101
|
He M, Ding T, Wu Y, Ouyang J. Effects of Endogenous Non-Starch Nutrients in Acorn (Quercus wutaishanica Blume) Kernels on the Physicochemical Properties and In Vitro Digestibility of Starch. Foods 2022; 11:foods11060825. [PMID: 35327248 PMCID: PMC8947623 DOI: 10.3390/foods11060825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The present study investigated the multi-scale structure of starch derived from acorn kernels and the effects of the non-starch nutrients on the physicochemical properties and in vitro digestibility of starch. The average polymerization degree of acorn starch was 27.3, and the apparent amylose content was 31.4%. The crystal structure remained as C-type but the relative crystallinity of acorn flour decreased from 26.55% to 25.13%, 25.86% and 26.29% after the treatments of degreasing, deproteinization, and the removal of β-glucan, respectively. After the above treatments, the conclusion temperature of acorn flour decreased and had a significant positive correlation with the decrease in the crystallinity. The aggregation between starch granules, and the interactions between starch granules and both proteins and lipids, reduced significantly after degreasing and deproteinization treatments. The endogenous protein, fat, and β-glucan played key roles in reducing the digestibility of acorn starch relative to other compounds, which was dictated by the ability for these compounds to form complexes with starch and inhibit hydrolysis.
Collapse
Affiliation(s)
- Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
| | - Tianyi Ding
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China;
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China; (M.H.); (T.D.)
- Correspondence: ; Tel.: +86-10-62336700
| |
Collapse
|
102
|
Liu M, Yang Q, Wu Y, Ouyang J. Effects of Endogenous Polyphenols in Acorn (
Quercus wutaishanica
Blume) Kernels on the Physicochemical Properties of Starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyu Liu
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Qinxue Yang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yanwen Wu
- Institute of Analysis and Testing Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis) Beijing China
| | - Jie Ouyang
- Department of Food Science and Engineering College of Biological Sciences and Technology Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| |
Collapse
|
103
|
Zhang S, Yang C, Zhu S, Zhong F, Huang D, Li Y. Understanding the mechanisms of whey protein isolate mitigating the digestibility of corn starch by in vitro simulated digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
104
|
Rocchetti G, Bocchi S, Senizza B, Giuberti G, Trevisan M, Lucini L. Metabolomic insights into the phytochemical profile of cooked pigmented rice varieties following in vitro gastrointestinal digestion. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
105
|
Kim HY, Baik MY. Pressure moisture treatment and hydro-thermal treatment of starch. Food Sci Biotechnol 2022; 31:261-274. [PMID: 35273817 PMCID: PMC8885952 DOI: 10.1007/s10068-021-01016-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Starch is often subjected to denaturation treatment to improve its useful properties and eliminate its shortcomings. Various methods have been developed to produce modified starches with different properties and for a variety of uses. Because physically modified starch can be produced without chemical substances or biological agents, the modification method is very simple and inexpensive, and the resulting material can be used as clean label starch. Among these physical modification technologies, heat moisture treatment (HMT) is a universally valid technology, but little is known about pressure moisture treatment (PMT)-related technology. Physical modification of starch using PMT results in new functions and value-added characteristics required by industry, and PMT has the potential to produce starch with new functions. In this paper, PMT-related technologies for physically modified starch, the difference between PMT and the hydro-thermal treatment, and clean label starch manufacturing using HMT and PMT were investigated.
