101
|
Scala V, Giorni P, Cirlini M, Ludovici M, Visentin I, Cardinale F, Fabbri AA, Fanelli C, Reverberi M, Battilani P, Galaverna G, Dall'Asta C. LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides. Front Microbiol 2014; 5:669. [PMID: 25566199 PMCID: PMC4263177 DOI: 10.3389/fmicb.2014.00669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 11/13/2022] Open
Abstract
Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi.
Collapse
Affiliation(s)
- Valeria Scala
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Paola Giorni
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore Piacenza, Italy
| | - Martina Cirlini
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| | - Matteo Ludovici
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Ivan Visentin
- Department of Agricultural, Food and Forestry Science, University of Turin Torino, Italy
| | - Francesca Cardinale
- Department of Agricultural, Food and Forestry Science, University of Turin Torino, Italy
| | - Anna A Fabbri
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Corrado Fanelli
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, University of Rome "Sapienza" Rome, Italy
| | - Paola Battilani
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore Piacenza, Italy
| | - Gianni Galaverna
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| | - Chiara Dall'Asta
- Food Chemistry and Natural Substances Unit, Department of Organic and Industrial Chemistry, University of Parma Parma, Italy
| |
Collapse
|
102
|
Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 2014; 5:656. [PMID: 25506342 PMCID: PMC4246892 DOI: 10.3389/fmicb.2014.00656] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfaelische Wilhelms-University Muenster Muenster, Germany
| |
Collapse
|
103
|
The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 2014; 9:e110311. [PMID: 25333987 PMCID: PMC4198257 DOI: 10.1371/journal.pone.0110311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.
Collapse
|
104
|
Michielse CB, Studt L, Janevska S, Sieber CMK, Arndt B, Espino JJ, Humpf HU, Güldener U, Tudzynski B. The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol 2014; 17:2690-708. [PMID: 25115968 DOI: 10.1111/1462-2920.12592] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
The plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs). Although much progress has been made in the field of secondary metabolism, the transcriptional regulation of SM biosynthesis is complex and still incompletely understood. Environmental conditions, global as well as pathway-specific regulators and chromatin remodelling have been shown to play major roles. Here, the role of FfSge1, a homologue of the morphological switch regulators Wor1 and Ryp1 in Candida albicans and Histoplasma capsulatum, respectively, is explored with emphasis on secondary metabolism. FfSge1 is not required for formation of conidia and pathogenicity but is involved in vegetative growth. Transcriptome analysis of the mutant Δffsge1 compared with the wild type, as well as comparative chemical analysis between the wild type, Δffsge1 and OE:FfSGE1, revealed that FfSge1 functions as a global activator of secondary metabolism in F. fujikuroi. Double mutants of FfSGE1 and other SM regulatory genes brought insights into the hierarchical regulation of secondary metabolism. In addition, FfSge1 is also required for expression of a yet uncharacterized SM gene cluster containing a non-canonical non-ribosomal peptide synthetase.
Collapse
Affiliation(s)
- Caroline B Michielse
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Lena Studt
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Slavica Janevska
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Christian M K Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Birgit Arndt
- NRW Graduate School of Chemistry, Westfälische Wilhelms-University, Wilhelm-Klemm-Strasse 10, Münster, 48149, Germany.,Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, Münster, 48149, Germany
| | - Jose Juan Espino
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Hans-Ulrich Humpf
- NRW Graduate School of Chemistry, Westfälische Wilhelms-University, Wilhelm-Klemm-Strasse 10, Münster, 48149, Germany.,Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, Münster, 48149, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| |
Collapse
|
105
|
The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 2014; 197:1175-89. [PMID: 24907261 DOI: 10.1534/genetics.114.165688] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acetylation of histones is a key regulatory mechanism of gene expression in eukaryotes. GcnE is an acetyltransferase of Aspergillus nidulans involved in the acetylation of histone H3 at lysine 9 and lysine 14. Previous works have demonstrated that deletion of gcnE results in defects in primary and secondary metabolism. Here we unveil the role of GcnE in development and show that a ∆gcnE mutant strain has minor growth defects but is impaired in normal conidiophore development. No signs of conidiation were found after 3 days of incubation, and immature and aberrant conidiophores were found after 1 week of incubation. Centroid linkage clustering and principal component (PC) analysis of transcriptomic data suggest that GcnE occupies a central position in Aspergillus developmental regulation and that it is essential for inducing conidiation genes. GcnE function was found to be required for the acetylation of histone H3K9/K14 at the promoter of the master regulator of conidiation, brlA, as well as at the promoters of the upstream developmental regulators of conidiation flbA, flbB, flbC, and flbD (fluffy genes). However, analysis of the gene expression of brlA and the fluffy genes revealed that the lack of conidiation originated in a complete absence of brlA expression in the ∆gcnE strain. Ectopic induction of brlA from a heterologous alcA promoter did not remediate the conidiation defects in the ∆gcnE strain, suggesting that additional GcnE-mediated mechanisms must operate. Therefore, we conclude that GcnE is the only nonessential histone modifier with a strong role in fungal development found so far.
