101
|
Schmidt L, Baskaran S, Johansson P, Padhan N, Matuszewski D, Green LC, Elfineh L, Wee S, Häggblad M, Martens U, Westermark B, Forsberg-Nilsson K, Uhrbom L, Claesson-Welsh L, Andäng M, Sintorn IM, Lundgren B, Lönnstedt I, Krona C, Nelander S. Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget 2018; 7:73200-73215. [PMID: 27689322 PMCID: PMC5341973 DOI: 10.18632/oncotarget.12298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM, astrocytoma grade IV) is the most common malignant primary brain tumor in adults. Addressing the shortage of effective treatment options for this cancer, we explored repurposing of existing drugs into combinations with potent activity against GBM cells. We report that the phytoalexin pterostilbene is a potentiator of two drugs with previously reported anti-GBM activity, the EGFR inhibitor gefitinib and the antidepressant sertraline. Combinations of either of these two compounds with pterostilbene suppress cell growth, viability, sphere formation and inhibit migration in tumor GBM cell (GC) cultures. The potentiating effect of pterostilbene was observed to a varying degree across a panel of 41 patient-derived GCs, and correlated in a case specific manner with the presence of missense mutation of EGFR and PIK3CA and a focal deletion of the chromosomal region 1p32. We identify pterostilbene-induced cell cycle arrest, synergistic inhibition of MAPK activity and induction of Thioredoxin interacting protein (TXNIP) as possible mechanisms behind pterostilbene's effect. Our results highlight a nontoxic stilbenoid compound as a modulator of anticancer drug response, and indicate that pterostilbene might be used to modulate two anticancer compounds in well-defined sets of GBM patients.
Collapse
Affiliation(s)
| | | | | | | | - Damian Matuszewski
- Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Lydia C Green
- Sahlgrenska Cancer Center, Institute of Medicine, Gothenburg, Sweden
| | | | - Shimei Wee
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Maria Häggblad
- Cell Screening Facility, Science for Life Laboratory Stockholm, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Ulf Martens
- Cell Screening Facility, Science for Life Laboratory Stockholm, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | | | - Lene Uhrbom
- Life Laboratory, Uppsala University, Uppsala Sweden
| | | | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Ida-Maria Sintorn
- Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Bo Lundgren
- Cell Screening Facility, Science for Life Laboratory Stockholm, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | | | | |
Collapse
|
102
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
103
|
Lin CJ, Lin YL, Luh F, Yen Y, Chen RM. Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 2018; 7:42408-42421. [PMID: 27285755 PMCID: PMC5173144 DOI: 10.18632/oncotarget.9878] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are difficult to treat in clinical practice. This study was aimed to investigate the preclinical efficacy of CRLX101, an investigational nanoparticle-drug conjugate developed by conjugating camptothecin (CPT) with cyclodextrin-polyethylene glycol, against gliomas. CPT fluorescence was detected across tight-junction barriers and in mouse plasma and brain. Following CRLX101 treatment, CPT was distributed in the cytoplasm of human U87 MG glioma cells. U87 MG cell viability was decreased by CRLX101 and CPT. Moreover, CRLX101 induced less cytotoxicity to human astrocytes compared to CPT. Exposure of U87 MG cells to CRLX101 induced G2/M cell cycle arrest and apoptosis. Administration of CRLX101 induced apoptosis in mice brain tumor tissues and prolonged the survival rate of mice. In addition, CRLX101 inhibited hypoxia and angiogenesis by suppressing the expression of carbonic anhydrase IX, vascular endothelial growth factor, and CD31 in tumor sections. Taken together, this preclinical study showed that CRLX101 possesses antitumor abilities by inducing cell cycle arrest and apoptosis in glioma cells and inhibiting tumor angiogenesis, thereby prolonging the lifespan of mice bearing intracranial gliomas. These data support further research of CRLX101 in patients with brain tumors.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Temple City, California, USA
| | - Yun Yen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Anesthetics and Toxicology Research Center and Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
104
|
Zhang Z, Liu Z, Chen J, Yi J, Cheng J, Dun W, Wei H. Resveratrol induces autophagic apoptosis via the lysosomal cathepsin D pathway in human drug-resistant K562/ADM leukemia cells. Exp Ther Med 2018; 15:3012-3019. [PMID: 29456707 DOI: 10.3892/etm.2018.5742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the crosstalk between resveratrol (Res)-induced autophagy and apoptosis, and the molecular pathway by which autophagy leads to apoptotic death in drug-resistant K562/ADM leukemia cells. The viability of K562/ADM cells was determined using the MTT assay. The formation of autophagic vacuoles was detected using transmission electron microscopy and monodansylcadaverine (MDC) staining. Cell apoptosis was evaluated using flow cytometry. The expression of apoptosis- or autophagy-associated proteins was measured using western blotting. The results indicated that treatment with Res inhibited cell viability in a concentration-dependent manner. Furthermore, the numbers of MDC-positive fluorescent points, autophagic vacuoles and autolysosome-engulfed cytoplasmic materials were markedly increased in Res-treated K562/ADM cells compared with untreated cells, as determined using fluorescence microscopy and transmission electron microscopy. Res-induced apoptosis was associated with increased cleaved caspase-3 and B-cell lymphoma 2 associated X protein, and decreased B-cell lymphoma 2 (Bcl-2) protein expression levels when compared with the control (P<0.05). However, the proportion of apoptotic cells decreased from 69.6 to 41.0% (40 µmol/l Res) and from 77.3 to 58.8% (80 µmol/l Res) following pre-treatment with the autophagy inhibitor 3-methyladenine (P<0.01). The protein expression levels of microtubule-associated protein 1A/1B-light chain 3 and beclin 1, two markers of autophagy, were upregulated in Res-treated cells compared with the control (P<0.05). In addition, lysosomal cathepsin D (Cath D) release increased during Res-induced autophagy and apoptosis (P<0.05). The present results demonstrated that Res-induced apoptosis of K562/ADM cells was autophagy-dependent and the released Cath D may trigger caspase-dependent cell death through the Bcl-2 family of proteins. Furthermore, the present data indicate that to enhancement of the autophagy-cathepsin-apoptosis pathway may be an effective approach for overcoming anticancer drug resistance.
Collapse
Affiliation(s)
- Zhewen Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhuan Liu
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Yi
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Cheng
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wangqing Dun
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hulai Wei
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
105
|
Wu W, Schecker J, Würstle S, Schneider F, Schönfelder M, Schlegel J. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells. Cancer Lett 2018; 417:112-123. [PMID: 29306018 DOI: 10.1016/j.canlet.2017.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Aldehyde dehydrogenase is a polymorphic enzyme, which responsible for the oxidation of aldehydes. It has been shown that ALDH1A3 is expressed in human glioblastomas and that its expression correlates with a worse prognosis. In our present study ALDH1A3 expression was associated with resistance against Temozolomide (TMZ) treatment and sensitivity could be re-established in ALDH1A3 knockout cells. TMZ treatment at high concentrations diminished ALDH1A3 protein and this downregulation made the tumor cells more sensitive to chemotherapy. ALDH1A3 was post-transcriptionally regulated since mRNA levels were not affected by TMZ treatment. With increasing concentrations of TMZ, autophagy was up-regulated, and we found evidence for a physical interaction between ALDH1A3 and p62, an important adaptor protein in autophagosomes indicating that ALDH1A3 protein was downregulated by autophagy. So far, the results of the exact role of autophagy in tumor development and tumor growth are inconsistent. Our data indicate that ALDH1A3, that is directly involved in therapy resistance of glioblastoma, is regulated by autophagy during chemotherapy.
Collapse
Affiliation(s)
- Wei Wu
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany
| | - Johannes Schecker
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany
| | - Sylvia Würstle
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany
| | - Fabian Schneider
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany
| | - Martin Schönfelder
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany
| | - Jürgen Schlegel
- Division of Neuropathology, Institute of Pathology, Technische Universität München, Ismaninger Str.22, 81675, München, Germany.
| |
Collapse
|
106
|
Zhu Z, Du S, Du Y, Ren J, Ying G, Yan Z. Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem 2017; 144:93-104. [PMID: 29105080 DOI: 10.1111/jnc.14250] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment.