Collapse
Affiliation(s)
- Hui-Yun Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
106
|
Zhang X, Wang L, Xu J, Yuan J, Fan X. Effects of endogenous proteins on the hydrolysis of gelatinized starch and their mechanism of inhibition. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
107
|
Xiong W, Devkota L, Zhang B, Muir J, Dhital S. Intact cells: “Nutritional capsules” in plant foods. Compr Rev Food Sci Food Saf 2022; 21:1198-1217. [DOI: 10.1111/1541-4337.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Jane Muir
- Department of Gastroenterology Central Clinical School, Monash University Melbourne Victoria Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| |
Collapse
|
108
|
Irondi EA, Adewuyi AE, Aroyehun TM. Effect of Endogenous Lipids and Proteins on the Antioxidant, in vitro Starch Digestibility, and Pasting Properties of Sorghum Flour. Front Nutr 2022; 8:809330. [PMID: 35096949 PMCID: PMC8792437 DOI: 10.3389/fnut.2021.809330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effect of endogenous lipids and proteins on the antioxidants, starch digestibility, and pasting properties of sorghum (Sorghum bicolor) flour (SF). Endogenous lipids and/or proteins were removed from different portions of SF to obtain defatted (DF), deproteinized (DP), and defatted and deproteinized (DF-DP) flours. Bioactive constituents (total phenolics, tannins, flavonoids, saponins, and anthocyanins), antioxidant activities [2,2-Azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation (ABTS*+) and 2, 2-Diphenyl-2-picrylhydrazyl radical (DPPH*) scavenging activities, reducing power, and Fe2+ chelating capacity], starch, amylose, starch hydrolysis index (HI), estimated glycemic index (eGI), and pasting properties of treated and control (untreated) flours were determined. The control flour (SF) had significantly higher (p < 0.05) levels of all the bioactive constituents and antioxidant activity tested than the DF, DP, and DF-DP flours, while the DF-DP flour had the least levels of bioactive constituents and antioxidant activity. In contrast, the starch, amylose, HI, and eGI were consistently in the order of DF-DP > DF > DP > control flour (p < 0.05). The control flour had the highest (p < 0.05) peak viscosity, and the least peak time and pasting temperature, while the DF flour had the highest final viscosity. Therefore, endogenous lipids and proteins contribute to the antioxidant, starch digestibility, and pasting properties of sorghum flour.
Collapse
|
109
|
ZHANG X, JIA Y, ZENG J, LI G. Effect of heat-moisture treatment on physicochemical properties and digestive characteristics of sweet potato flour. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiunan ZHANG
- Henan Institute of Science and Technology, P. R. China
| | - Yajuan JIA
- Henan Institute of Science and Technology, P. R. China
| | - Jie ZENG
- Henan Institute of Science and Technology, P. R. China
| | - Guanglei LI
- Henan Institute of Science and Technology, P. R. China
| |
Collapse
|
110
|
Zhong C, Xiong Y, Lu H, Luo S, Wu J, Ye J, Liu C. Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
111
|
Gallego M, Barat JM, Grau R, Talens P. Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
112
|
The physiochemical and nutritional properties of high endosperm lipids rice mutants under artificially accelerated ageing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
113
|
Govindaraju I, Zhuo GY, Chakraborty I, Melanthota SK, Mal SS, Sarmah B, Baruah VJ, Mahato KK, Mazumder N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
114
|
|
115
|
Lang GH, Timm NDS, Neutzling HP, Ramos AH, Ferreira CD, de Oliveira M. Infrared radiation heating: A novel technique for developing quick-cooking rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
116
|
Lu X, Ma R, Qiu H, Sun C, Tian Y. Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. Int J Biol Macromol 2021; 193:311-318. [PMID: 34699891 DOI: 10.1016/j.ijbiomac.2021.10.140] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The role of endogenous/exogenous rice protein and its hydrolysates in the enzymatic hydrolysis resistance of rice starch was investigated. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR) results showed that different types of rice endogenous proteins retarded the digestion of rice starch by the same way. Exogenous addition of protein hydrolysates was more effective than protein for impeding starch digestion. FTIR results indicated that rice protein hydrolysates were bound to starch granules through hydrogen bonds, and their interaction strengthened the ordered structure of the starch. Further, the intensity of the starch V- type peak was enhanced after the addition of protein hydrolysates, indicating that some peptides or free amino acids released by the protein formed complexes with the starch, thereby contributing to high slowly-digestible starch content. These findings provide a theoretical basis for the preparation of low glycemic index starch-based foods.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hongwei Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
