules, are used as the communication languages. In cell-free Burkholderia cepacia CF-66 culture supernatants, five compounds suspected of being signal molecules were identified. The gene (cepI) related with AHLs synthesis were not detected by polymerase chain reaction (PCR) using specific primers. Gas chromatography-mass spectrometry (GC-MS) revealed that these compounds were not AHLs but the diketopiperazines (DKPs) cyclo(Pro-Phe), cyclo(Pro-Tyr), cyclo(Ala-Val), cyclo(Pro-Leu), and cyclo(Pro-Val), all of which were both D and L-type. Four kinds of DKPs had been isolated from other gram-negative bacteria, but the other was a novel kind discovered in CF-66, and L-cyclo (Pro-Phe) was quantified by GC-MS. It was found that exogenous DKPs had a negative effect on the candidacidal activity of the culture supernatant extracts.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong-shan Road, Dalian, 116023, China
| | | | | | | | | |
Collapse
|
106
|
Decho AW, Norman RS, Visscher PT. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 2010; 18:73-80. [PMID: 20060299 DOI: 10.1016/j.tim.2009.12.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 12/09/2009] [Accepted: 12/11/2009] [Indexed: 12/29/2022]
Abstract
Much laboratory-based information exists on quorum sensing, a type of bacterial cell-to-cell communication that depends upon exchanges of molecular signals between neighboring cells. However, little is known about how this and other microbial sensing systems operate in nature. Geochemical and biological modifications of signals probably occur in extracellular environments, and these could disrupt intended communication if signals are no longer recognized. However, as we discuss here, signal alterations might result in other outcomes: if a modified signal is able to interact with a different receptor then further environmental information can be gained by the receiving cells. We also postulate that quorum sensing occurs within cell clusters, where signal dispersion might be significantly influenced by extracellular polymers. As a model system to discuss these points we use microbial mats - highly-structured biofilm communities living under sharply-defined, fluctuating geochemical gradients.
Collapse
Affiliation(s)
- Alan W Decho
- The Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
107
|
|
108
|
Campbell J, Lin Q, Geske GD, Blackwell HE. New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 2009; 4:1051-9. [PMID: 19928886 DOI: 10.1021/cb900165y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) is under the control of N-acylated l-homoserine lactones (AHLs) and their cognate receptors (LuxR-type proteins) in Gram-negative bacteria and plays a major role in mediating host-bacteria interactions by these species. Certain cyclic dipeptides (2,5-diketopiperazines, DKPs) have been isolated from bacteria and reported to activate or inhibit LuxR-type proteins in AHL biosensor strains, albeit at significantly higher concentrations than native lactones. These reports have prompted the proposal that DKPs represent a new class of QS signals and potentially even interspecies or interkingdom signals; their mechanisms of action and physiological relevance, however, remain unknown. Here, we describe a library of synthetic DKPs that was designed to (1) determine the structural features necessary for LuxR-type protein activation and inhibition and (2) probe their mechanisms of action. These DKPs, along with several previously reported natural DKPs, were screened in bacterial reporter gene assays. In contrast to previous reports, the native DKPs failed to exhibit either antagonistic or agonistic activities in these assays. However, non-natural halogenated cyclo(l-Pro-l-Phe) derivatives were capable of inhibiting luminescence in Vibrio fischeri. Interestingly, additional experiments revealed that these DKPs do not compete with the natural lactone signal, OHHL, to inhibit luminescence. Together, these data suggest that DKPs are not QS signals in the bacteria examined in this study. Although these compounds can influence QS-regulated outcomes, we contend that they do not do so through direct interaction with LuxR-type proteins. This work serves to refine the lexicon of naturally occurring QS signals used by Gram-negative bacteria.