Collapse
|
106
|
Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-013-0328-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
107
|
Reverberi M, Fabbri AA, Fanelli C. Ochratoxin A and Related Mycotoxins. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1191-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
108
|
|
109
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
110
|
The N-terminus region of the putative C2H2 transcription factor Ada1 harbors a species-specific activation motif that regulates asexual reproduction in Fusarium verticillioides. Fungal Genet Biol 2013; 62:25-33. [PMID: 24161731 DOI: 10.1016/j.fgb.2013.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
Fusarium verticillioides is an important plant pathogenic fungus causing maize ear and stalk rots. In addition, the fungus is directly associated with fumonisin contamination of food and feeds. Here, we report the functional characterization of Ada1, a putative Cys2-His2 zinc finger transcription factor with a high level of similarity to Aspergillus nidulans FlbC, which is required for the activation of the key regulator of conidiation brlA. ADA1 is predicted to encode a protein with two DNA binding motifs at the C terminus and a putative activator domain at the N terminus region. Deletion of the flbC gene in A. nidulans results in "fluffy" cotton-like colonies, with a defect in transition from vegetative growth to asexual development. In this study we show that Ada1 plays a key role in asexual development in F. verticillioides. Conidia production was significantly reduced in the knockout mutant (Δada1), in which aberrant conidia and conidiophores were also observed. We identified genes that are predicted to be downstream of ADA1, based on A. nidulans conidiation signaling pathway. Among them, the deletion of stuA homologue, FvSTUA, resulted in near absence of conidia production. To further investigate the functional conservation of this transcription factor, we complemented the Δada1 strain with A. nidulans flbC, F. verticillioides ADA1, and chimeric constructs. A. nidulans flbC failed to restore conidia production similar to the wild-type level. However, the Ada1N-terminal domain, which contains a putative activator, fused to A. nidulans FlbC C-terminal motif successfully complemented the Δada1 mutant. Taken together, Ada1 is an important transcriptional regulator of asexual development in F. verticillioides and that the N-terminus domain is critical for proper function of this transcription factor.
Collapse
|
111
|
Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 2013; 41:301-13. [PMID: 24146366 DOI: 10.1007/s10295-013-1366-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.
Collapse
|
112
|
Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM. The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 2013; 8:e74122. [PMID: 24066102 PMCID: PMC3774644 DOI: 10.1371/journal.pone.0074122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/28/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species.
Collapse
Affiliation(s)
- Vellaisamy Ramamoorthy
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Alexander Kincaid
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabha Shantappa
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Xuehuan Feng
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America,* E-mail:
| |
Collapse
|
113
|
Glass NL, Schmoll M, Cate JH, Coradetti S. Plant Cell Wall Deconstruction by Ascomycete Fungi. Annu Rev Microbiol 2013; 67:477-98. [DOI: 10.1146/annurev-micro-092611-150044] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monika Schmoll
- Austrian Institute of Technology GmbH (AIT), Health and Environment, Bioresources, 3430 Tulln, Austria
| | - Jamie H.D. Cate
- Molecular and Cellular Biology Department, and
- Chemistry Department, University of California, Berkeley, California 94720;
| | | |
Collapse
|
114
|
Adelin E, Martin MT, Cortial S, Retailleau P, Lumyong S, Ouazzani J. Bioactive polyketides isolated from agar-supported fermentation of Phomopsis sp. CMU-LMA, taking advantage of the scale-up device, Platotex. PHYTOCHEMISTRY 2013; 93:170-175. [PMID: 23578961 DOI: 10.1016/j.phytochem.2013.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/08/2013] [Accepted: 02/20/2013] [Indexed: 06/02/2023]
Abstract
Phomopsis sp. CMU-LMA was cultivated on agar-supported fermentation (Ag-SF) using the scale-up prototype Platotex. In total nine compounds were isolated from the ethyl acetate extract of the culture. Among them, compounds LMA-P1, Sch-642305, DHTO and LMA-P2 had already been reported in our previous work on liquid state fermentation. The trihydroxybenzene lactone cytosporone D and dothiorelone A has been recently isolated from Phomopsis and Magnaporthe species. In addition, three compounds were isolated consisting in the reduced methoxy derivative of Sch-642305 (1), a hydroxylated derivative of LMA-P2 (2) and a linear ethyl ester polyketide (3) similar to the previously reported LMA-P3. Antimicrobial activity and inhibition of Escherichia coli DnaG primase were investigated. Cytosporone D inhibited the E. coli DnaG primase, a Gram-negative antimicrobial target, with an IC50 of 0.25 mM.