117
|
Process optimization, digestibility and antioxidant activity of extruded rice with Agaricus bisporus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
118
|
Cortés-Viguri V, Hernández-Rodríguez L, Lobato-Calleros C, Cuevas-Bernardino JC, Hernández-Rodríguez BE, Alvarez-Ramirez J, Vernon-Carter EJ. Annatto (Bixa orellana L.), a potential novel starch source: antioxidant, microstructural, functional, and digestibility properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01228-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
119
|
Khoza M, Kayitesi E, Dlamini BC. Physicochemical Characteristics, Microstructure and Health Promoting Properties of Green Banana Flour. Foods 2021; 10:2894. [PMID: 34945445 PMCID: PMC8700615 DOI: 10.3390/foods10122894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the proximate composition, mineral content, functional properties, molecular structure, in vitro starch digestibility, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (DPPH, FRAP) of green banana flour (GBF) cultivars grown in South Africa. With proximate composition, Finger Rose and Pisang Awak had the highest protein (4.33 g/100 g) and fat (0.85 g/100 g) content, respectively. The highest ash content (3.50 g/100 g) occurred with both Grand Naine and FHIA-01 cultivars. Potassium and copper were the most abundant and least minerals, respectively. Pisang Awak cultivar had the highest water absorption capacity (67.11%), while Du Roi had the highest swelling power (0.83 g/g) at 90 °C. Scanning electron microscopy (SEM) images revealed that starch granules from all GBF cultivars were irregular in shape and they had dense surfaces with debris. All the GBF cultivars had similar diffraction patterns with prominent peaks from 15°-24° diffraction angles. The resistant starch (RS) and amylose content of the FHIA-01 cultivar indicates that the GBF has the potential to lower risks of type 2 diabetes and obesity. The highest TPC, TFC and antioxidant activity occurred with the Grande Naine cultivar. Based on their functional characteristics, the Grand Naine and FHIA-01 GBF cultivars could potentially be used as raw materials for bakery products as well as for the fortification of snacks.
Collapse
Affiliation(s)
- Minenhle Khoza
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, DFC Campus, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
120
|
Shen Y, Wu D, Fogliano V, Pellegrini N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct 2021; 12:11547-11556. [PMID: 34708854 DOI: 10.1039/d1fo03039f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amount and distribution of rice endosperm lipids can influence starch digestibility and nutritional properties of white rice. However, this aspect has been poorly investigated thus far. We investigated the digestion properties of five rice varieties and common rice having different lipid contents (8.1-24.2 g kg-1) showing that the lipid content is positively correlated with the resistant starch content and negatively correlated with digestion extent (C∞) and estimated glycemic index (eGI). After non-starch lipid (NSL) removal from selected high-lipid mutants (ALK3 and RS4), C∞ was significantly enhanced compared to native samples when digested by α-amylase, while this phenomenon was not observed in low-lipid rice (GZ93). When pancreatin was used, starch digestion was only delayed; triglycerides were gradually hydrolyzed by pancreatic lipase and the lipids-starch complex became no longer resistant to hydrolysis by α-amylase. These results indicated that rice endosperm lipids inhibited starch digestion, by transforming part of the starch into a slowly digestible starch fraction. High-lipid mutants also had a higher total amount of, and more bioaccessible, γ-oryzanol than low-lipid varieties. This study indicates that high-lipid white rice has great potential in designing functional rice-based foods, combining a relatively lower eGI and a high γ-oryzanol content.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China.,Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, PR China
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA Wageningen, The Netherlands.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy.