Collapse
Affiliation(s)
- Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yibo Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jing Ren
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guoguang Ying
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
107
|
Langhans J, Schneele L, Trenkler N, von Bandemer H, Nonnenmacher L, Karpel-Massler G, Siegelin MD, Zhou S, Halatsch ME, Debatin KM, Westhoff MA. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Oncogenesis 2017; 6:398. [PMID: 29184057 PMCID: PMC5868055 DOI: 10.1038/s41389-017-0004-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
The PI3K/Akt/mTOR signalling network is activated in almost 90% of all glioblastoma, the most common primary brain tumour, which is almost invariably lethal within 15 months of diagnosis. Despite intensive research, modulation of this signalling cascade has so far yielded little therapeutic benefit, suggesting that the role of the PI3K network as a pro-survival factor in glioblastoma and therefore a potential target in combination therapy should be re-evaluated. Therefore, we used two distinct pharmacological inhibitors that block signalling at different points of the cascade, namely, GDC-0941 (Pictilisib), a direct inhibitor of the near apical PI3K, and Rapamycin which blocks the side arm of the network that is regulated by mTOR complex 1. While both substances, at concentrations where they inhibit their primary target, have similar effects on proliferation and sensitisation for temozolomide-induced apoptosis, GDC-0941 appears to have a stronger effect on cellular motility than Rapamycin. In vivo GDC-0941 effectively retards growth of orthotopic transplanted human tumours in murine brains and significantly prolongs mouse survival. However, when looking at genetically identical cell populations that are in alternative states of differentiation, i.e. stem cell-like cells and their differentiated progeny, a more complex picture regarding the PI3K/Akt/mTOR pathway emerges. The pathway is differently regulated in the alternative cell populations and, while it contributes to the increased chemo-resistance of stem cell-like cells compared to differentiated cells, it only contributes to the motility of the latter. Our findings are the first to suggest that within a glioblastoma tumour the PI3K network can have distinct, cell-specific functions. These have to be carefully considered when incorporating inhibition of PI3K-mediated signals into complex combination therapies.
Collapse
Affiliation(s)
- Julia Langhans
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Lukas Schneele
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Nancy Trenkler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hélène von Bandemer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Shaoxia Zhou
- Department of Clinical Chemistry, University Medical Center Ulm, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
108
|
Zheng Y, Su C, Zhao L, Shi Y. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. J Nanobiotechnology 2017; 15:66. [PMID: 28978341 PMCID: PMC5628454 DOI: 10.1186/s12951-017-0302-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) that act against the epithelial growth factor receptor (EGFR) were once widely used in chemotherapy for many human cancers. However, acquired chemoresistance occurred in almost all patients, limiting the clinical application of EGFR-TKI. Thus far, no effective methods existing can resolve this problem. Designing a therapeutic treatment with a specific multi-target profile has been regarded as a possible strategy to overcome acquired EGFR-TKI resistance. METHODS MDR1 antibody-modified chitosan nanoparticles loading gefitinib and autophagy inhibitor chloroquine were prepared by ionic crosslinking and electrostatic attracting method. MTT assay, flow cytometry analysis and western blot assay were all performed to confirm the effect of different formulations of gefitinib on the proliferation of SMMC-7721/gefitinib cells. The preparations demonstrated their multi-target potential to achieve both tumor-targeting selectivity and the desired antitumor effects by blocking cell-surface MDR1 and inhibiting autophagy. RESULTS mAb MDR1-modified CS NPs, when combined with the co-delivery of gefitinib and chloroquine, showed targeting and therapeutic potential on enhancing the delivery of anticancer drugs and inducing significant cell apoptosis against acquired EGFR-TKI resistance through the modulation of autophagy and while blocking the activity of the MDR1 receptor. CONCLUSIONS A new approach to design an excellent nanoparticle drug-delivery system can overcome acquired EGFR-TKI resistance against various multiple antitumor targets.
Collapse
Affiliation(s)
- Yan Zheng
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
| |
Collapse
|
109
|
Catanzaro E, Calcabrini C, Turrini E, Sestili P, Fimognari C. Nrf2: a potential therapeutic target for naturally occurring anticancer drugs? Expert Opin Ther Targets 2017; 21:781-793. [PMID: 28675319 DOI: 10.1080/14728222.2017.1351549] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nuclear factor (erythroid-derived-2)-like 2 is one of the most efficient cytoprotective rheostats against exogenous or endogenous oxidative insults. At present, the modulation of the Nrf2 pathway represents an interesting and highly explored strategy in the oncological area. Area covered: In this review, we present and discuss the different modulation of the Nrf2 pathway by some natural compounds with a well demonstrated anticancer activity, and critically analyze the challenges associated with the development of an Nrf2-based anticancer strategy. Expert opinion: Many natural compounds with a well-defined anticancer activity are able to modulate this pathway. Both Nrf2 inducers and inhibitors can be useful as anticancer strategy. However, since Nrf2 modulates many networks potentially involved in the detoxification process of anticancer drugs, its activation in cancer cells could lead to chemoresistance. The switch between a beneficial or detrimental role of Nrf2 in cancer cells essentially depends on the tight control of its activity, the specific conditions of tumor microenvironment, and cell type. In line with the paucity of clear data related to the mechanisms underpinning the role of Nrf2 in cancer development and chemoresistance, discovery and development of Nrf2-based strategies is one of the most critical and challenging assignments for fighting cancers.
Collapse
Affiliation(s)
- Elena Catanzaro
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Cinzia Calcabrini
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Eleonora Turrini
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| | - Piero Sestili
- b Department of Biomolecular Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Carmela Fimognari
- a Department for Life Quality Studies , Alma Mater Studiorum-University of Bologna , Rimini , Italy
| |
Collapse
|
110
|
Abstract
Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.
Collapse
|
111
|
Wu WS, Chien CC, Liu KH, Chen YC, Chiu WT. Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:879-899. [PMID: 28514905 DOI: 10.1142/s0192415x17500471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited the EVO-induced apoptosis was inhibited. Additionally, EVO treatment induced G2/M arrest with increased polymerized tubulin protein expression in U87 and C6 cells. Elevated expressions of the cyclin B1, p53, and phosphorylated (p)-p53 proteins were detected in EVO-treated glioma cells, and these were inhibited by JNK inhibitors. An in vivo study showed that EVO significantly reduced the growth of gliomas elicited by the subcutaneous injection of U87 cells with increases in cyclin B1, p53, and p-p53 protein expressions in tumors. An analysis of eight EVO-related chemicals showed that alkyl groups at position 14 in EVO are important for its anti-glioma effects which involve both apoptosis and G2/M arrest. Evidence is provided that supports EVO induction of apoptosis and G2/M arrest via the activation of JNK-mediated gene expression and disruption of MMP in glioblastoma cells. EVO was shown to penetrate the blood-brain barrier; EVO is therefore predicted to be a promising compound for the chemotherapy of glioblastomas and deserves further investigations.
Collapse
Affiliation(s)
- Wen-Shin Wu
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,† Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chiang Chien
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,∥ Department of Nephrology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kao-Hui Liu
- ¶ Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan.,** Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Chou Chen
- * Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,†† Cancer Research Center and Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wen-Ta Chiu
- ‡ Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,§ Department of Neurosurgery, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
112
|
Oancea-Castillo LR, Klein C, Abdollahi A, Weber KJ, Régnier-Vigouroux A, Dokic I. Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines. Cancer Biol Ther 2017; 18:400-406. [PMID: 28494176 PMCID: PMC5536935 DOI: 10.1080/15384047.2017.1323583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treatments with TMZ and radiation on 2 human GBM cell lines characterized by a lack of MGMT expression and low or high expression of the anti-oxidant enzyme, glutathione peroxidase 1 (GPx1). Effects were drug concentration-, cell line-dependent and partly ROS-mediated. Clonogenic survival assay demonstrates that SKI was more effective than TMZ in increasing the sensitivity of U87 cells, which express low GPx1 amount, to a 2 Gy X-ray dose. Addition of both SKI and TMZ drastically decreased U87 cells survival compared with the combination temozolomide/radiation. SKI less effectively than TMZ sensitized LN229 cells to the 2 Gy X-ray dose. Its combination to TMZ in absence of irradiation was as efficient as TMZ combination with X-ray. We provide first evidence for SKI as an alternative or complementary treatment to TMZ, and for efficient combinations of low doses of drugs and X-ray. These may help as novel bi-modal and tri-modal therapies to contend with GBM heterogeneity.