Collapse
Affiliation(s)
- Emilie Adelin
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, ICSN, Centre National de la Recherche Scientifique, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
115
|
Substrate-induced transcriptional activation of the MoCel7C cellulase gene is associated with methylation of histone H3 at lysine 4 in the rice blast fungus Magnaporthe oryzae. Appl Environ Microbiol 2013; 79:6823-32. [PMID: 23995923 DOI: 10.1128/aem.02082-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms involved in substrate-dependent regulation of a Magnaporthe oryzae gene encoding a cellulase which we designate MoCel7C (MGG_14954) were investigated. The levels of MoCel7C transcript were dramatically increased more than 1,000-fold, 16 to 24 h after transfer to a medium containing 2% carboxymethylcellulose (CMC), while levels were very low or undetectable in conventional rich medium. Green fluorescent protein reporter assays showed that the MoCel7C promoter was activated by cello-oligosaccharides larger than a pentamer. CMC-induced activation of the MoCel7C promoter was suppressed by glucose and cellobiose. Chromatin immunoprecipitation assays revealed that histone H3 methylation on lysine 4 (H3K4) at the MoCel7C locus was associated with activation of the gene by CMC. Consistently, CMC-induced MoCel7C gene activation was drastically diminished in a knockout (KO) mutant of the MoSET1 gene, which encodes a histone lysine methyltransferase that catalyzes H3K4 methylation in M. oryzae. Interestingly, however, MoCel7C transcript levels under noninducing conditions were significantly increased in the MoSET1 KO mutant, suggesting that MoSET1 directly or indirectly plays a role in both activation and suppression of the MoCel7C gene in response to environmental signals. In addition, gene expression and silencing vectors using the MoCel7C promoter were constructed.
Collapse
|
116
|
Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CMK, Connolly LR, Freitag M, Güldener U, Tudzynski B, Humpf HU. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. ACTA ACUST UNITED AC 2013; 20:1055-66. [PMID: 23932525 DOI: 10.1016/j.chembiol.2013.07.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, Münster 48143, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 2013; 41:371-86. [PMID: 23907251 DOI: 10.1007/s10295-013-1309-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 12/24/2022]
Abstract
Actinomycetes are a rich source of natural products, and these mycelial bacteria produce the majority of the known antibiotics. The increasing difficulty to find new drugs via high-throughput screening has led to a decline in antibiotic research, while infectious diseases associated with multidrug resistance are spreading rapidly. Here we review new approaches and ideas that are currently being developed to increase our chances of finding novel antimicrobials, with focus on genetic, chemical, and ecological methods to elicit the expression of biosynthetic gene clusters. The genome sequencing revolution identified numerous gene clusters for natural products in actinomycetes, associated with a potentially huge reservoir of unknown molecules, and prioritizing them is a major challenge for in silico screening-based approaches. Some antibiotics are likely only expressed under very specific conditions, such as interaction with other microbes, which explains the renewed interest in soil and marine ecology. The identification of new gene clusters, as well as chemical elicitors and culturing conditions that activate their expression, should allow scientists to reinforce their efforts to find the necessary novel antimicrobial drugs.
Collapse
Affiliation(s)
- Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | |
Collapse
|
118
|
Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CCC, Keller NP. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Mol Microbiol 2013; 89:963-74. [PMID: 23841751 DOI: 10.1111/mmi.12326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Abstract
A perplexing aspect of fungal secondary metabolite gene clusters is that most clusters remain 'silent' under common laboratory growth conditions where activation is obtained through gene manipulation or encounters with environmental signals. Few proteins have been found involved in repression of silent clusters. Through multicopy suppressor mutagenesis, we have identified a novel cluster suppressor in Aspergillus nidulans, MvlA (modulator of veA loss). Genetic assessment of MvlA mutants revealed the role of both itself and VeA (but not the VeA partner LaeA) in the suppression of the cryptic ors gene cluster producing orsellinic acid and its F9775 derivatives. Loss of veA upregulates F9775A and F9775B production and this increase is reduced 4-5-fold when an overexpression mvlA (OE:mvlA) allele is introduced into the ΔveA background. Previous studies have implicated a positive role for GcnE (H3K9 acetyltransferase of the SAGA/ADA complex) in ors cluster expression and here we find expression of gcnE is upregulated in ΔveA and suppressed by OE:mvlA in the ΔveA background. H3K9 acetylation levels of ors cluster genes correlated with gcnE expression and F9775 production in ΔveA and OE:mvlAΔveA strains. Finally, deletion of gcnE in the ΔveA background abolishes ors cluster activation and F9775 production. Together, this work supports a role for VeA and MvlA in modifying SAGA/ADA complex activity.