| |
Collapse
|
121
|
Park J, Woo SH, Park JD, Sung JM. Changes in physicochemical properties of rice flour by fermentation with koji and its potential use in gluten-free noodles. J Food Sci 2021; 86:5188-5199. [PMID: 34755896 DOI: 10.1111/1750-3841.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022]
Abstract
To use rice flour as an ingredient in gluten-free noodles, improved texture properties such as increased hardness and reduced adhesiveness are required. We investigated the physicochemical characteristics of rice flour obtained by fermenting japonica rice with koji, determined the pasting and textural properties of the resulting gel, and suggested a method for producing gluten-free noodles. Koji-fermented rice flour was obtained by fermenting rice grains for 24 and 48 h. Koji fermentation reduced the protein and ash content of the rice and lowered the pH. The change in amylose content was not significant, but the short-to-long-chain ratio of amylopectin increased. Changes in the structural and compositional characteristics facilitated swelling of the rice flour and starch leaching. Variations in the gelatinization and hydration properties of the rice flour increased its peak viscosity and gel hardness, and reduced its gel adhesiveness. Noodles made from koji-fermented rice flour have improved physical features, such as modified textural properties resulting from a gel texture and increased whiteness, indicating that koji-fermented rice flour is a desirable noodle ingredient for gluten-free foods.
Collapse
Affiliation(s)
- Jiwoon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Seung-Hye Woo
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jong-Dae Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Jung Min Sung
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
122
|
Prakash PK, Aswathanarayana Setty JL. Macronutrient Interactions to Facilitate Sustained Carbohydrate Digestibility in Tertiary Food Matrix Systems and Their Potential Applications in Indian Pancake. STARCH-STARKE 2021. [DOI: 10.1002/star.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pavan Kumar Prakash
- Protein Chemistry and Technology Department CSIR ‐ Central Technological Research Institute Mysuru Karnataka 570020 India
| | | |
Collapse
|
123
|
Takahama U, Park JW, Ansai T, Hirota S. Slowing down of starch hydrolysis of glutinous rice and non-glutinous rice flours by black soybean extracts: Cooperation between cyanidin 3-O-glucoside and procyanidins. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
124
|
Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods 2021; 10:foods10112562. [PMID: 34828843 PMCID: PMC8622339 DOI: 10.3390/foods10112562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A novel rice germplasm sbeIIb/Lgc1 producing grains rich in resistant starch (RS) but low in glutelin has been developed through CRISPR/Cas9-mediated targeted mutagenesis for its potential benefits to patients with diabetes and kidney diseases. In this study, a hydrothermal approach known as heat-moisture treatment (HMT) was identified as a simple and effective method in reinforcing the nutritional benefits of sbeIIb/Lgc1 rice. As a result of HMT treatment at 120 °C for 2 h, significant reductions in in vitro digestibility and enhancements in RS content were observed in sbeIIb/Lgc1 rice flour when the rice flour mass fraction was 80% and 90%. The low-glutelin feature of sbeIIb/Lgc1 rice was not compromised by HMT. The potential impacts of HMT on a range of physicochemical properties of sbeIIb/Lgc1 rice flour have also been analyzed. HMT resulted in a darker color of rice flour, alteration in the semi-crystalline structure, an increase in gelatinization temperatures, and reductions in the pasting viscosities as the moisture content increased. This study provides vital data for the food industry to facilitate the application of this dual-functional rice flour as a health food ingredient.