Collapse
Affiliation(s)
- Liliana R Oancea-Castillo
- a Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz , Mainz , Germany
| | - Carmen Klein
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Amir Abdollahi
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Klaus-Josef Weber
- c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Anne Régnier-Vigouroux
- a Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz , Mainz , Germany
| | - Ivana Dokic
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| |
Collapse
|
113
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
114
|
Gu YP, Yang XM, Luo P, Li YQ, Tao YX, Duan ZH, Xiao W, Zhang DY, Liu HZ. Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells. Carbohydr Polym 2017; 163:270-279. [DOI: 10.1016/j.carbpol.2017.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
|
115
|
Bisindolylmaleimide alkaloid BMA-155Cl induces autophagy and apoptosis in human hepatocarcinoma HepG-2 cells through the NF-κB p65 pathway. Acta Pharmacol Sin 2017; 38:524-538. [PMID: 28260799 DOI: 10.1038/aps.2016.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Bisindolylmaleimides, a series of derivatives of a PKC inhibitor staurosporine, exhibit potential as anti-cancer drugs and have received considerable attention in clinical trials. This study aims to investigate the effects of a bisindolylmaleimide alkaloid 155Cl (BMA-155Cl) with a novel structure on autophagy and apoptosis in human hepatocarcinoma HepG-2 cells in vitro and in vivo. The cell poliferation was assessed with a MTT assay. Autophagy was evaluated by MDC staining and TEM analysis. Apoptosis was investigated using Annexin V-FITC/PI and DAPI staining. The antitumor effects were further evaluated in nude mice bearing HepG-2 xenografts, which received BMA-155Cl (10, 20 mg/kg, ip) for 18 days. Autophagy- and apoptosis-associated proteins and their mRNA levels were examined with Western blotting, immunohistochemistry, and RT-PCR. BMA-155Cl (2.5-20 μmol/L) inhibited the growth of HepG-2 cells with IC50 values of 16.62±1.34, 12.21±0.83, and 8.44±1.82 μmol/L at 24, 48, and 72 h, respectively. Furthermore, BMA-155Cl (5-20 μmol/L) dose-dependently induced autophagy and apoptosis in HepG-2 cells. The formation of autophagic vacuoles was induced by BMA-155Cl (10 μmol/L) at approximately 6 h and peaked at approximately 15 h. Pretreatment with 3-MA potentiated BMA-155Cl-mediated apoptotic cell death. This compound dose-dependently increased the mRNA and protein levels of Beclin-1, NF-κB p65, p53, and Bax, but decreased the expression of IκB and Bcl-2. Pretreatment with BAY 11-7082, a specific inhibitor of NF-κB p65, blocked BMA-155Cl-induced expression of autophagy- and apoptosis-associated proteins. BMA-155Cl administration effectively suppressed the growth of HepG-2 xenografts in vivo, and increased the protein expression levels of LC3B, Beclin-1, NF-κB p65, and Bax in vivo. We conclude that the NF-κB p65 pathway is involved in BMA-155Cl-triggered autophagy, followed by apoptosis in HepG-2 cells in vitro and in vivo. Hence, BMA-155Cl could be a promising pro-apoptotic candidate for developing as a novel anti-cancer drug.
Collapse
|
116
|
Khazaei M, Pazhouhi M. Temozolomide-Mediated Apoptotic Death Is Improved by Thymoquinone in U87MG Cell Line. Cancer Invest 2017; 35:225-236. [PMID: 28355088 DOI: 10.1080/07357907.2017.1289383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis induction of cancer cells can be an appropriate strategy by which chemotherapeutic agents kill tumor cells. The aim of the present study was to investigate the effect of temozolomide and thymoquinone combination on apoptotic pathway of human glioblastoma multiforme cell line (U87MG). U87MG cells were cultured, treated with temozolomide and thymoquinone, and cell proliferation was measured. Apoptosis cell death and its possible mechanism were investigated by various methods. Combination of temozolomide and thymoquinone had a synergistic effect on cells viability. Thymoquinone intensified the temozolomide-induced apoptosis. Combination of temozolomide and thymoquinone can be a good strategy for treatment of glioblastoma.
Collapse
Affiliation(s)
- Mozafar Khazaei
- a Fertility and Infertility Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Mona Pazhouhi
- a Fertility and Infertility Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
117
|
Marutani A, Nakamura M, Nishimura F, Nakazawa T, Matsuda R, Hironaka Y, Nakagawa I, Tamura K, Takeshima Y, Motoyama Y, Boku E, Ouji Y, Yoshikawa M, Nakase H. Tumor-inhibition effect of levetiracetam in combination with temozolomide in glioblastoma cells. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Rutin increases the cytotoxicity of temozolomide in glioblastoma via autophagy inhibition. J Neurooncol 2017; 132:393-400. [PMID: 28293765 DOI: 10.1007/s11060-017-2387-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022]
Abstract
The chemotherapeutic agent temozolomide (TMZ) is widely used in the treatment of glioblastoma multiforme (GBM). Rutin, a citrus flavonoid ecglycoside found in edible plants, has neuroprotective and anticancer activities. This study aimed to investigate the efficacy and the underlying mechanisms of rutin used in combination with TMZ in GBM. In vitro cell viability assay demonstrated that rutin alone had generally low cytotoxic effect, but it enhanced the efficacy of TMZ in a dose-dependent manner. Subcutaneous and orthotopic xenograft studies also showed that tumor volumes were significantly lower in mice receiving combined TMZ/Rutin treatment as compared to TMZ or rutin alone treatment. Moreover, immunoblotting analysis showed that TMZ activated JNK activity to induce protective response autophagy, which was blocked by rutin, resulting in decreased autophagy and increased apoptosis, suggesting that rutin enhances TMZ efficacy both in vitro and in vivo via inhibiting JNK-mediated autophagy in GBM. The combination rutin with TMZ may be a potentially useful therapeutic approach for GBM patient.
Collapse
|
119
|
Xu H, Jia F, Singh PK, Ruan S, Zhang H, Li X. Synergistic anti-glioma effect of a coloaded nano-drug delivery system. Int J Nanomedicine 2016; 12:29-40. [PMID: 28031711 PMCID: PMC5179207 DOI: 10.2147/ijn.s116367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The anti-glioma effect of temozolomide (Tem) is sometimes undermined by the emerging resistance. Recently, resveratrol (Res), herbal medicine extracted from grape seeds, has been demonstrated for its potential use in chemosensitization. In the current study, both these drugs were loaded simultaneously into nanoparticles with methoxy poly(ethylene glycol)-poly epsilon caprolactone (mPEG-PCL) as drug carriers in order to achieve better antitumor efficiency. Tem/Res-coloaded mPEG-PCL nanoparticles were constructed, characterized, and tested for antitumor effect on glioma cells by using in vitro and xenograft model system. The nanoparticle constructs were satisfactory with drug loading content (Res =~12.4%; Tem =~9.3%) and encapsulation capacity of >85% for both the drugs. In addition, the coencapsulation led to better in vitro stability of the nanoparticles than Tem-loaded nanoparticles. An in vitro uptake study demonstrated a high uptake efficiency of the nanoparticles by glioma cells. The synergistic antitumor effect against glioma cells was observed in the combinational treatment of Res and Tem. Tem/Res-coloaded nanoparticles induced higher apoptosis in U87 glioma cells as compared to cells treated by the combination of free drugs. Tem/Res-coloaded particles caused more effective inhibition of phosphor-Akt, leading to upregulation of the downstream apoptotic proteins. In addition, the in vivo study showed the superior tumor delaying effect of coloaded nanoparticles than that of free drug combination. These results suggest that Tem/Res-coloaded nanoparticles could be a potential useful chemotherapeutic formulation for glioma therapy.