Collapse
Affiliation(s)
- Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
119
|
|
120
|
Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 2013; 9:e1003475. [PMID: 23825955 PMCID: PMC3694855 DOI: 10.1371/journal.ppat.1003475] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022] Open
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Katharina W. von Bargen
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jose J. Espino
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kathleen Huß
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caroline B. Michielse
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja V. Bergner
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Andreas Fischer
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gunter Reuter
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Karin Kleigrewe
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Till Bald
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Brenda D. Wingfield
- Department of Genetics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Ron Ophir
- Institute of Plant Sciences, Genomics, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Stanley Freeman
- Department of Plant Pathology, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daren W. Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
121
|
Asai T, Yamamoto T, Shirata N, Taniguchi T, Monde K, Fujii I, Gomi K, Oshima Y. Structurally diverse chaetophenol productions induced by chemically mediated epigenetic manipulation of fungal gene expression. Org Lett 2013; 15:3346-9. [PMID: 23767797 DOI: 10.1021/ol401386w] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epigenetic manipulation of gene expression in Chaetomium indicum using a HDAC inhibitor led to the isolation of structurally diverse chaetophenols, and 3, 4 and 5 bear unprecedented polycyclic skeletons. The expression of two silent genes (pksCH-1 and pksCH-2) for nonreducing PKSs involved in chaetophenol biosynthesis was associated with an increase of histone acetylation level. The heterologous gene expression study in Aspergillus oryzae revealed pksCH-2 to be the NR-PKS gene for 8.
Collapse
Affiliation(s)
- Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG. A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 2013; 288:14032-14045. [PMID: 23532849 PMCID: PMC3656261 DOI: 10.1074/jbc.m113.465765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-(3)H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA.
Collapse
Affiliation(s)
- Alexander N. Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | | | - Nancy P. Keller
- the Departments of Medical Microbiology and Immunology and ,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Steven G. Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and , To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. East, Los Angeles, CA. Tel.: 310-825-8754; Fax: 310-825-1968; E-mail:
| |
Collapse
|
123
|
Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 2013; 14:121. [PMID: 23432824 PMCID: PMC3599271 DOI: 10.1186/1471-2164-14-121] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/19/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. RESULTS The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. CONCLUSION This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.
Collapse
Affiliation(s)
- Lea Atanasova
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Stephane Le Crom
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, F-75005, Paris, France
- Inserm, U1024, F-75005, Paris, France
- CNRS, UMR 8197, F-75005, Paris, France
- UPMC Univ Paris 06, UMR7622, Laboratoire de Biologie du Développement, 9 quai St. Bernard, F-75005, Paris, France
- CNRS, UMR7622, Laboratoire de Biologie du Développement, 9 quai St. Bernard, F-75005, Paris, France
| | - Sabine Gruber
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, F-75005, Paris, France
- Inserm, U1024, F-75005, Paris, France
- CNRS, UMR 8197, F-75005, Paris, France
| | - Verena Seidl-Seiboth
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Christian P Kubicek
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
- Austrian Center of Industrial Biotechnology (ACIB), GmBH c/o Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| | - Irina S Druzhinina
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
- Austrian Center of Industrial Biotechnology (ACIB), GmBH c/o Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria
| |
Collapse
|
124
|
Palmer JM, Bok JW, Lee S, Dagenais TRT, Andes DR, Kontoyiannis DP, Keller NP. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 2013; 1:e4. [PMID: 23638376 PMCID: PMC3629006 DOI: 10.7717/peerj.4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Secondary metabolite (SM) production in filamentous fungi is mechanistically associated with chromatin remodeling of specific SM clusters. One locus recently shown to be involved in SM suppression in Aspergillus nidulans was CclA, a member of the histone 3 lysine 4 methylating COMPASS complex. Here we examine loss of CclA and a putative H3K4 demethylase, HdmA, in the human pathogen Aspergillus fumigatus. Although deletion of hdmA showed no phenotype under the conditions tested, the cclA deletant was deficient in tri- and di-methylation of H3K4 and yielded a slowly growing strain that was rich in the production of several SMs, including gliotoxin. Similar to deletion of other chromatin modifying enzymes, ΔcclA was sensitive to 6-azauracil indicating a defect in transcriptional elongation. Despite the poor growth, the ΔcclA mutant had wild-type pathogenicity in a murine model and the Toll-deficient Drosophila model of invasive aspergillosis. These data indicate that tri- and di-methylation of H3K4 is involved in the regulation of several secondary metabolites in A. fumigatus, however does not contribute to pathogenicity under the conditions tested.