Collapse
Affiliation(s)
- Jennifer Campbell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322
| | - Qi Lin
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322
| | - Grant D. Geske
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322
| |
Collapse
|
109
|
Abstract
Bacteria can utilize signal molecules to coordinate their behavior to survive in dynamic multispecies communities. Indole is widespread in the natural environment, as a variety of both Gram-positive and Gram-negative bacteria (to date, 85 species) produce large quantities of indole. Although it has been known for over 100 years that many bacteria produce indole, the real biological roles of this molecule are only now beginning to be unveiled. As an intercellular signal molecule, indole controls diverse aspects of bacterial physiology, such as spore formation, plasmid stability, drug resistance, biofilm formation, and virulence in indole-producing bacteria. In contrast, many non-indole-producing bacteria, plants and animals produce diverse oxygenases which may interfere with indole signaling. It appears indole plays an important role in bacterial physiology, ecological balance, and possibly human health. Here we discuss our current knowledge and perspectives on indole signaling.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Display & Chemical Engineering, Yeungnam University, Gyeongsan, Korea
| | | |
Collapse
|
110
|
Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 2009; 6:41-5. [PMID: 19935660 DOI: 10.1038/nchembio.264] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 09/24/2009] [Indexed: 01/16/2023]
Abstract
It is postulated that in addition to cell density, other factors such as the dimensions and diffusional characteristics of the environment could influence quorum sensing (QS) and induction of genetic reprogramming. Modeling studies predict that QS may operate at the level of a single cell, but, owing to experimental challenges, the potential benefits of QS by individual cells remain virtually unexplored. Here we report a physical system that mimics isolation of a bacterium, such as within an endosome or phagosome during infection, and maintains cell viability under conditions of complete chemical and physical isolation. For Staphylococcus aureus, we show that quorum sensing and genetic reprogramming can occur in a single isolated organism. Quorum sensing allows S. aureus to sense confinement and to activate virulence and metabolic pathways needed for survival. To demonstrate the benefit of confinement-induced quorum sensing to individuals, we showed that quorum-sensing bacteria have significantly greater viability over non-QS bacteria.
Collapse
|
111
|
Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. J R Soc Interface 2009; 6:959-78. [PMID: 19674996 PMCID: PMC2827448 DOI: 10.1098/rsif.2009.0203] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/10/2009] [Indexed: 12/15/2022] Open
Abstract
For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of 'listening in' and 'broadcasting to' unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways.
Collapse
Affiliation(s)
- Steve Atkinson
- Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
112
|
Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 2009; 5:929-35. [PMID: 19915540 PMCID: PMC2782429 DOI: 10.1038/nchembio.244] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
Abstract
Biodiversity, or the relative abundance of species, measures the persistence of an ecosystem. To better understand its modulation, we analyzed the spatial and temporal dynamics of a synthetic, chemical-mediated ecosystem that consisted of two engineered Escherichia coli populations. Depending on the specific experimental conditions implemented, the dominant interaction between the two populations could be competition for nutrients or predation due to engineered communication. While the two types of interactions resulted in different spatial patterns, they demonstrated a common trend in terms of the modulation of biodiversity. Specifically, biodiversity decreased with increasing cellular motility if the segregation distance between the two populations was comparable to the length scale of the chemical-mediated interaction. Otherwise, biodiversity was insensitive to cellular motility. Our results suggested a simple criterion for predicting the modulation of biodiversity by habitat partitioning and cellular motility in chemical-mediated ecosystems.
Collapse
Affiliation(s)
- Hao Song
- Department of Biomedical Engineering and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
113
|
Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun 2009; 77:4990-7. [PMID: 19687207 DOI: 10.1128/iai.00586-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infertility in men and women is frequently associated with genital contamination by various commensal or uropathogenic microbes. Since many microorganisms are known to release quorum-sensing signals in substantial amounts, we raised the question whether such molecules can directly affect human spermatozoa. Here we show that farnesol and 3-oxododecanoyl-l-homoserine lactone, employed by the opportunistic pathogenic yeast Candida albicans and the gram-negative bacterium Pseudomonas aeruginosa, respectively, induce multiple damage in spermatozoa. A reduction in the motility of spermatozoa coincided in a dose-dependent manner with apoptosis and necrosis at concentrations which were nondeleterious for dendritic cell-like immune cells. Moreover, sublethal doses of both signaling molecules induced premature loss of the acrosome, a cap-like structure of the sperm head which is essential for fertilization. Addressing their mechanism of action, we found that the bacterial molecule, but not the fungal molecule, actively induced the acrosome reaction via a calcium-dependent mechanism. This work uncovers a new facet in the interaction of microorganisms with human gametes and suggests a putative link between microbial communication systems and host infertility.
Collapse
|
114
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
115
|
Kimura S, Tateda K, Ishii Y, Horikawa M, Miyairi S, Gotoh N, Ishiguro M, Yamaguchi K. Pseudomonas aeruginosa Las quorum sensing autoinducer suppresses growth and biofilm production in Legionella species. Microbiology (Reading) 2009; 155:1934-1939. [DOI: 10.1099/mic.0.026641-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria commonly communicate with each other by a cell-to-cell signalling mechanism known as quorum sensing (QS). Recent studies have shown that the Las QS autoinducer N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) of Pseudomonas aeruginosa performs a variety of functions not only in intraspecies communication, but also in interspecies and interkingdom interactions. In this study, we report the effects of Pseudomonas 3-oxo-C12-HSL on the growth and suppression of virulence factors in other bacterial species that frequently co-exist with Ps. aeruginosa in nature. It was found that 3-oxo-C12-HSL, but not its analogues, suppressed the growth of Legionella pneumophila in a dose-dependent manner. However, 3-oxo-C12-HSL did not exhibit a growth-suppressive effect on Serratia marcescens, Proteus mirabilis, Escherichia coli, Alcaligenes faecalis and Stenotrophomonas maltophilia. A concentration of 50 μM 3-oxo-C12-HSL completely inhibited the growth of L. pneumophila. Additionally, a significant suppression of biofilm formation was demonstrated in L. pneumophila exposed to 3-oxo-C12-HSL. Our results suggest that the Pseudomonas QS autoinducer 3-oxo-C12-HSL exerts both bacteriostatic and virulence factor-suppressive activities on L. pneumophila alone.