Collapse
Affiliation(s)
- Huae Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing
| | - Feng Jia
- Department of Neurosurgery, Yancheng City No 1 People's Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, People's Republic of China
| | - Pankaj Kumar Singh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shu Ruan
- Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng
| | - Hao Zhang
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
120
|
The CHAC1-inhibited Notch3 pathway is involved in temozolomide-induced glioma cytotoxicity. Neuropharmacology 2016; 116:300-314. [PMID: 27986595 DOI: 10.1016/j.neuropharm.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/21/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the high-grade primary glioma in adults. Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug for clinical therapy. However, the expense of TMZ therapy and increasing drug resistance to TMZ decreases its therapeutic effects. Therefore, our aim was to investigate the detailed molecular mechanisms of TMZ-mediated cytotoxicity to enhance the efficacy of TMZ in clinical GBM therapy. First, TMZ-mediated gene expression profiles and networks in U87-MG cells were identified by transcriptome microarray and bioinformatic analyses. Cation transport regulator-like protein 1 (CHAC1) was the most highly TMZ-upregulated gene. Overexpression and knockdown of CHAC1 expression significantly influenced TMZ-mediated cell viability, apoptosis, caspase-3 activation, and poly(ADP ribose) polymerase (PARP) degradation. The c-Jun N-terminal kinase (JNK)1/c-JUN pathway was identified to participate in TMZ-upregulated CHAC1 expression via transcriptional control. Furthermore, CHAC1 levels were significantly decreased in GBM cell lines, TCGA array data, and tumor tissues. Overexpression of CHAC1 enhanced glioma apoptotic death via caspase-3/9 activation, PARP degradation, autophagy formation, reactive oxygen species generation, increased intracellular calcium, and loss of the mitochondria membrane potential. Finally, we also identified that TMZ significantly reduced Notch3 levels, which are upregulated in gliomas. TMZ also induced CHAC1 to bind to the Notch3 protein and inhibit Notch3 activation, resulting in attenuation of Notch3-mediated downstream signaling pathways. These results emphasize that CHAC1-inhibited Notch3 signaling can influence TMZ-mediated cytotoxicity. Our findings may provide novel therapeutic strategies for future glioblastoma therapy.
Collapse
|
121
|
Chen PH, Cheng CH, Shih CM, Ho KH, Lin CW, Lee CC, Liu AJ, Chang CK, Chen KC. The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death. PLoS One 2016; 11:e0167096. [PMID: 27893811 PMCID: PMC5125683 DOI: 10.1371/journal.pone.0167096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), an alkylating agent of the imidazotetrazine series, is a first-line chemotherapeutic drug used in the clinical therapy of glioblastoma multiforme, the most common and high-grade primary glioma in adults. Micro (mi)RNAs, which are small noncoding RNAs, post-transcriptionally regulate gene expressions and are involved in gliomagenesis. However, no studies have reported relationships between TMZ and miRNA gene regulation. We investigated TMZ-mediated miRNA profiles and its molecular mechanisms underlying the induction of glioma cell death. By performing miRNA microarray and bioinformatics analyses, we observed that expression of 248 miRNAs was altered, including five significantly upregulated and 17 significantly downregulated miRNAs, in TMZ-treated U87MG cells. miR-128 expression levels were lower in different glioma cells and strongly associated with poor survival. TMZ treatment significantly upregulated miR-128 expression. TMZ significantly enhanced miR-128-1 promoter activity and transcriptionally regulated miR-128 levels through c-Jun N-terminal kinase 2/c-Jun pathways. The overexpression and knockdown of miR-128 expression significantly affected TMZ-mediated cell viability and apoptosis-related protein expression. Furthermore, the overexpression of miR-128 alone enhanced apoptotic death of glioma cells through caspase-3/9 activation, poly(ADP ribose) polymerase degradation, reactive oxygen species generation, mitochondrial membrane potential loss, and non-protective autophagy formation. Finally, we identified that key members in mammalian target of rapamycin (mTOR) signaling including mTOR, rapamycin-insensitive companion of mTOR, insulin-like growth factor 1, and PIK3R1, but not PDK1, were direct target genes of miR-128. TMZ inhibited mTOR signaling through miR-128 regulation. These results indicate that miR-128-inhibited mTOR signaling is involved in TMZ-mediated cytotoxicity. Our findings may provide a better understanding of cytotoxic mechanisms of TMZ involved in glioblastoma development.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Cheng-Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
122
|
Cheng YT, Yang CC, Shyur LF. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res 2016; 114:128-143. [PMID: 27794498 DOI: 10.1016/j.phrs.2016.10.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
In spite of the current advances and achievements in systems biology and translational medicinal research, the current strategies for cancer therapy, such as radiotherapy, targeted therapy, immunotherapy and chemotherapy remain palliative or unsatisfactory due to tumor metastasis or recurrence after surgery/therapy, drug resistance, adverse side effects, and so on. Oxidative stress (OS) plays a critical role in chronic/acute inflammation, carcinogenesis, tumor progression, and tumor invasion/metastasis which is also attributed to the dynamic and complex properties and activities in the tumor microenvironment (TME). Re-educating or reprogramming tumor-associated stromal or immune cells in the TME provides an approach for restoring immune surveillance impaired by disease in cancer patients to increase overall survival and reduce drug resistance. Herbal medicines or plant-derived natural products have historically been a major source of anti-cancer drugs. Delving into the lore of herbal medicine may uncover new leads for anti-cancer drugs. Phytomedicines have been widely documented to directly or indirectly target multiple signaling pathways and networks in cancer cells. A combination of anti-cancer drugs and polypharmacological plant-derived extracts or compounds may offer a significant advantage in sensitizing the efficacy of monotherapy and overcoming drug-induced resistance in cancer patients. This review introduces several phytochemicals and phytoextracts derived from medicinal plants or dietary vegetables that have been studied for their efficacy in preclinical cancer models. We address the underlying modes of action of induction of OS and deregulation of TME-associated stromal cells, mediators and signaling pathways, and reference the related clinical investigations that look at the single or combination use of phytochemicals and phytoextracts to sensitize anti-cancer drug effects and/or overcome drug resistance.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
123
|
Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Cassady K, Aboody KS. Increased Expression of System xc- in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance. Mol Cancer Res 2016; 14:1229-1242. [PMID: 27658422 DOI: 10.1158/1541-7786.mcr-16-0028] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/01/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is the most aggressive malignant primary brain tumor in adults. Several studies have shown that glioma cells upregulate the expression of xCT (SLC7A11), the catalytic subunit of system xc-, a transporter involved in cystine import, that modulates glutathione production and glioma growth. However, the role of system xc- in regulating the sensitivity of glioma cells to chemotherapy is currently debated. Inhibiting system xc- with sulfasalazine decreased glioma growth and survival via redox modulation, and use of the chemotherapeutic agent temozolomide together with sulfasalazine had a synergistic effect on cell killing. To better understand the functional consequences of system xc- in glioma, stable SLC7A11-knockdown and -overexpressing U251 glioma cells were generated. Modulation of SLC7A11 did not alter cellar proliferation but overexpression did increase anchorage-independent cell growth. Knockdown of SLC7A11 increased basal reactive oxygen species (ROS) and decreased glutathione generation resulting in increased cell death under oxidative and genotoxic stress. Overexpression of SLC7A11 resulted in increased resistance to oxidative stress and decreased chemosensitivity to temozolomide. In addition, SLC7A11 overexpression was associated with altered cellular metabolism including increased mitochondrial biogenesis, oxidative phosphorylation, and ATP generation. These results suggest that expression of SLC7A11 in the context of glioma contributes to tumorigenesis, tumor progression, and resistance to standard chemotherapy. IMPLICATIONS SLC7A11, in addition to redox modulation, appears to be associated with increased cellular metabolism and is a mediator of temozolomide resistance in human glioma, thus making system xC- a potential therapeutic target in glioblastoma multiforme. Mol Cancer Res; 14(12); 1229-42. ©2016 AACR.