Collapse
|
125
|
Bhatt Y, Aswathanarayana Setty JL. Formulation of Rice and Wheat Based Snacks with Modulated Starch Digestibility by Altering the Dietary Composition. STARCH-STARKE 2021. [DOI: 10.1002/star.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yogita Bhatt
- Protein Chemistry and Technology Department CSIR‐Central Food Technological Research Institute Mysore Karnataka India
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | | |
Collapse
|
126
|
Huang M, Li X, Hu L, Xiao Z, Chen J, Cao F. Comparing texture and digestion properties between white and brown rice of indica cultivars preferred by Chinese consumers. Sci Rep 2021; 11:19054. [PMID: 34561529 PMCID: PMC8463671 DOI: 10.1038/s41598-021-98681-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022] Open
Abstract
The consumption of good tasting rice, mainly soft-textured white rice with low amylose content, has substantially increased in China as living standards improve. However, this diet change may increase the risk of developing type II diabetes because the soft-textured white rice is generally less resistant to digestion and has a higher glycemic index. In contrast, intake of brown rice is inversely associated with type II diabetes risk. This study was conducted to test the possibility that brown rice processed from soft-textured cultivars has both acceptable texture and improved health benefits. Texture and digestion properties were compared between white and brown rice of five indica cultivars preferred by Chinese consumers. Mean hardness was 33% higher while mean springiness was 5% lower for cooked brown rice than for cooked white rice. As compared to cooked white rice, cooked brown rice had a 41% longer mean active digestion duration but 31% lower mean glucose production rate and 11% lower mean total glucose production from starch digestion. However, the differences in texture and starch digestion properties between cooked brown and white rice were affected by cultivar identity. Brown rice processed from suitable cultivars with both a relatively thinner bran layer and relatively higher grain amylose content met consumer requirements in terms of acceptable texture and improved health benefits.
Collapse
Affiliation(s)
- Min Huang
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xing Li
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Liqin Hu
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhengwu Xiao
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiana Chen
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Fangbo Cao
- Crop and Environment Research Center for Human Health, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
127
|
Rice Compounds with Impact on Diabetes Control. Foods 2021; 10:foods10091992. [PMID: 34574099 PMCID: PMC8467539 DOI: 10.3390/foods10091992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/20/2023] Open
Abstract
Rice is one of the most cultivated and consumed cereals worldwide. It is composed of starch, which is an important source of diet energy, hypoallergenic proteins, and other bioactive compounds with known nutritional functionalities. Noteworthy is that the rice bran (outer layer of rice grains), a side-stream product of the rice milling process, has a higher content of bioactive compounds than white rice (polished rice grains). Bran functional ingredients such as γ-oryzanol, phytic acid, ferulic acid, γ-aminobutyric acid, tocopherols, and tocotrienols (vitamin E) have been linked to several health benefits. In this study, we reviewed the effects of rice glycemic index, macronutrients, and bioactive compounds on the pathological mechanisms associated with diabetes, identifying the rice compounds potentially exerting protective activities towards disease control. The effects of starch, proteins, and bran bioactive compounds for diabetic control were reviewed and provide important insights about the nutritional quality of rice-based foods.
Collapse
|
128
|
Müller A, Coradi PC, Nunes MT, Grohs M, Bressiani J, Teodoro PE, Anschau KF, Flores EMM. Effects of cultivars and fertilization levels on the quality of rice milling: A diagnosis using near-infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Food Res Int 2021; 147:110524. [PMID: 34399502 DOI: 10.1016/j.foodres.2021.110524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
Cultivars and fertilization levels influence rice productivity and can be associated with grain quality. Thus, it is possible to make decisions regarding the choice of cultivars and application of fertilizer levels based on the type of milling, a necessary post-harvest process that may minimize the nutrient load in the grains and result in loss in quality. This study relates the physicochemical composition and morphological quality of brown and polished milled rice grains, cultivar types, and different levels of soil fertilization using near-infrared spectroscopy analysis, X-ray diffraction and scanning electron microscopy. Statistical tools were used to test the various treatments and identify the relationship between factors and variables. A high fertilization level is related to increasing crude protein composition and starch for cultivar IRGA 431 CL associated with polished rice. However, the combination of cultivar IRGA 424 RI and brown rice demonstrated a higher grain resistance, and different percentages of whole, chalky, and damaged rice. The correlation between ash × crude protein and starch × crude fiber was found to be positive for brown rice and negative for the polished rice. Further, an increase in starch content was inversely proportional to the ash content, whereas an increase in crude protein was inversely proportional to the low-fat content in milled rice. The crystalline characteristics of rice starch were preserved at high fertilization levels associated with polished grains that demonstrated high starch content. Polished grains, however, showed more pores and cavities, and consequently greater permeabilities in the surface. It is recommended that batches of grains produced from cultivar IRGA 431 CL with high levels of fertilization be subjected to polished rice milling to achieve high protein and starch quality. However, grains from cultivar IRGA 424 RI with high levels of fertilization are recommended for brown rice milling owing to the high percentage of physical defects observed.