Collapse
Affiliation(s)
- Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8540, Japan
| | - Manabu Horikawa
- Suntory Institute for Bioorganic Research, Mishima-gun, Osaka 618-8503, Japan
| | - Shinichi Miyairi
- Laboratory of Bio-organic Chemistry, College of Pharmacy, Nihon University, Funabashi, Chiba 274-8555, Japan
| | - Naomasa Gotoh
- Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Masaji Ishiguro
- Suntory Institute for Bioorganic Research, Mishima-gun, Osaka 618-8503, Japan
| | - Keizo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
116
|
Dekimpe V, Déziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. MICROBIOLOGY-SGM 2009; 155:712-723. [PMID: 19246742 DOI: 10.1099/mic.0.022764-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C(4)-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C(12)-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.
Collapse
Affiliation(s)
- Valérie Dekimpe
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
117
|
Li H, Wang L, Ye L, Mao Y, Xie X, Xia C, Chen J, Lu Z, Song J. Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med Microbiol Immunol 2009; 198:113-21. [PMID: 19337750 DOI: 10.1007/s00430-009-0111-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Indexed: 01/07/2023]
Abstract
Quorum sensing system is a cell-to-cell communication system that plays a pivotal role in virulence expression in bacteria. Recent advances have demonstrated that the Pseudomonas aeruginosa quorum sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC(12)-HSL), exerts effects on mammalian cells and modulates host immune response. Mast cells (MCs) are strategically located in the tissues that are constantly exposed to external stimulus. Therefore, it is very much possible that 3OC(12)-HSL may interact with MCs. Little is known, however, about specific effects of 3OC(12)-HSL on MCs. To address this, we investigated the influence of 3OC(12)-HSL on cell viability, apoptosis, intracellular calcium and cytokine release in MCs. We found that at high concentrations (100 microM), 3OC(12)-HSL inhibited proliferation and induced apoptosis in P815. The 3OC(12)-HSL treatment significantly increased intracellular calcium release in both P815 and HMC-1. We also observed that 3OC(12)-HSL-induced histamine release and degranulation in HMC-1 cells. Furthermore, 3OC(12)-HSL-induced IL-6 production at lower concentrations (6.25-12.5 microM) but steadily reduced IL-6 production at high concentration (50-100 muM). These data demonstrate that P. aeruginosa 3OC(12)-HSL affects MCs function.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Infectious Diseases, Tongji Hospital, Wuhan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Sbarbati A, Tizzano M, Merigo F, Benati D, Nicolato E, Boschi F, Cecchini MP, Scambi I, Osculati F. Acyl Homoserine Lactones Induce Early Response in the Airway. Anat Rec (Hoboken) 2009; 292:439-48. [DOI: 10.1002/ar.20866] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
119
|
Asad S, Opal SM. Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:236. [PMID: 19040778 PMCID: PMC2646340 DOI: 10.1186/cc7101] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens.
Collapse
Affiliation(s)
- Shadaba Asad
- Infectious Disease Division, Warren Alpert Medical School of Brown University, Memorial Hospital of Rhode Island, 111 Brewster Street, Pawtucket, RI 02860, USA.