Collapse
Affiliation(s)
- Monika D Polewski
- Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California. .,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Rosyli F Reveron-Thornton
- Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California.,Department of Biological Sciences, California State University, San Bernardino, California
| | - Gregory A Cherryholmes
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California.,Department of Cancer Immunotherapeutics and Tumor Immunology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Georgi K Marinov
- Division of Biology, California Institute of Technology, Pasadena, California
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California.,Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Karen S Aboody
- Department of Neurosciences, City of Hope National Medical Center and Beckman Research Institute, Duarte, California. .,Division of Neurosurgery, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| |
Collapse
|
124
|
Zanotto-Filho A, Masamsetti VP, Loranc E, Tonapi SS, Gorthi A, Bernard X, Gonçalves RM, Moreira JCF, Chen Y, Bishop AJR. Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis. Mol Cancer Ther 2016; 15:3000-3014. [PMID: 27638861 DOI: 10.1158/1535-7163.mct-16-0271] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents-induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000-14. ©2016 AACR.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - V Pragathi Masamsetti
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Eva Loranc
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Xavier Bernard
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Rosângela Mayer Gonçalves
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José C F Moreira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas. .,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
125
|
Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf B Biointerfaces 2016; 145:479-491. [DOI: 10.1016/j.colsurfb.2016.05.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022]
|
126
|
Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives. J Nat Med 2016; 71:16-26. [DOI: 10.1007/s11418-016-1020-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/11/2016] [Indexed: 12/18/2022]
|
127
|
Challenges in Analyzing the Biological Effects of Resveratrol. Nutrients 2016; 8:nu8060353. [PMID: 27294953 PMCID: PMC4924194 DOI: 10.3390/nu8060353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds.
Collapse
|
128
|
Lin CJ, Chen TL, Tseng YY, Wu GJ, Hsieh MH, Lin YW, Chen RM. Honokiol induces autophagic cell death in malignant glioma through reactive oxygen species-mediated regulation of the p53/PI3K/Akt/mTOR signaling pathway. Toxicol Appl Pharmacol 2016; 304:59-69. [PMID: 27236003 DOI: 10.1016/j.taap.2016.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 12/13/2022]
Abstract
Honokiol, an active constituent extracted from the bark of Magnolia officinalis, possesses anticancer effects. Apoptosis is classified as type I programmed cell death, while autophagy is type II programmed cell death. We previously proved that honokiol induces cell cycle arrest and apoptosis of U87 MG glioma cells. Subsequently in this study, we evaluated the effect of honokiol on autophagy of glioma cells and examined the molecular mechanisms. Administration of honokiol to mice with an intracranial glioma increased expressions of cleaved caspase 3 and light chain 3 (LC3)-II. Exposure of U87 MG cells to honokiol also induced autophagy in concentration- and time-dependent manners. Results from the addition of 3-methyladenine, an autophagy inhibitor, and rapamycin, an autophagy inducer confirmed that honokiol-induced autophagy contributed to cell death. Honokiol decreased protein levels of PI3K, phosphorylated (p)-Akt, and p-mammalian target of rapamycin (mTOR) in vitro and in vivo. Pretreatment with a p53 inhibitor or transfection with p53 small interfering (si)RNA suppressed honokiol-induced autophagy by reversing downregulation of p-Akt and p-mTOR expressions. In addition, honokiol caused generation of reactive oxygen species (ROS), which was suppressed by the antioxidant, vitamin C. Vitamin C also inhibited honokiol-induced autophagic and apoptotic cell death. Concurrently, honokiol-induced alterations in levels of p-p53, p53, p-Akt, and p-mTOR were attenuated following vitamin C administration. Taken together, our data indicated that honokiol induced ROS-mediated autophagic cell death through regulating the p53/PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ta-Liang Chen
- Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Hui Hsieh
- Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Wei Lin
- Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Brain Disease Research Center, Taipei Medical University Wan-Fang Hospital, Taipei, Taiwan; Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
129
|
Natsumeda M, Maitani K, Liu Y, Miyahara H, Kaur H, Chu Q, Zhang H, Kahlert UD, Eberhart CG. Targeting Notch Signaling and Autophagy Increases Cytotoxicity in Glioblastoma Neurospheres. Brain Pathol 2016; 26:713-723. [PMID: 26613556 DOI: 10.1111/bpa.12343] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
Glioblastomas are highly aggressive tumors that contain treatment resistant stem-like cells. Therapies targeting developmental pathways such as Notch eliminate many neoplastic glioma cells, including those with stem cell features, but their efficacy can be limited by various mechanisms. One potential avenue for chemotherapeutic resistance is the induction of autophagy, but little is known how it might modulate the response to Notch inhibitors. We used the γ-secretase inhibitor MRK003 to block Notch pathway activity in glioblastoma neurospheres and assessed its effects on autophagy. A dramatic, several fold increase of LC3B-II/LC3B-I autophagy marker was noted on western blots, along with the emergence of punctate LC3B immunostaining in cultured cells. By combining the late stage autophagy inhibitor chloroquine (CQ) with MRK003, a significant induction in apoptosis and reduction in growth was noted as compared to Notch inhibition alone. A similar beneficial effect on inhibition of cloogenicity in soft agar was seen using the combination treatment. These results demonstrated that pharmacological Notch blockade can induce protective autophagy in glioma neurospheres, resulting in chemoresistance, which can be abrogated by combination treatment with autophagy inhibitors.
Collapse
Affiliation(s)
- Manabu Natsumeda
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD.,Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kosuke Maitani
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Yang Liu
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Hiroaki Miyahara
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Harpreet Kaur
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Qian Chu
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD.,Department of Oncology, Tongji Hospital, Wuhan, China
| | - Hongyan Zhang
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Ulf D Kahlert
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD.,Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Charles G Eberhart
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
130
|
Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer 2016; 114:435-43. [PMID: 26882067 PMCID: PMC4815779 DOI: 10.1038/bjc.2016.12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
Background: Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG. Methods: Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow cytometry and cytotoxicity assays. Fluorescent probes and inhibitors were used to determine the mechanisms of cytotoxicity of cells exposed to the plasma field. Combinational therapy with temozolomide (TMZ) and multi-dose treatments were explored as mechanisms to overcome resistance to NTAP. Results: Non-thermal atmospheric plasma decreased cell viability in a dose (time)-dependent manner. U373MG cells were shown to be resistant to NTAP treatment when compared with HeLa cells, and the levels of intracellular reactive oxygen species (ROS) quantified in U373MG cells were much lower than in HeLa cells following exposure to the plasma field. Reactive oxygen species inhibitor N-acetyl cysteine (NAC) only alleviated the cytotoxic effects in HeLa cells and not in the relatively NTAP-resistant cell line U373MG. Longer exposures to NTAP induced a cell death independent of ROS, JNK and caspases in U373MG. The relative resistance of U373MG cells to NTAP could be overcome when used in combination with low concentrations of the GBM chemotherapy TMZ or exposure to multiple doses. Conclusions: For the very first time, we report that NTAP induces an ROS-, JNK- and caspase-independent mechanism of cell death in the U373MG GBM cell line that can be greatly enhanced when used in combination with low doses of TMZ. Further refinement of the technology may facilitate localised activation of cytotoxicity against GBM when used in combination with new and existing chemotherapeutic regimens.
Collapse
|
131
|
Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 2016; 35:23. [PMID: 26830677 PMCID: PMC4736617 DOI: 10.1186/s13046-016-0303-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 02/08/2023] Open
Abstract
Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment, this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, 410008, China.