Collapse
Affiliation(s)
- Jonathan M Palmer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Seul Lee
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Taylor R T Dagenais
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Disease, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
125
|
Simon A, Dalmais B, Morgant G, Viaud M. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 2013; 52:9-19. [PMID: 23396263 DOI: 10.1016/j.fgb.2013.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
Abstract
Botrytis cinerea, the grey mould fungus, secretes non-host-specific phytotoxins that kill the cells of many plant species. Phytotoxic assays performed about ten years ago, have highlighted the role in the infection mechanism of one of these secondary metabolites, the sesquiterpene botrydial. We recently showed that BcBOT1 to BcBOT5 genes, which are required for botrydial biosynthesis, are organised into a physical cluster. However, this cluster includes no gene encoding a transcription factor (TF) that might specifically coregulate the expression of BcBOT genes. To identify which TF(s) are implicated in the regulation of this cluster and thereby to decipher DNA-protein interactions in the phytopathogenic fungus B. cinerea, we developed a strategy based on the yeast one-hybrid (Y1H) method. In this study, a Y1H library was generated with the TFs predicted from complete genome sequencing. The screening of this library revealed an interaction between a promoter of the botrydial biosynthesis gene cluster and a new Cys2His2 zinc finger TF, that we called BcYOH1. Inactivation of the BcYOH1 gene and expression analyses demonstrated the involvement of this TF in regulating expression of the botrydial biosynthesis gene cluster. Furthermore, whole-transcriptome analysis suggested that BcYOH1 might act as a global transcriptional regulator of phytotoxin and other secondary metabolism gene clusters, and of genes involved in carbohydrate metabolism, transport, virulence and detoxification mechanisms.
Collapse
Affiliation(s)
- Adeline Simon
- UR1290 BIOGER-CPP, INRA, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
126
|
Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3-GENES GENOMES GENETICS 2013; 3:369-78. [PMID: 23390613 PMCID: PMC3564997 DOI: 10.1534/g3.112.005140] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 11/25/2022]
Abstract
The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi, and it can modify heterochromatin structure in Aspergillus nidulans. We have recently shown that the LaeA ortholog of Trichoderma reesei (LAE1), a fungus that is an industrial producer of cellulase and hemicellulase enzymes, regulates the expression of cellulases and polysaccharide hydrolases. To learn more about the function of LAE1 in T. reesei, we assessed the effect of deletion and overexpression of lae1 on genome-wide gene expression. We found that in addition to positively regulating 7 of 17 polyketide or nonribosomal peptide synthases, genes encoding ankyrin-proteins, iron uptake, heterokaryon incompatibility proteins, PTH11-receptors, and oxidases/monoxygenases are major gene categories also regulated by LAE1. chromatin immunoprecipitation sequencing with antibodies against histone modifications known to be associated with transcriptionally active (H3K4me2 and -me3) or silent (H3K9me3) chromatin detected 4089 genes bearing one or more of these methylation marks, of which 75 exhibited a correlation between either H3K4me2 or H3K4me3 and regulation by LAE1. Transformation of a laeA-null mutant of A. nidulans with the T. reesei lae1 gene did not rescue sterigmatocystin formation and further impaired sexual development. LAE1 did not interact with A. nidulans VeA in yeast two-hybrid assays, whereas it interacted with the T. reesei VeA ortholog, VEL1. LAE1 was shown to be required for the expression of vel1, whereas the orthologs of velB and VosA are unaffected by lae1 deletion. Our data show that the biological roles of A. nidulans LaeA and T. reesei LAE1 are much less conserved than hitherto thought. In T. reesei, LAE1 appears predominantly to regulate genes increasing relative fitness in its environment.
Collapse
|
127
|
Kubicek CP. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 2013; 163:133-42. [PMID: 22750088 PMCID: PMC3568919 DOI: 10.1016/j.jbiotec.2012.05.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/07/2023]
Abstract
Recent progress and improvement in "-omics" technologies has made it possible to study the physiology of organisms by integrated and genome-wide approaches. This bears the advantage that the global response, rather than isolated pathways and circuits within an organism, can be investigated ("systems biology"). The sequencing of the genome of Trichoderma reesei (teleomorph Hypocrea jecorina), a fungus that serves as a major producer of biomass-degrading enzymes for the use of renewable lignocellulosic material towards production of biofuels and biorefineries, has offered the possibility to study this organism and its enzyme production on a genome wide scale. In this review, I will highlight the use of genomics, transcriptomics, proteomics and metabolomics towards an improved and novel understanding of the biochemical processes that involve in the massive overproduction of secreted proteins.
Collapse
|
128
|
Abstract
Fungi produce a multitude of low-molecular-mass compounds known as secondary metabolites, which have roles in a range of cellular processes such as transcription, development and intercellular communication. In addition, many of these compounds now have important applications, for instance, as antibiotics or immunosuppressants. Genome mining efforts indicate that the capability of fungi to produce secondary metabolites has been substantially underestimated because many of the fungal secondary metabolite biosynthesis gene clusters are silent under standard cultivation conditions. In this Review, I describe our current understanding of the regulatory elements that modulate the transcription of genes involved in secondary metabolism. I also discuss how an improved knowledge of these regulatory elements will ultimately lead to a better understanding of the physiological and ecological functions of these important compounds and will pave the way for a novel avenue to drug discovery through targeted activation of silent gene clusters.