Collapse
Affiliation(s)
- Amanda Müller
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Paulo Carteri Coradi
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil; Department of Agricultural Engineering, Campus Cachoeira do Sul, Federal University of Santa Maria, Cachoeira do Sul, 96503-205 RS, Brazil.
| | - Marcela Trojahn Nunes
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Mara Grohs
- Rio-Grandense Rice Institute-IRGA, Cachoeira do Sul, 96506-750 RS, Brazil
| | - Joseane Bressiani
- Department of Food Science and Technology, University of Passo Fundo, Passo Fundo, 99052-900 RS, Brazil
| | - Paulo Eduardo Teodoro
- Department of Agronomy, Campus de Chapadão do Sul, Federal University of Mato Grosso do Sul, Chapadão do Sul, 79560-000 MS, Brazil
| | - Kellen Francine Anschau
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900 RS, Brazil
| | - Erico Marlon Moraes Flores
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900 RS, Brazil
| |
Collapse
|
129
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
130
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
131
|
AL-Ansi W, Mahdi AA, Al-Maqtari QA, Sajid BM, Al-Adeeb A, Ahmed A, Fan M, Li Y, Qian H, Jinxin L, Wang L. Characterization of molecular, physicochemical, and morphological properties of starch isolated from germinated highland barley. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
132
|
Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
133
|
Physiochemical, structural and in vitro starch digestibility properties of starch blended with fish oil and wheat gluten. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
134
|
Development of instant phirni mix (a traditional dairy dessert) from high amylose rice, skim milk powder and carboxymethyl cellulose-resistant starch, predicted glycemic index and stability during storage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
135
|
Li C, Hu Y, Zhang B. Plant cellular architecture and chemical composition as important regulator of starch functionality in whole foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
136
|
Zheng M, Ye A, Zheng B, Zhang Y. Impacts of Whey Protein on Digestion of Lotus Seed Starch Subjected to a Dynamic In Vitro Gastric Digestion. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
137
|
Tamura M, Kumagai C, Kaur L, Ogawa Y, Singh J. Cooking of short, medium and long-grain rice in limited and excess water: Effects on microstructural characteristics and gastro-small intestinal starch digestion in vitro. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
138
|
Lu X, Chang R, Lu H, Ma R, Qiu L, Tian Y. Effect of amino acids composing rice protein on rice starch digestibility. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
139
|
Wu X, Liang X, Dong X, Li R, Jiang G, Wan Y, Fu G, Liu C. Physical modification on the in vitro digestibility of Tartary buckwheat starch: Repeated retrogradation under isothermal and non-isothermal conditions. Int J Biol Macromol 2021; 184:1026-1034. [PMID: 34166697 DOI: 10.1016/j.ijbiomac.2021.06.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
The effects of repeated retrogradation (RR, range from 1 to 3 times) at different temperatures (4 °C; 4/25 °C, with a 24 h interval; 25 °C) on the in vitro digestibility and structures of Tartary buckwheat starch (TS) were investigated in this study. Results demonstrated that TS treated by RR for 1 time under 4/25 °C contained the maximum content of slowly digestible starch (SDS, 35.25%); TS treated by RR for 3 times under 25 °C contained the maximum content of resistant starch (RS, 54.92%). As the increase of RR cycle times, the value of relative crystallinity, the ratios of 1047/1022 cm-1 and 995/1022 cm-1 increased, the starch pore wall thickened, and more smooth fragments appeared (observed by scanning electron microscope), while the value of melting temperature range trended to decrease. The crystallization type of TS changed from type "A" to a mixture of "B + V" after retrogradation treatment. Pearson correlation analysis revealed that the content of rapidly digestible starch (RDS) was negatively correlated with the ratio of 995/1022 cm-1, transition temperatures, and enthalpy (P < 0.05). These results would supply a potential method for the preparation of starch with slow-digesting properties, also improve the utilization and expand the application of TS.