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Central South University, Changsha, 410008, China.
| |
Collapse
|
132
|
Li H, Liu Y, Jiao Y, Guo A, Xu X, Qu X, Wang S, Zhao J, Li Y, Cao Y. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation. Oncol Rep 2015; 35:343-51. [PMID: 26498391 DOI: 10.3892/or.2015.4346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yaodong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yumin Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Anchen Guo
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Xiaoxue Xu
- Medical Experiments and Testing Center, Capital Medical University, Beijing 100069, P.R. China
| | - Xianjun Qu
- Department of Pharmacology, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ye Li
- Department of Pharmacology, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
133
|
Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells. Molecules 2015; 20:17872-82. [PMID: 26426001 PMCID: PMC6332321 DOI: 10.3390/molecules201017872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022] Open
Abstract
Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.
Collapse
|
134
|
Shuhua W, Chenbo S, Yangyang L, Xiangqian G, Shuang H, Tangyue L, Dong T. Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Hum Pathol 2015; 46:1752-9. [PMID: 26363527 DOI: 10.1016/j.humpath.2015.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED This study aims to evaluate the relationship between the expressions of autophagy-related genes Raptor, Rictor, and Beclin1 and the expression of multidrug resistance (MDR) gene in colorectal cancer (CRC) patients. Immunohistochemistry and real-time polymerase chain reaction were used to detect the protein and messenger RNA expressions of mammalian target of rapamycin (mTOR), Raptor, Rictor, Beclin1, light chain 3 (LC3), and MDR-1 in 279 CRC specimens. Patients were followed up annually by telephone or at an outpatient clinic. Results revealed that the protein and messenger RNA expressions of Beclin1, LC3, mTOR, Raptor, Rictor, and MDR-1 in CRC are significantly higher than in adjacent tissues. LC3 expression in poorly differentiated CRC is higher than that in well-differentiated CRC, and the expression of mTOR, Raptor, Rictor, and LC3 in lymph node metastasis is higher than that obtained in the absence of lymph node metastasis. The expression of LC3 is positively correlated with those of Beclin1 and Rictor and negatively correlated with Raptor and mTOR in CRC. The expression of Raptor is negatively correlated with Rictor. The expression of MDR-1 is positively correlated with those of Beclin1, LC3, and Rictor and negatively correlated with Raptor and mTOR. Kaplan-Meier analysis revealed that the 5-year survival rate of patients without lymph node metastasis; positive expression of Rictor, Beclin1, and LC3; and negative expression of Raptor and mTOR were higher than those with these characteristics. To conclude, the expressions of Beclin1, Raptor, and Rictor are related to the development and progression of colorectal carcinoma and MDR. ( CLINICAL TRIAL REGISTRATION NUMBER 2014-009-01.).
Collapse
Affiliation(s)
- Wu Shuhua
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China 256603.
| | - Sun Chenbo
- Department of Pathology, Binzhou Medical University, Binzhou, Shandong Province, China 256603
| | - Li Yangyang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China 256603
| | - Gao Xiangqian
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China 256603
| | - He Shuang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China 256603
| | - Li Tangyue
- Department of Pathology, Binzhou Medical University, Binzhou, Shandong Province, China 256603
| | - Tian Dong
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China 256603.
| |
Collapse
|
135
|
Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, Hsieh CC, Chen MC, Chiu HW, Ho CL, Chiu YC, Liu ML, Hua KF. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol 2015; 230:1567-79. [PMID: 25535911 DOI: 10.1002/jcp.24903] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is a caspase-1-containing multi-protein complex that controls the release of IL-1β and plays important roles in the development of inflammatory disease. Here, we report that resveratrol, a polyphenolic compound naturally produced by plants, inhibits NLRP3 inflammasome-derived IL-1β secretion and pyroptosis in macrophages. Resveratrol inhibits the activation step of the NLRP3 inflammasome by suppressing mitochondrial damage. Resveratrol also induces autophagy by activating p38, and macrophages treated with an autophagy inhibitor are resistant to the suppressive effects of resveratrol. In addition, resveratrol administration mitigates glomerular proliferation, glomerular sclerosis, and glomerular inflammation in a mouse model of progressive IgA nephropathy. These findings were associated with decreased renal mononuclear leukocyte infiltration, reduced renal superoxide anion levels, and inhibited renal NLRP3 inflammasome activation. Our data indicate that resveratrol suppresses NLRP3 inflammasome activation by preserving mitochondrial integrity and by augmenting autophagy.
Collapse
Affiliation(s)
- Ya-Ping Chang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Junco JJ, Mancha-Ramirez A, Malik G, Wei SJ, Kim DJ, Liang H, Slaga TJ. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability. Melanoma Res 2015; 25:103-12. [PMID: 25647735 DOI: 10.1097/cmr.0000000000000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.
Collapse
Affiliation(s)
- Jacob J Junco
- aDepartment of Pharmacology bEdinburg Regional Academic Health Center, Medical Research Division, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Liu S, Li X. Autophagy inhibition enhances sensitivity of endometrial carcinoma cells to paclitaxel. Int J Oncol 2015; 46:2399-408. [PMID: 25825088 DOI: 10.3892/ijo.2015.2937] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Autophagy has been shown to be involved in cancer cell resistance to chemotherapy. Paclitaxel, a widely used chemotherapeutic drug, was demonstrated to induce autophagy in various cancer cells. Therefore, we sought to evaluate the role of autophagy on the paclitaxel-induced cell death in endometrial carcinoma. In this study, we found that paclitaxel induced autophagy in paclitaxel-insensitive HEC-1A and JEC cells, exhibiting an increased microtubule associated protein 1 light chain 3 (LC3)-II/LC3-I ratio, a decrease in p62/SQSTM1 abundance, the upregulation of Beclin 1 expression and punctate dots of yellow fluorescent protein (YFP)-LC3 in the cytosol. Paclitaxel-mediated cell death was further potentiated by pretreatment with autophagy inhibitor chloroquine (CQ) or shRNA against the autophagic gene beclin 1. Moreover, paclitaxel stimulated reactive oxygen species (ROS) generation, and inhibition of the ROS by antioxidant N-acetyl-cysteine (NAC) blocked paclitaxel-induced autophagy, indicating that paclitaxel-induced autophagy in endometrial carcinoma cells is mediated by ROS. These findings suggest that paclitaxel-elicited autophagic response plays a protective role that impedes the eventual death of endometrial carcinoma cell, and that autophagy-inhibitor therapy could be an effective and potent strategy to improve paclitaxel treatment outcomes in the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Suiling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| | - Xiaomao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, P.R. China
| |
Collapse
|
138
|
Zanotto-Filho A, Braganhol E, Klafke K, Figueiró F, Terra SR, Paludo FJ, Morrone M, Bristot IJ, Battastini AM, Forcelini CM, Bishop AJR, Gelain DP, Moreira JCF. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett 2015; 358:220-231. [DOI: 10.1016/j.canlet.2014.12.044] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022]
|
139
|
Kaur N, Dhiman M, Perez-Polo JR, Mantha AK. Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25-35 -induced neurotoxicity in human neuroblastoma cells. J Neurosci Res 2015; 93:938-47. [PMID: 25677400 DOI: 10.1002/jnr.23565] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022]
Abstract
Accumulating evidence points to roles for oxidative stress, amyloid beta (Aβ), and mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD). In neurons, the base excision repair pathway is the predominant DNA repair (BER) pathway for repairing oxidized base lesions. Apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional enzyme with DNA repair and reduction-oxidation activities, has been shown to enhance neuronal survival after oxidative stress. This study seeks to determine 1) the effect of Aβ25-35 on reactive oxygen species (ROS)/reactive nitrogen species (RNS) levels, 2) the activities of respiratory complexes (I, III, and IV), 3) the role of APE1 by ectopic expression, and 4) the neuromodulatory role of ginkgolide B (GB; from the leaves of Ginkgo biloba). The pro-oxidant Aβ25-35 peptide treatment increased the levels of ROS/RNS in human neuroblastoma IMR-32 and SH-SY5Y cells, which were decreased after pretreatment with GB. Furthermore, the mitochondrial APE1 level was found to be decreased after treatment with Aβ25-35 up to 48 hr, and the level was increased significantly in cells pretreated with GB. The oxidative phosphorylation (OXPHOS; activities of complexes I, III, and IV) indicated that Aβ25-35 treatment decreased activities of complexes I and IV, and pretreatment with GB and ectopic APE1 expression enhanced these activities significantly compared with Aβ25-35 treatment. Our results indicate that ectopic expression of APE1 potentiates neuronal cells to overcome the oxidative damage caused by Aβ25-35 . In addition, GB has been shown to modulate the mitochondrial OXPHOS against Aβ25-35 -induced oxidative stress and also to regulate the levels of ROS/RNS in the presence of ectopic APE1. This study presents findings from a new point of view to improve therapeutic potential for AD via the synergistic neuroprotective role played by APE1 in combination with the phytochemical GB.