Collapse
|
129
|
Soukup AA, Chiang YM, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 2012; 86:314-30. [PMID: 22882998 PMCID: PMC3514908 DOI: 10.1111/j.1365-2958.2012.08195.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
Regulation of secondary metabolite (SM) gene clusters in Aspergillus nidulans has been shown to occur through cluster-specific transcription factors or through global regulators of chromatin structure such as histone methyltransferases, histone deacetylases, or the putative methyltransferase LaeA. A multicopy suppressor screen for genes capable of returning SM production to the SM deficient ΔlaeA mutant resulted in identification of the essential histone acetyltransferase EsaA, able to complement an esa1 deletion in Saccharomyces cereviseae. Here we report that EsaA plays a novel role in SM cluster activation through histone 4 lysine 12 (H4K12) acetylation in four examined SM gene clusters (sterigmatocystin, penicillin, terrequinone and orsellinic acid), in contrast to no increase in H4K12 acetylation of the housekeeping tubA promoter. This augmented SM cluster acetylation requires LaeA for full effect and correlates with both increased transcript levels and metabolite production relative to wild type. H4K12 levels may thus represent a unique indicator of relative production potential, notably of SMs.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Department of Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yi-Ming Chiang
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC 71710,Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Jin Woo Bok
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yazmid Reyes-Dominguez
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, USA 66045
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033,Department of Chemistry, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Nancy P. Keller
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Corresponding author: 3476 Microbial Sciences, 1550 Linden Drive, Madison, WI, USA 53706 Phone: (608) 262-9795 Fax: (608)262-8418
| |
Collapse
|
130
|
NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production. EUKARYOTIC CELL 2012; 11:1104-11. [PMID: 22798394 DOI: 10.1128/ec.00069-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factors NsdC and NsdD are required for sexual development in Aspergillus nidulans. We now show these proteins also play a role in asexual development in the agriculturally important aflatoxin (AF)-producing fungus Aspergillus flavus. We found that both NsdC and NsdD are required for production of asexual sclerotia, normal aflatoxin biosynthesis, and conidiophore development. Conidiophores in nsdC and nsdD deletion mutants had shortened stipes and altered conidial heads compared to those of wild-type A. flavus. Our results suggest that NsdC and NsdD regulate transcription of genes required for early processes in conidiophore development preceding conidium formation. As the cultures aged, the ΔnsdC and ΔnsdD mutants produced a dark pigment that was not observed in the wild type. Gene expression data showed that although AflR is expressed at normal levels, a number of aflatoxin biosynthesis genes are expressed at reduced levels in both nsd mutants. Expression of aflD, aflM, and aflP was greatly reduced in nsdC mutants, and neither aflatoxin nor the proteins for these genes could be detected. Our results support previous studies showing that there is a strong association between conidiophore and sclerotium development and aflatoxin production in A. flavus.
Collapse
|
131
|
Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 2012; 84:1150-64. [PMID: 22554051 PMCID: PMC3370264 DOI: 10.1111/j.1365-2958.2012.08083.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing ('ChIP-seq') showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Razieh Aghcheh Karimi
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Pallavi A Phatale
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Rita Linke
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria,Austrian Center of Industrial Biotechnology (ACIB), c/o Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Lukas Hartl
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Dominik G Sauer
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Scott E Baker
- Fungal Biotechnology Team, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory902 Battelle Blvd., Richland, WA 99352, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Christian P Kubicek
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria,*For correspondence. E-mail ; Tel. (+43) 1 58801 166500; Fax (+43) 15880 117299
| |
Collapse
|
132
|
Studt L, Troncoso C, Gong F, Hedden P, Toomajian C, Leslie JF, Humpf HU, Rojas MC, Tudzynski B. Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum. Fungal Genet Biol 2012; 49:567-77. [PMID: 22626844 DOI: 10.1016/j.fgb.2012.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species.