| | | |
Collapse
|
120
|
Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution. Cell Microbiol 2008; 10:2339-54. [PMID: 18671824 DOI: 10.1111/j.1462-5822.2008.01215.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium has evolved sophisticated strategies to perceive and transduce plant-derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole-3-acetic acid (IAA) and gamma-amino butyric acid (GABA), profoundly affect Agrobacterium-plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum-quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum-sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross-talk in plant signalling networks, also act as cross-kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross-talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co-evolutionary balance.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
121
|
Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Grauer DC, Lehmann M, Meijler MM, Janda KD, Ulevitch RJ. Modulation of Gene Expression via Disruption of NF- B Signaling by a Bacterial Small Molecule. Science 2008; 321:259-63. [DOI: 10.1126/science.1156499] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
122
|
McAlester G, O'Gara F, Morrissey JP. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 2008; 57:563-569. [PMID: 18436588 DOI: 10.1099/jmm.0.47705-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa causes infections in a wide variety of hosts and is the leading cause of mortality in cystic fibrosis (CF) patients. Although most clinical isolates of P. aeruginosa share common virulence determinants, it is known that strains evolve and change phenotypically during CF lung infections. These changes can include alterations in the levels of N-acyl homoserine lactones (HSLs), which are secreted signal molecules. In the CF lung, fungi, especially Candida albicans and Aspergillus fumigatus, may coexist with P. aeruginosa but the implications for disease are not known. Recent studies have established that signalling can occur between P. aeruginosa and C. albicans, with the bacterial molecule 3-oxo-C12HSL affecting Candida morphology, and the fungal metabolite farnesol reducing levels of the Pseudomonas quinolone signal and pyocyanin in Pseudomonas. Whether these interactions are common and typical in clinical strains of P. aeruginosa was addressed using CF isolates that produced varied levels of HSLs. It was found that, whereas some clinical P. aeruginosa strains affected C. albicans morphology, others did not. This correlated closely with the amounts of 3-oxo-C12HSL produced by the isolates. Furthermore, it was established that signalling is bidirectional and that the C. albicans molecule farnesol inhibits swarming motility in P. aeruginosa CF strains. This work demonstrates that clinical isolates of these opportunistic pathogens can interact in strain-specific ways via secreted signals and illustrates the importance of studying these interactions to fully understand the microbial contribution to disease in polymicrobial infections.
Collapse
Affiliation(s)
| | - Fergal O'Gara
- BIOMERIT Research Centre, Biosciences Institute, University College Cork, Ireland.,Department of Microbiology, University College Cork, Ireland
| | | |
Collapse
|
123
|
Jahoor A, Patel R, Bryan A, Do C, Krier J, Watters C, Wahli W, Li G, Williams SC, Rumbaugh KP. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol 2008; 190:4408-15. [PMID: 18178738 PMCID: PMC2446782 DOI: 10.1128/jb.01444-07] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/23/2007] [Indexed: 12/23/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Collapse
Affiliation(s)
- Aruna Jahoor
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kristiansen S, Bjarnsholt T, Adeltoft D, Ifversen P, Givskov M. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells. APMIS 2008; 116:361-71. [PMID: 18452426 DOI: 10.1111/j.1600-0463.2008.00966.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa uses acyl-homoserine lactones to coordinate gene transcription in a process called quorum sensing (QS). The QS molecules C4-HSL and C12-oxo-HSL are synthesized from the universal precursor S-adenosyl methionine, which is also a precursor of polyamines in human cells. Polyamines are required for mitotic cell division and peak during this phase. The polyamine putrescine is synthesized by ornithine decarboxylase (ODC) as a rate-limiting step. The ODC enzyme concentration also peaks during the mitotic phase. This peak is mediated by translation of ODC mRNA by the ITAF45 protein, which translocates from the nuclear compartment to the cytoplasm in a phosphorylation-dependent manner. We observed that C12-HSL-treated human epidermal cells had a higher cytoplasm-to-nuclear ITAF45 protein concentration and this translocation was dependent on the dephosphorylation of ITAF45. Finally, C12-HSL-treated cells also had a time-course-dependent higher concentration of ODC mRNA. Based on these mitotic markers, more human cells were apparently trapped in the mitotic phase when treated with C12-HSL. This should normally imply higher levels of putrescine. However, C12-HSL-treated human cells had a significantly lower concentration of putrescine and displayed a lower cell proliferation rate. In conclusion, the P. aeruginosa autoinducer C12-oxo-HSL apparently arrests human cells in the mitotic phase by lowering the concentration of putrescine.
Collapse
|
125
|
Zhang Y. Neuronal mechanisms of Caenorhabditis elegans and pathogenic bacteria interactions. Curr Opin Microbiol 2008; 11:257-61. [PMID: 18555738 DOI: 10.1016/j.mib.2008.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/22/2008] [Indexed: 02/05/2023]
Abstract
Individuals interact with environment through different neuronal functions, such as olfaction and mechanosensation; experience shapes these physiological functions. It is not well understood how an individual senses and processes multiple cues of natural stimuli in the environment and how experience modulates these physiological mechanisms. Recent molecular genetics and behavioral studies on the interactions of the genetic model organism Caenorhabditis elegans with pathogenic bacteria have provided insights on the molecular and cellular mechanisms underlying these regulatory processes.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge MA 02138, United States.