Collapse
Affiliation(s)
- Navrattan Kaur
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | | | | | | |
Collapse
|
140
|
ZOU YUHUI, WANG QIONG, WANG WEIMIN. MutL homolog 1 contributes to temozolomide-induced autophagy via ataxia-telangiectasia mutated in glioma. Mol Med Rep 2015; 11:4591-6. [DOI: 10.3892/mmr.2015.3293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/02/2014] [Indexed: 11/06/2022] Open
|
141
|
YANG MINGCHANG, LOH JOONKHIM, LI YIYANG, HUANG WENSHENG, CHOU CHIAHUA, CHENG JIINTSUEY, WANG YENGTSENG, LIEU ANNSHUNG, HOWNG SHENLONG, HONG YIREN, CHOU ANKUO. Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: A prospective combination of ABT-737 and TMZ for treating glioma. Int J Oncol 2015; 46:1304-16. [DOI: 10.3892/ijo.2015.2838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/29/2014] [Indexed: 11/06/2022] Open
|
142
|
CHEN LIANGYU, LI XINXING, LIU LIBO, YU BO, XUE YIXUE, LIU YUNHUI. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep 2015; 33:1465-74. [DOI: 10.3892/or.2015.3712] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 01/15/2023] Open
|
143
|
Sayd S, Thirant C, El-Habr EA, Lipecka J, Dubois LG, Bogeas A, Tahiri-Jouti N, Chneiweiss H, Junier MP. Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev Rep 2015; 10:103-13. [PMID: 23955573 DOI: 10.1007/s12015-013-9465-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastomas, the most common form of primary brain tumors, are the fourth cause of death by cancer in adults. Increasing evidences suggest that glioblastoma resistance to existing radio- and chemotherapies rely on glioblastoma stem cells (GSCs). GSCs are endowed with a unique combination of stem-like properties alike to normal neural stem cells (NSCs), and of tumor initiating properties. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Here, we used resveratrol to explore the molecular mechanisms differing between GSCs and NSCs. We observed a dual action of resveratrol on GSCs: resveratrol blocked GSC proliferation up to 150 μM and induced their necrosis at higher doses. On the opposite, resveratrol had no effect on NSC behavior. To determine the mechanisms underlying resveratrol effects, we focused our attention on the family of NAD-dependent deacetylases sirtuins (SIRT). A member of this family, SIRT1, has been repetitively shown to constitute a preferential resveratrol target, at least in normal cells. Western blot analysis showed that SIRT1 and SIRT3 were expressed by both GSCs and NSCs whereas SIRT2 expression was restricted to GSCs. Pharmacological blockade of SIRT2 activity or down-regulation of SIRT2 expression with siRNAs counteracted the inhibitory effect of resveratrol on cell proliferation. On the contrary, inhibition of SIRT2 activity or expression did not counteract GSC necrosis observed in presence of high doses of resveratrol. Our results highlight SIRT2 as a novel target for altering GSC properties.
Collapse
Affiliation(s)
- Salwa Sayd
- Team Glial Plasticity, U894 Inserm, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S. The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 2015; 35:85-99. [PMID: 25257832 DOI: 10.1007/s10571-014-0116-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
Autophagy involves degradation of dysfunctional cellular components through the actions of lysosomes. Apoptosis is the process of programmed cell death involving a series of characteristic cell changes. Autophagy and apoptosis, as self-destructive processes, play an important role in the pathogenesis of neurological diseases; and a crosstalk between "self-eating" (autophagy) and "self-killing" (apoptosis) plays an important role in pathological cellular adaptation. Expert knowledge of autophagy and apoptosis has increased in recent years, particularly in regards to cellular and molecular mechanisms. The crosstalk between autophagy and apoptosis was partially uncovered and several key molecules, including Bcl-2 family members, Beclin 1, and p53 were identified. However, the precise mechanisms of such a crosstalk remain to be elucidated. This current review article aims to summarize key mediators of the autophagy-apoptosis crosstalk in pathological conditions, and to highlight recent advances in the field, as well as to discuss further investigations and therapeutic potentials of manipulating those mechanisms in central nervous system diseases.
Collapse
Affiliation(s)
- Hai-Jian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | | | | | | | | |
Collapse
|
145
|
Liao CL, Chen CM, Chang YZ, Liu GY, Hung HC, Hsieh TY, Lin CL. Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10458-10467. [PMID: 25293350 DOI: 10.1021/jf501234b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pine needle extracts of Pinus morrisonicola (Hayata) are commonly used as a functional health beverage. However, it remains unclear what the mechanism is underlying the antitumor activity of pine needle extract. The aims of present study were to investigate the anti-glioblastoma effects of pine needle extracts as well as its bioactive compounds. From three different solvent extracts of pine needles, the water extract displayed the strongest cytotoxicity effects on GBM8901 glioblastoma cells. The isolated compounds were identified as pinocembrin, chrysin, and tiliroside. Chrysin was the most active ingredient of pine needle extract for the induction of apoptosis and suppression of migration and invasion. It also markedly inhibited temozolomide (TMZ)-induced autophagy and O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Because both autophagy and MGMT overexpression have been implicated to TMZ-induced drug resistance in glioblastoma, our results showed that pine needle extract and chrysin may serve as a potential anticancer agent against glioblastoma, especially with regard to sensitizing glioblastoma cells resistant to TMZ.
Collapse
Affiliation(s)
- Chia-Leng Liao
- Department of Neurology, Jen-Ai Hospital , Taichung 412, Taiwan
| | | | | | | | | | | | | |
Collapse
|
146
|
Chen Y, Meng D, Wang H, Sun R, Wang D, Wang S, Fan J, Zhao Y, Wang J, Yang S, Huai C, Song X, Qin R, Xu T, Yun D, Hu L, Yang J, Zhang X, Chen H, Chen J, Chen H, Lu D. VAMP8 facilitates cellular proliferation and temozolomide resistance in human glioma cells. Neuro Oncol 2014; 17:407-18. [PMID: 25209430 DOI: 10.1093/neuonc/nou219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/20/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Malignant glioma is a common and lethal primary brain tumor in adults. Here we identified a novel oncoprotein, vesicle-associated membrane protein 8 (VAMP8), and investigated its roles in tumorigenisis and chemoresistance in glioma. METHODS The expression of gene and protein were determined by quantitative PCR and Western blot, respectively. Histological analysis of 282 glioma samples and 12 normal controls was performed by Pearson's chi-squared test. Survival analysis was performed using the log-rank test and Cox proportional hazards regression. Cell proliferation and cytotoxicity assay were conducted using Cell Counting Kit-8. Autophagy was detected by confocal microscopy and Western blot. RESULTS VAMP8 was significantly overexpressed in human glioma specimens and could become a potential novel prognostic and treatment-predictive marker for glioma patients. Overexpression of VAMP8 promoted cell proliferation in vitro and in vivo, whereas knockdown of VAMP8 attenuated glioma growth by arresting cell cycle in the G0/G1 phase. Moreover, VAMP8 contributed to temozolomide (TMZ) resistance by elevating the expression levels of autophagy proteins and the number of autophagosomes. Further inhibition of autophagy via siRNA-mediated knockdown of autophagy-related gene 5 (ATG5) or syntaxin 17 (STX17) reversed TMZ resistance in VAMP8-overexpressing cells, while silencing of VAMP8 impaired the autophagic flux and alleviated TMZ resistance in glioma cells. CONCLUSION Our findings identified VAMP8 as a novel oncogene by promoting cell proliferation and therapeutic resistance in glioma. Targeting VAMP8 may serve as a potential therapeutic regimen for the treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Delong Meng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Huibo Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Ruochuan Sun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Dongrui Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Shuai Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Jiajun Fan
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Yingjie Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Jingkun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Song Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Cong Huai
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Xiao Song
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Rong Qin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Tao Xu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Dapeng Yun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Lingna Hu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Xiaotian Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Haoming Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Juxiang Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Shanghai, China (Y.C., D.M., D.W., Y.Z., J.W., C.H., X.S., D.Y., L.H., J.Y., H.C., H.C., D.L.); Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China (J.F.); Department of Neurosurgery, (H.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China (S.W.); Eighth Department of General Surgery and Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, China (R.S., S.Y.); Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas (X.Z.); Neurosurgery Research Institution of Shanghai, Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (R.Q., T.X., J.C.)