Collapse
Affiliation(s)
- Xiaojiang Wu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xianxian Dong
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guofu Jiang
- Jiangxi Chunsi Foods Co., Ltd., Zhangshu 331200, Jiangxi, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
140
|
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing health benefits of milled rice: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:8099-8119. [PMID: 34036858 DOI: 10.1080/10408398.2021.1925629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Milled rice is an essential part of the regular diet for approximately half of the world's population. Its remarkable commercial value and consumer acceptance are mostly due to its promising cooking qualities, appealing sensory properties, and longer shelf life. However, the significant loss of the nutrient-rich bran layer during milling makes it less nutritious than the whole grain. Thus, enhancing the nutritive value of milled rice is vital in improving the health and wellbeing of rice consumers, particularly for those residing in the low-economic zones where rice is the primary source of calories and nutrition. This article provides a critical review on multiple frontiers of recent interventions, such as (1) infusing the genetic diversity to enrich amylose and resistant starch to reduce glycaemic index, (2) enhancing the minerals and vitamins through complementary fortification and biofortification as short and long-term interventions, and (3) developing transgenic solutions to improve the nutrient levels of milled rice. Additionally, the review highlights the benefits of functional ingredients of milled rice to human health and the potential of enhancing them in rice to address the triple burden of malnutrition. The potential merit of milled rice concerning food safety is also reviewed in this article.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| | - Nese Sreenivasulu
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Cecilia Acuin
- Rice Breeding and Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI), South Asia Regional Centre, Varanasi, Uttar Pradesh (U.P.), India
| |
Collapse
|
141
|
Shi X, Ding Y, Wan J, Liu C, Prakash S, Xia X. Effect of Annealing on Structural, Physicochemical, and In Vitro Digestive Properties of Starch from
Castanopsis sclerophylla. STARCH-STARKE 2021. [DOI: 10.1002/star.202100005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaofei Shi
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| | - Yueping Ding
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| | - Jie Wan
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Xue Xia
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang Jiangxi 330047 China
| |
Collapse
|
142
|
Lal MK, Singh B, Sharma S, Singh MP, Kumar A. Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
143
|
Krishnan V, Mondal D, Thomas B, Singh A, Praveen S. Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review. Int J Biol Macromol 2021; 182:626-638. [PMID: 33838192 DOI: 10.1016/j.ijbiomac.2021.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/08/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Starch bioavailability which results in eliciting postprandial glycaemic response, is a trait of great significance and is majorly influenced by the physical interaction among the matrix components governed by their molecular structure as well as dynamics. Among physical interactions limiting starch bioavailability, starch and any guest molecules like lipid interact together to alter the molecular structure into a compact V-type arrangement endorsing the processed crystallinity, thus limiting carbolytic enzymatic digestion and further bioavailability. Considering the importance of starch-lipid dynamics affecting bioavailability, intensive research based on endogenous (internal lipids which are embedded into the food matrix) as well as exogenous (those are added from outside into the food matrix during processing like cooking) lipids have been carried out, endorsing physical interactions at colloidal and microstructural levels. The shared insights on such binary (starch-lipid) interactions revealed the evolution of characterization techniques as well as their role on altering the functional and nutritional value. It is very much vital to have a thorough understanding about the mechanisms on the molecular level to make use of these matrix interactions in the most efficient way, while certain basic questions are still remaining unaddressed. Do starch - lipid complexation affects the ultimate starch bioavailability? If so, then whether such complexation ability depends on amylose - fatty acid/lipid content? Whether the complexation is influenced further by fatty acid type/concentration/chain length or saturation? Further comprehending this, whether the altered bioavailability by binary (starch-lipid) could further be affected by ternary (starch-lipid-protein) and quaternary (starch-lipid-protein-phenolics) interactions are also discussed in this comprehensive review.