| |
Collapse
|
126
|
Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 2008; 11:161-7. [DOI: 10.1016/j.mib.2008.02.006] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/04/2008] [Accepted: 02/11/2008] [Indexed: 02/01/2023]
|
127
|
Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6:111-20. [PMID: 18197168 PMCID: PMC2667375 DOI: 10.1038/nrmicro1836] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microorganisms and their hosts communicate with each other through an array of hormonal signals. This cross-kingdom cell-to-cell signalling involves small molecules, such as hormones that are produced by eukaryotes and hormone-like chemicals that are produced by bacteria. Cell-to-cell signalling between bacteria, usually referred to as quorum sensing, was initially described as a means by which bacteria achieve signalling in microbial communities to coordinate gene expression within a population. Recent evidence shows, however, that quorum-sensing signalling is not restricted to bacterial cell-to-cell communication, but also allows communication between microorganisms and their hosts.
Collapse
Affiliation(s)
- David T Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
128
|
Reid G. How Science Will Help Shape Future Clinical Applications of Probiotics. Clin Infect Dis 2008; 46 Suppl 2:S62-6; discussion S144-51. [DOI: 10.1086/523340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
129
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
130
|
|
131
|
|
132
|
Lowery CA, Dickerson TJ, Janda KD. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 2008; 37:1337-46. [DOI: 10.1039/b702781h] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
133
|
Abstract
Steven Opal reviews the phenomenon of bacterial communities and discusses the role played by bacterial communication and cooperation in host-pathogen interactions, particularly in urinary tract infection.
Collapse
Affiliation(s)
- Steven M Opal
- Warren Alpert Medical School of Brown University, Infectious Disease Division, Memorial Hospital of Rhode Island, Pawtucket, Rhode Island, United States of America.
| |
Collapse
|
134
|
Abstract
The microbial communities of humans are characteristic and complex mixtures of microorganisms that have co-evolved with their human hosts. The species that make up these communities vary between hosts as a result of restricted migration of microorganisms between hosts and strong ecological interactions within hosts, as well as host variability in terms of diet, genotype and colonization history. The shared evolutionary fate of humans and their symbiotic bacteria has selected for mutualistic interactions that are essential for human health, and ecological or genetic changes that uncouple this shared fate can result in disease. In this way, looking to ecological and evolutionary principles might provide new strategies for restoring and maintaining human health.
Collapse
|
135
|
Diggle SP, Gardner A, West SA, Griffin AS. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 2007; 362:1241-9. [PMID: 17360270 PMCID: PMC2435587 DOI: 10.1098/rstb.2007.2049] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The term quorum sensing (QS) is used to describe the communication between bacterial cells, whereby a coordinated population response is controlled by diffusible molecules produced by individuals. QS has not only been described between cells of the same species (intraspecies), but also between species (interspecies) and between bacteria and higher organisms (inter-kingdom). The fact that QS-based communication appears to be widespread among microbes is strange, considering that explaining both cooperation and communication are two of the greatest problems in evolutionary biology. From an evolutionary perspective, intraspecies signalling can be explained using models such as kin selection, but when communication is described between species, it is more difficult to explain. It is probable that in many cases this involves QS molecules being used as 'cues' by other species as a guide to future action or as manipulating molecules whereby one species will 'coerce' a response from another. In these cases, the usage of QS molecules cannot be described as signalling. This review seeks to integrate the evolutionary literature on animal signalling with the microbiological literature on QS, and asks whether QS within bacteria is true signalling or whether these molecules are also used as cues or for the coercion of other cells.
Collapse
Affiliation(s)
- Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
136
|
Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 2007; 71:295-347. [PMID: 17554047 PMCID: PMC1899876 DOI: 10.1128/mmbr.00040-06] [Citation(s) in RCA: 812] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.
Collapse
Affiliation(s)
- Michael W Taylor
- Department of Microbial Ecology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
137
|
Ferluga S, Bigirimana J, Höfte M, Venturi V. A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. MOLECULAR PLANT PATHOLOGY 2007; 8:529-38. [PMID: 20507519 DOI: 10.1111/j.1364-3703.2007.00415.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Gram-negative bacteria a typical quorum sensing (QS) system usually involves the production and response to acylated homoserine lactones (AHLs). An AHL QS system is most commonly mediated by a LuxI family AHL synthase and a LuxR family AHL response regulator. This study reports for the first time the presence of a LuxR family-type regulator in Xanthomonas oryzae pv. oryzae (Xoo), which has been designated as OryR. The primary structure of OryR contains the typical signature domains of AHL QS LuxR family response regulators: an AHL-binding and a HTH DNA binding motif. The oryR gene is conserved among 26 Xoo strains and is also present in the genomes of close relatives X. campestris pv. campestris and X. axonopodis pv. citri. Disrupting oryR in three Xoo strains resulted in a significant reduction of rice virulence. The wild-type Xoo strains do not seem to produce AHLs and analysis of the Xoo sequenced genomes did not reveal the presence of a LuxI-family AHL synthase. The OryR protein was shown to be induced by macerated rice and affected the production of two secreted proteins: a cell-wall-degrading cellobiosidase and a 20-kDa protein of unknown function. By expressing and purifying OryR it was then observed that it was solubilized when grown in the presence of rice extract indicating that there could be a molecule(s) in rice which binds OryR. The role of OryR as a possible in planta induced LuxR family regulator is discussed.