| |
Collapse
|
147
|
Zhang S, Wang C, Tang S, Deng S, Zhou Y, Dai C, Yang X, Xiao X. Inhibition of autophagy promotes caspase-mediated apoptosis by tunicamycin in HepG2 cells. Toxicol Mech Methods 2014; 24:654-65. [PMID: 25162335 DOI: 10.3109/15376516.2014.956915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tunicamycin (TM) causes accumulation of unfolded protein in endoplasmic reticulum (ER) lumen and introduces from elsewhere ER stress. This study was to assess the apoptosis and autophagy effect induced by TM on HepG2 cells and the role of autophagy in the system. The viability of HepG2 cells was significantly inhibited by TM in a dose-dependent manner detected by MTT assay. Then, the apoptotic morphology change, increasing apoptotic cell rate suggested that apoptosis was induced by TM in a time- and dose-dependent manner. To further determine the involvement of caspase-dependent pathway in TM-induced apoptosis, we discover that the activity of caspase-3/7, 8, 9 and cleavage of PARP markedly increased after TM treatment and the apoptosis was effectively attenuated by using caspase-9 and pan caspase inhibitor. Moreover, provided the rising stained acidic vacuoles and an increased level of LC3II and activation of Beclin1, we concluded that autophagy could be triggered by TM in a time- and dose-dependent manner. In addition, the inhibition of autophagy efficiently promoted TM-induced cell death identified by MTT assay. Meanwhile, the apoptotic cell rate and caspase-3 activation increased significantly after autophagy blockage. In conclusion, we found that TM initiated apoptosis and autophagy both in a time- and dose-dependent manner in HepG2 cells; and inhibition of autophagy may promote TM-induced cell death through enhancing apoptosis.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University , Haidian District, Beijing , PR China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Temozolomide and irradiation combined treatment-induced Nrf2 activation increases chemoradiation sensitivity in human glioblastoma cells. J Neurooncol 2014; 116:41-8. [PMID: 24078215 DOI: 10.1007/s11060-013-1260-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/17/2013] [Indexed: 12/13/2022]
Abstract
Resistance to chemoradiotherapy is a major obstacle to successful treatment of glioblastoma. Recently, the role of NF-E2-related factor 2 (Nrf2) in enhancing chemoradiation sensitivity has been reported in several types of cancers. Here, we investigated whether temozolomide (TMZ) and irradiation (IR) combined treatment induced Nrf2 activation in human glioblastoma cells. And we further performed a preliminary study about the effect of Nrf2 on chemoradiation sensitivity. Immunohistochemical staining for Nrf2 in paired clinical specimens showed that TMZ and IR combined treatment increased the expression and nuclear localization of Nrf2 in human glioblastoma tissues. Moreover, we found nuclear Nrf2 expression in the glioblastoma tissues obtained from the patients undergoing TMZ and IR combined treatment was associated with the time to tumor recurrence. In vitro, we further verified these findings. First, we detected increased nuclear localization of Nrf2 following treatment with TMZ+IR in human glioblastoma cell lines. Second, we demonstrated TMZ+IR increased the levels of Nrf2 protein in both nuclear and cytoplasmic fractions of U251 cells and induced Nrf2 target genes expression. Finally, downregulating Nrf2 expression increased TMZ+IR-induced cell death in the U251 cells. These findings suggest TMZ+IR combined treatment induces Nrf2 activation in human glioblastoma cells. The activation of Nrf2 may be associate with enhancing chemoradiation sensitivity in human glioblastoma cell. Blocking Nrf2 activation may be a promising method enhancing chemoradiation sensitivity of glioblastoma cells.
Collapse
|
149
|
Resveratrol is active against Leishmania amazonensis: in vitro effect of its association with Amphotericin B. Antimicrob Agents Chemother 2014; 58:6197-208. [PMID: 25114129 DOI: 10.1128/aac.00093-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resveratrol is a polyphenol found in black grapes and red wine and has many biological activities. In this study, we evaluated the effect of resveratrol alone and in association with amphotericin B (AMB) against Leishmania amazonensis. Our results demonstrate that resveratrol possesses both antipromastigote and antiamastigote effects, with 50% inhibitory concentrations (IC50s) of 27 and 42 μM, respectively. The association of resveratrol with AMB showed synergy for L. amazonensis amastigotes, as demonstrated by the mean sums of fractional inhibitory index concentration (mean ΣFIC) of 0.483, although for promastigotes, this association was indifferent. Treatment with resveratrol increased the percentage of promastigotes in the sub-G0/G1 phase of the cell cycle, reduced the mitochondrial potential, and showed an elevated choline peak and CH2-to-CH3 ratio in the nuclear magnetic resonance (NMR) spectroscopy analysis; all these features indicate parasite death. Resveratrol also decreased the activity of the enzyme arginase in uninfected and infected macrophages with and without stimulation with interleukin-4 (IL-4), also implicating arginase inhibition in parasite death. The anti-Leishmania effect of resveratrol and its potential synergistic association with AMB indicate that these compounds should be subjected to further studies of drug association therapy in vivo.
Collapse
|
150
|
Chen PH, Shih CM, Chang WC, Cheng CH, Lin CW, Ho KH, Su PC, Chen KC. MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis. J Neurochem 2014; 131:731-42. [PMID: 25040912 DOI: 10.1111/jnc.12820] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022]
Abstract
All-trans retinoic acid (ATRA), a derivative of retinoid, is involved in the onset of differentiation and apoptosis in a wide variety of normal and cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression. Several miRNAs were identified to participate in ATRA-mediated cell differentiation. However, no studies have demonstrated whether miRNA can enhance ATRA cytotoxicity, thereby resulting in cell apoptosis. This study investigated the effects of ATRA-mediated miRNA expression in activating apoptotic pathways in glioblastoma. First, we found that high-dose ATRA treatment significantly reduced cell viability, caspase-dependent apoptosis, endoplasmic reticular (ER) stress activation, and intracellular reactive oxygen species accumulation. From microarray data, miR-302b was analyzed as a putative downstream regulator upon ATRA treatment. Furthermore, we found that ATRA up-regulated miR-302b expression in a dose- and time-dependent manner through retinoic acid receptor α-mediated pathway. Overexpression and knockdown of miR-302b significantly influenced ATRA-mediated cytotoxicity. E2F3, an important transcriptional regulator of glioma proliferation, was validated to be a direct target gene of miR-302b. The miR-302b-reduced E2F3 levels were also identified to be associated with ATRA-mediated glioma cell death. These results emphasize that an ATRA-mediated miR-302b network may provide novel therapeutic strategies for glioblastoma therapy. We propose that high-dose all-trans retinoic acid (ATRA) treatment, a derivative of retinoid, significantly induces glioblastoma cell apoptosis via caspase-dependent apoptosis, endoplasmic reticular (ER) stress, and intracellular reactive oxygen species (ROS) accumulation. The miR-302b overexpression enhanced by ATRA-mediated retinoic acid receptor (RAR)α pathway was also identified. The E2F3 repression, a novel target gene of miR-302b, was involved in ATRA-induced glioblastoma cell cytotoxicity.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|