Collapse
Affiliation(s)
- Veda Krishnan
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Debarati Mondal
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Bejoy Thomas
- Department of Chemistry, Newman College, Kerala, India
| | - Archana Singh
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| |
Collapse
|
144
|
|
145
|
Al-Ansi W, Sajid BM, Mahdi AA, Al-Maqtari QA, Al-Adeeb A, Ahmed A, Fan M, Li Y, Qian H, Jinxin L, Wang L. Molecular structure, morphological, and physicochemical properties of highlands barley starch as affected by natural fermentation. Food Chem 2021; 356:129665. [PMID: 33813206 DOI: 10.1016/j.foodchem.2021.129665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
The influence of natural fermentation on the highlands barley starch chemical structure, morphological, physicochemical, and thermal properties was studied. The findings showed that fermentation had no impact on starch fine structure but it decreased the molecular-weight from 2.26 to 1.04 × 108 g/mol in native highlands barley and after 72 h fermentation (FHB72) respectively. Also, it decreased amylopectin long-chains (B1 and B2) while increased short-chains. The intensity ratio of FT-IR at 995/1022 and 1047/1022 bands were found to be higher as the time of fermentation progressed, and the highest absorption-intensity at 3000-3600 cm-1 and higher swelling capacity were noticed in the starch of FHB72. During fermentation, pasting peak, final and setback viscosities were decreased. Microscopically, granules with more pores, damaged, cracked, and no growth rings were found in starches isolated after 48 h and 72 h of fermentation. This study indicated that fermentation up to 72 h is an effective method to modify highlands barley starch.
Collapse
Affiliation(s)
- Waleed Al-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen.
| | - Bilal Mushtaq Sajid
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Amer Ali Mahdi
- Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qais Ali Al-Maqtari
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen; Department of Biology, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Abduqader Al-Adeeb
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Aqsa Ahmed
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Liu Jinxin
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
146
|
Li H, Xu M, Chen Z, Li J, Wen Y, Liu Y, Wang J. Effects of the degree of milling on starch leaching characteristics and its relation to rice stickiness. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
147
|
Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
148
|
Møller MS, Svensson B. Enzymes in grain processing. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
149
|
Ding Y, Cheng J, Lin Q, Wang Q, Wang J, Yu G. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
150
|
Sivakamasundari SK, Priyanga S, Moses JA, Anandharamakrishnan C. Impact of processing techniques on the glycemic index of rice. Crit Rev Food Sci Nutr 2021; 62:3323-3344. [PMID: 33499662 DOI: 10.1080/10408398.2020.1865259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rice is an important starchy staple food and generally, rice varieties are known to have a higher glycemic index (GI). Over the years, the significance of GI on human health is being better understood and is known to be associated with several lifestyle disorders. Apart from the intrinsic characteristics of rice, different food processing techniques are known to have implications on the GI of rice. This work details the effect of domestic and industrial-level processing techniques on the GI of rice by providing an understanding of the resulting physicochemical changes. An attempt has been made to relate the process-dependent digestion behavior, which in turn reflects on the GI. The role of food constituents is elaborated and the various in vitro and in vivo approaches that have been used to determine the GI of foods are summarized. Considering the broader perspective, the effect of cooking methods and additives is explained. Given the significance of the cereal grain, this work concludes with the challenges and key thrust areas for future research.
Collapse
Affiliation(s)
- S K Sivakamasundari
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - S Priyanga
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing, Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|