Collapse
Affiliation(s)
- Sara Ferluga
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | |
Collapse
|
138
|
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31:425-48. [PMID: 17509086 DOI: 10.1111/j.1574-6976.2007.00072.x] [Citation(s) in RCA: 794] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.
Collapse
Affiliation(s)
- Stijn Spaepen
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | |
Collapse
|
139
|
Hense BA, Kuttler C, Müller J, Rothballer M, Hartmann A, Kreft JU. Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 2007; 5:230-9. [PMID: 17304251 DOI: 10.1038/nrmicro1600] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Quorum sensing faces evolutionary problems from non-producing or over-producing cheaters. Such problems are circumvented in diffusion sensing, an alternative explanation for quorum sensing. However, both explanations face the problems of signalling in complex environments such as the rhizosphere where, for example, the spatial distribution of cells can be more important for sensing than cell density, which we show by mathematical modelling. We argue that these conflicting concepts can be unified by a new hypothesis, efficiency sensing, and that some of the problems associated with signalling in complex environments, as well as the problem of maintaining honesty in signalling, can be avoided when the signalling cells grow in microcolonies.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute of Biomathematics and Biometry, GSF-National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D85764 Neuherberg/Munich, Germany.
| | | | | | | | | | | |
Collapse
|
140
|
Fernandes R, Tsao CY, Hashimoto Y, Wang L, Wood TK, Payne GF, Bentley WE. Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metab Eng 2007; 9:228-39. [PMID: 17241803 DOI: 10.1016/j.ymben.2006.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 10/03/2006] [Accepted: 11/29/2006] [Indexed: 01/05/2023]
Abstract
Magnetic 'nanofactories', for localized manufacture and signal-guided delivery of small molecules to targeted cell surfaces, are demonstrated. They recruit nearby raw materials for synthesis, employ magnetic mobility for capture and localization of target cells, and deliver molecules to cells triggering their native phenotypic response, but with user-specified control. Our nanofactories, which synthesize and deliver the "universal" bacterial quorum-sensing signal molecule, autoinducer AI-2, to the surface of Escherichia coli, are assembled by first co-precipitating nanoparticles of iron salts and the biopolymer chitosan. E. coli AI-2 synthases, Pfs and LuxS, constructed with enzymatically activatable "pro-tags", are then covalently tethered onto the chitosan. These enzymes synthesize AI-2 from metabolite S-adenosylhomocysteine. Chitosan serves as a molecular scaffold and provides cell capture ability; magnetite provides stimuli responsiveness. These magnetic nanofactories are shown to modulate the natural progression of quorum-sensing activity. New prospects for small molecule delivery, based on localized synthesis, are envisioned.
Collapse
Affiliation(s)
- Rohan Fernandes
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Shepherd RW, Wagner GJ. Phylloplane proteins: emerging defenses at the aerial frontline? TRENDS IN PLANT SCIENCE 2007; 12:51-6. [PMID: 17208510 DOI: 10.1016/j.tplants.2006.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/27/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
The phylloplane, or leaf surface, is an interkingdom crossroads between plants and microorganisms, and secretion of antimicrobial biochemicals to aerial surfaces is thought to be one defensive strategy by which plants deter potential pathogens. Secondary metabolites on leaf surfaces are well documented but antimicrobial phylloplane proteins have only recently been identified. In this review, we describe the physical structures and biochemicals of the phylloplane and briefly discuss protein-based surface defenses of animals. We also review the emerging evidence pertaining to antimicrobial phylloplane proteins and mechanisms by which proteins can be released to the phylloplane, including biosynthesis (e.g. phylloplanins) by specific trichomes and delivery in guttation fluid from hydathodes. Future research should lead to exciting advances in our understanding of the phylloplane and to useful biotechnological interventions.