Collapse
Affiliation(s)
- L Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Lee J, Myong K, Kim JE, Kim HK, Yun SH, Lee YW. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. MICROBIOLOGY-SGM 2012; 158:1723-1733. [PMID: 22516221 DOI: 10.1099/mic.0.059188-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The velvet genes are conserved in ascomycetous fungi and function as global regulators of differentiation and secondary metabolism. Here, we characterized one of the velvet genes, designated FgVelB, in the plant-pathogenic fungus Fusarium graminearum, which causes fusarium head blight in cereals and produces mycotoxins within plants. FgVelB-deleted (ΔFgVelB) strains produced fewer aerial mycelia with less pigmentation than those of the wild-type (WT) during vegetative growth. Under sexual development conditions, the ΔFgVelB strains produced no fruiting bodies but retained male fertility, and conidiation was threefold higher compared with the WT strain. Production of trichothecene and zearalenone was dramatically reduced compared with the WT strain. In addition, the ΔFgVelB strains were incapable of colonizing host plant tissues. Transcript analyses revealed that FgVelB was highly expressed during the sexual development stage, and may be regulated by a mitogen-activated protein kinase cascade. Microarray analysis showed that FgVelB affects regulatory pathways mediated by the mating-type loci and a G-protein alpha subunit, as well as primary and secondary metabolism. These results suggest that FgVelB has diverse biological functions, probably by acting as a member of a possible velvet protein complex, although identification of the FgVelB-FgVeA complex and the determination of its roles require further investigation.
Collapse
Affiliation(s)
- Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 604-714, Republic of Korea
| | - Kilseon Myong
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jung-Eun Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
134
|
Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 2012; 78:4468-80. [PMID: 22492438 DOI: 10.1128/aem.00823-12] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fusarium fujikuroi produces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified in Fusarium spp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designate fsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data.
Collapse
|
135
|
Trienens M, Rohlfs M. Insect–fungus interference competition – The potential role of global secondary metabolite regulation, pathway-specific mycotoxin expression and formation of oxylipins. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2011.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
136
|
Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. EUKARYOTIC CELL 2012; 11:252-9. [PMID: 22117026 PMCID: PMC3294439 DOI: 10.1128/ec.05159-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from the key FUM genes, FUM1, FUM21, and FUM8. In fungi in general, gene expression is often partially controlled at the chromatin level in secondary metabolism; when this is the case, the deacetylation and acetylation (and other posttranslational modifications) of histones are usually crucial in the regulation of transcription. To assess whether epigenetic factors regulate the FB pathway, we monitored FB production and FUM1, FUM21, and FUM8 expression in the presence of a histone deacetylase inhibitor and verified by chromatin immunoprecipitation the relative degree of histone acetylation in the promoter regions of FUM1, FUM21, and FUM8 under FB-inducing and noninducing conditions. Moreover, we generated transgenic F. verticillioides strains expressing GFP under the control of the FUM1 promoter to determine whether its strength under FB-inducing and noninducing conditions was influenced by its location in the genome. Our results indicate a clear and differential role for chromatin remodeling in the regulation of FUM genes. This epigenetic regulation can be attained through the modulation of histone acetylation at the level of the promoter regions of the key biosynthetic genes FUM1 and FUM21, but less so for FUM8.
Collapse
|
137
|
Prado S, Li Y, Nay B. Diversity and Ecological Significance of Fungal Endophyte Natural Products. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-53836-9.00025-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
138
|
Moore JM, Bradshaw E, Seipke RF, Hutchings MI, McArthur M. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol 2012; 517:367-85. [PMID: 23084948 DOI: 10.1016/b978-0-12-404634-4.00018-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secondary metabolite production from Streptomyces bacteria is primarily controlled at the level of transcription. Under normal laboratory conditions, the majority of the biosynthetic pathways of Streptomyces coelicolor are transcriptionally silent. These are often referred to as "cryptic" pathways and it is thought that they may encode the biosynthesis of yet unseen natural products with novel structures that may be valuable leads for therapeutics and as bioactive compounds. Sequencing of microbial genomes has supported the notion that cryptic pathways are widely distributed and likely to be a source of new chemical diversity. Hence, techniques that can reverse the silencing will be valuable for natural product screening as well as giving access to interesting new biology. We have focused on the identification of chemical elicitors capable of inducing expression of secondary metabolic gene clusters and to do so have drawn a parallel with fungal biology where inhibitors of histone acetylation change chromatin structure to derepress biosynthetic pathways. Similarly, we find that the same chemicals can also modify the expression of pathways in S. coelicolor and other Streptomyces spp. They variously act to increase expression from known pathways as well as inducing cryptic pathways. We hypothesize that nucleoid structure may be playing an analogous role to fungal chromatin structure in controlling transcriptional programs. Further, we speculate that microbial natural product collections could themselves be a rich source of new histone deacetylase inhibitors that have many applications in human health, such as anticancer therapeutics, beyond their traditional use as antimicrobials.
Collapse
Affiliation(s)
- Jane M Moore
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
139
|
Lim FY, Sanchez JF, Wang CC, Keller NP. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol 2012; 517:303-24. [PMID: 23084945 PMCID: PMC3703436 DOI: 10.1016/b978-0-12-404634-4.00015-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mining for novel natural compounds is of eminent importance owing to the continuous need for new pharmaceuticals. Filamentous fungi are historically known to harbor the genetic capacity for an arsenal of natural compounds, both beneficial and detrimental to humans. The majority of these metabolites are still cryptic or silent under standard laboratory culture conditions. Mining for these cryptic natural products can be an excellent source for identifying new compound classes. Capitalizing on the current knowledge on how secondary metabolite gene clusters are regulated has allowed the research community to unlock many hidden fungal treasures, as described in this chapter.