Collapse
Affiliation(s)
- Ryan W Shepherd
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
142
|
Affiliation(s)
- Deborah A Hogan
- Department of Microbiology and Immunology, HB7550, Dartmouth Medical School, Hanover NH 03755, USA.
| |
Collapse
|
143
|
Shiner EK, Terentyev D, Bryan A, Sennoune S, Martinez-Zaguilan R, Li G, Gyorke S, Williams SC, Rumbaugh KP. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 2006; 8:1601-10. [PMID: 16984415 DOI: 10.1111/j.1462-5822.2006.00734.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes a cell density-dependent signalling phenomenon known as quorum sensing (QS) to regulate several virulence factors needed for infection. Acylated homoserine lactones, or autoinducers, are the primary signal molecules that mediate QS in P. aeruginosa. The autoinducer N-3O-dodecanoyl-homoserine lactone (3O-C12) exerts effects on mammalian cells, including upregulation of pro-inflammatory mediators and induction of apoptosis. However, the mechanism(s) by which 3O-C12 affects mammalian cell responses is unknown. Here we report that 3O-C12 induces apoptosis and modulates the expression of immune mediators in murine fibroblasts and human vascular endothelial cells (HUVEC). The effects of 3O-C12 were accompanied by increases in cytosolic calcium levels that were mobilized from intracellular stores in the endoplasmic reticulum (ER). Calcium release was blocked by an inhibitor of phospholipase C, suggesting that release occurred through inositol triphosphate (IP3) receptors in the ER. Apoptosis, but not immunodulatory gene activation, was blocked when 3O-C12-exposed cells were co-incubated with inhibitors of calcium signalling. This study indicates that 3O-C12 can activate at least two independent signal transduction pathways in mammalian cells, one that involves increases in intracellular calcium levels and leads to apoptosis, and a second pathway that results in modulation of the inflammatory response.
Collapse
Affiliation(s)
- E K Shiner
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
McDougald D, Rice SA, Kjelleberg S. Bacterial quorum sensing and interference by naturally occurring biomimics. Anal Bioanal Chem 2006; 387:445-53. [PMID: 17019574 DOI: 10.1007/s00216-006-0761-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/08/2006] [Accepted: 08/11/2006] [Indexed: 11/24/2022]
Abstract
Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature's models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists.
Collapse
Affiliation(s)
- Diane McDougald
- The Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
145
|
Beale E, Li G, Tan MW, Rumbaugh KP. Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol 2006; 72:5135-7. [PMID: 16820523 PMCID: PMC1489312 DOI: 10.1128/aem.00611-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa uses virulence factors controlled by quorum sensing (QS) to kill Caenorhabditis elegans. Here we show that C. elegans is attracted to the acylated homoserine lactones (AHSLs) that mediate QS in P. aeruginosa. Our data also indicate that C. elegans can distinguish AHSLs and may use them to mediate aversive or attractive learning.
Collapse
Affiliation(s)
- Elmus Beale
- Department of Cell Biology, Texas Tech University Health Sciences Center, Texas 79430, USA
| | | | | | | |
Collapse
|
146
|
Dunn AK, Stabb EV. Beyond quorum sensing: the complexities of prokaryotic parliamentary procedures. Anal Bioanal Chem 2006; 387:391-8. [PMID: 16953316 DOI: 10.1007/s00216-006-0730-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 12/20/2022]
Abstract
Bacterial quorum-sensing regulatory systems can be summarized in a simple model wherein an autoinducer molecule accumulates in cultures and stimulates regulatory changes in gene expression upon reaching a critical threshold concentration. Although quorum sensing was originally thought to be an isolated phenomenon governing the regulation of a handful of processes in only a few bacteria, it is now considered to be a widespread mechanism for coordinating bacterial gene expression. Over decades of research, investigations of autoinducer-mediated regulation have revealed that these systems are far more complicated than originally appreciated, and such discoveries have accelerated recently with the application of molecular and genomic tools. The focus of this review is to highlight recent advances describing complexities that go beyond the simple model of quorum sensing. These complexities include the regulation of autoinducer production and degradation, the presence of multiple quorum-sensing systems in individual bacteria that regulate diverse genes, often in coordination with other regulatory elements, and the influence of interorganismal interactions on quorum sensing.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology, University of Georgia, 824 Biological Sciences Building, 1000 Cedar Street, Athens, GA, 30602, USA.