Collapse
Affiliation(s)
- Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, California, USA
| | - Clay C.C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, California, USA,Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, Los Angeles, California, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA,Corresponding author:
| |
Collapse
|
140
|
Gacek A, Strauss J. The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol 2012; 95:1389-404. [PMID: 22814413 PMCID: PMC3427479 DOI: 10.1007/s00253-012-4208-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 01/07/2023]
Abstract
Secondary metabolite biosynthesis genes in fungi are usually physically linked and organized in large gene clusters. The physical linkage of genes involved in the same biosynthetic pathway minimizes the amount of regulatory steps necessary to regulate the biosynthetic machinery and thereby contributes to physiological economization. Regulation by chromatin accessibility is a proficient molecular mechanism to synchronize transcriptional activity of large genomic regions. Chromatin regulation largely depends on DNA and histone modifications and the histone code hypothesis proposes that a certain combination of modifications, such as acetylation, methylation or phosphorylation, is needed to perform a specific task. A number of reports from several laboratories recently demonstrated that fungal secondary metabolite (SM) biosynthesis clusters are controlled by chromatin-based mechanisms and histone acetyltransferases, deacetylases, methyltransferases, and proteins involved in heterochromatin formation were found to be involved. This led to the proposal that establishment of repressive chromatin domains over fungal SM clusters under primary metabolic conditions is a conserved mechanism that prevents SM production during the active growth phase. Consequently, transcriptional activation of SM clusters requires reprogramming of the chromatin landscape and replacement of repressive histone marks by activating marks. This review summarizes recent advances in our understanding of chromatin-based SM cluster regulation and highlights some of the open questions that remain to be answered before we can draw a more comprehensive picture.
Collapse
Affiliation(s)
- Agnieszka Gacek
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria ,Health and Environment Department, Austrian Institute of Technology, University and Research Center—Campus Tulln, 3430 Tulln/Donau, Austria
| |
Collapse
|
141
|
Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 2011; 116:298-307. [PMID: 22289775 DOI: 10.1016/j.funbio.2011.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/26/2022]
Abstract
LaeA of Aspergillus nidulans is a putative methyltransferase and a component of the velvet complex; it is thought to mainly affect expression of genes required for the production of secondary metabolites. We found that although Aspergillus flavus CA14 laeA deletion mutants showed no aflatoxin production, expression of some of the early genes involved in aflatoxin formation, but not the later genes, could still be detected. The mutants grown in minimal medium supplemented with simple sugars and on some complex media exhibited altered conidial development. On potato dextrose agar (PDA) medium the deletion mutants showed reduced conidial chain elongation, increased production of conidiophores, and decreased colony hydrophobicity when compared to the parental strain. The loss of hydrophobicity and the other developmental changes in the laeA deletion mutants could affect the ability of the fungus to produce aflatoxins.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA 70124, United States.
| | | | | | | | | | | |
Collapse
|
142
|
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 2011; 108:14282-7. [PMID: 21825172 DOI: 10.1073/pnas.1103523108] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes.
Collapse
|
143
|
Onyshchenko MI, Gaynutdinov TI, Englund EA, Appella DH, Neumann RD, Panyutin IG. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region. Nucleic Acids Res 2011; 39:7114-23. [PMID: 21593130 PMCID: PMC3167611 DOI: 10.1093/nar/gkr259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Guanine-rich sequences are highly abundant in the human genome, especially in regulatory regions. Because guanine-rich sequences have the unique ability to form G-quadruplexes, these structures may play a role in the regulation of gene transcription. In previous studies, we demonstrated that formation of G-quadruplexes could be induced with peptide nucleic acids (PNAs). PNAs designed to bind the C-rich strand upstream of the human BCL2 gene promoted quadruplex formation in the complementary G-rich strand. However, the question whether G-quadruplex formation was essential for PNA invasion remained unanswered. In this study, we compared PNA invasion in the native and mutant, i.e. not forming G-quadruplex, BCL2 sequences and showed that G-quadruplex is required for effective PNA invasion into duplex DNA. This finding provides strong evidence for not only sequence-specific, but also quadruplex specific, gene targeting with PNA probes. In addition, we examined DNA-duplex invasion potential of PNAs of various charges. Using the gel shift assay, chemical probing and dimethyl sulfate (DMS) protection studies, we determined that uncharged zwitterionic PNA has the highest binding specificity while preserving efficient duplex invasion.
Collapse
Affiliation(s)
- Mykola I Onyshchenko
- Imaging Sciences Training Program, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|