| | | |
Collapse
|
147
|
Rumbaugh KP. Convergence of hormones and autoinducers at the host/pathogen interface. Anal Bioanal Chem 2006; 387:425-35. [PMID: 16912860 DOI: 10.1007/s00216-006-0694-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/05/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Most living organisms possess sophisticated cell-signaling networks in which lipid-based signals modulate biological effects such as cell differentiation, reproduction and immune responses. Acyl homoserine lactone (AHL) autoinducers are fatty acid-based signaling molecules synthesized by several Gram-negative bacteria that are used to coordinate gene expression in a process termed "quorum sensing" (QS). Recent evidence shows that autoinducers not only control gene expression in bacterial cells, but also alter gene expression in mammalian cells. These alterations include modulation of proinflammatory cytokines and induction of apoptosis. Some of these responses may have deleterious effects on the host's immune response, thereby leading to increased bacterial pathogenesis. Prokaryotes and eukaryotes have cohabited for approximately two billion years, during which time they have been exposed to each others' soluble signaling molecules. We postulate that organisms from the different kingdoms of nature have acquired mechanisms to sense and respond to each others signaling molecules, and we have named this process interkingdom signaling. We further propose that autoinducers, which exhibit structural and functional similarities to mammalian lipid-based hormones, are excellent candidates for mediating this interkingdom communication. Here we will compare and contrast bacterial QS systems with eukaryotic endocrine systems, and discuss the mechanisms by which autoinducers may exploit mammalian signal transduction pathways.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
148
|
Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Wood MR, Brogan AP, Lehmann M, Mee JM, Iwata K, Pan Q, Fearns C, Knaus UG, Meijler MM, Janda KD, Ulevitch RJ. N-(3-oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular pattern recognition receptor pathways. J Biol Chem 2006; 281:28822-30. [PMID: 16893899 DOI: 10.1074/jbc.m606613200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Innate immune system receptors function as sensors of infection and trigger the immune responses through ligand-specific signaling pathways. These ligands are pathogen-associated products, such as components of bacterial walls and viral nuclear acids. A common response to such ligands is the activation of mitogen-activated protein kinase p38, whereas double-stranded viral RNA additionally induces the phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha). Here we have shown that p38 and eIF2alpha phosphorylation represent two biochemical markers of the effects induced by N-(3-oxo-acyl)homoserine lactones, the secreted products of a number of Gram-negative bacteria, including the human opportunistic pathogen Pseudomonas aeruginosa. Furthermore, N-(3-oxo-dodecanoyl)homoserine lactone induced distension of mitochondria and the endoplasmic reticulum as well as c-jun gene transcription. These effects occurred in a wide variety of cell types including alveolar macrophages and bronchial epithelial cells, requiring the structural integrity of the lactone ring motif and its natural stereochemistry. These findings suggest that N-(3-oxo-acyl)homoserine lactones might be recognized by receptors of the innate immune system. However, we provide evidence that N-(3-oxo-dodecanoyl)homoserine lactone-mediated signaling does not require the presence of the canonical innate immune system receptors, Toll-like receptors, or two members of the NLR/Nod/Caterpillar family, Nod1 and Nod2. These data offer a new understanding of the effects of N-(3-oxo-dodecanoyl)homoserine lactone on host cells and its role in persistent airway infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Vladimir V Kravchenko
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Dudler R, Eberl L. Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol 2006; 17:268-73. [PMID: 16650977 DOI: 10.1016/j.copbio.2006.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/25/2006] [Accepted: 04/19/2006] [Indexed: 11/29/2022]
Abstract
The interactions that occur between eukaryotes and bacteria have long been of interest, as knowledge of these processes could lead to the development of novel therapeutics and other potential applications in biotechnology. Many of these interactions are mediated by small molecules, which have subsequently formed the focus of numerous studies. An arsenal of small molecules exhibiting a wide range of activities has been isolated from various sources, including plants, animals and microorganisms. As a number of these compounds are pharmacologically active, there is a strong continued interest in natural product chemistry. Recent developments in this field have focused on two areas: evidence has been gathered to show that secondary metabolites are often produced by symbiotic bacteria, rather than by the eukaryotic host, and the importance of bacterial cell-to-cell signalling in bacteria-host interactions has been confirmed.
Collapse
Affiliation(s)
- Robert Dudler
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Switzerland
| | | |
Collapse
|
150
|
Davies J. Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 2006; 33:496-9. [PMID: 16552582 DOI: 10.1007/s10295-006-0112-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/08/2006] [Indexed: 11/27/2022]
Abstract
Antibiotics have been used for more than 50 years and are the cornerstone of infectious disease treatment; in addition, these low-molecular-weight bioactive compounds have been applied to many other therapeutic purposes. However, there is almost no information on the evolutionary biology or ecology of naturally occurring low-molecular-weight compounds. The large number of different structural types and the extremely broad range of biological activities of organic molecules produced by microbes raise many questions concerning their roles in nature. Recent evidence for the enormous complexity of microbial populations in the environment favors the notion that the principal roles of small molecules in microbial ecology are cell-cell communication and not antibiosis.
Collapse
Affiliation(s)
- Julian Davies
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|