101
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
102
|
Signals Getting Crossed in the Entanglement of Redox and Phosphorylation Pathways: Phosphorylation of Peroxiredoxin Proteins Sparks Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8020029. [PMID: 30678096 PMCID: PMC6406269 DOI: 10.3390/antiox8020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species have cell signaling properties and are involved in a multitude of processes beyond redox homeostasis. The peroxiredoxin (Prdx) proteins are highly sensitive intracellular peroxidases that can coordinate cell signaling via direct reactive species scavenging or by acting as a redox sensor that enables control of binding partner activity. Oxidation of the peroxidatic cysteine residue of Prdx proteins are the classical post-translational modification that has been recognized to modulate downstream signaling cascades, but increasing evidence supports that dynamic changes to phosphorylation of Prdx proteins is also an important determinant in redox signaling. Phosphorylation of Prdx proteins affects three-dimensional structure and function to coordinate cell proliferation, wound healing, cell fate and lipid signaling. The advent of large proteomic datasets has shown that there are many opportunities to understand further how phosphorylation of Prdx proteins fit into intracellular signaling cascades in normal or malignant cells and that more research is necessary. This review summarizes the Prdx family of proteins and details how post-translational modification by kinases and phosphatases controls intracellular signaling.
Collapse
|
103
|
Hopkins BL, Neumann CA. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol 2019; 21:101104. [PMID: 30690320 PMCID: PMC6351230 DOI: 10.1016/j.redox.2019.101104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-term changes in gene transcription. Post-translational modifications (PTMs) on transcription factors by phosphorylation or acetylation have profound effects not only on sub-cellular localization but also on substrate specificity through changes in DNA binding capacity. During times of cellular stress, specific transcription factors are in place to help protect the cell from damage by initiating the transcription of antioxidant response genes. Here we discuss PTMs caused by reactive oxygen species (ROS), such as H2O2, that can expeditiously regulate the activation of transcription factors involved in the oxidative stress response. Part of this rapid regulation are proteins involved in H2O2-related reduction and oxidation (redox) reactions such as redoxins, H2O2 scavengers described to interact with transcription factors. Redoxins have highly reactive cysteines of rate constants around 6–10−1 s−1 that engage in nucleophilic substitution of a thiol-disulfide with another thiol in inter-disulfide exchange reactions. We propose here that H2O2 signal transduction induced inter-disulfide exchange reactions between redoxin cysteines and cysteine thiols of transcription factors to allow for rapid and precise on and off switching of transcription factor activity. Thus, redoxins are essential modulators of stress response pathways beyond H2O2 scavenging capacity.
Collapse
Affiliation(s)
- Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
104
|
Forshaw TE, Holmila R, Nelson KJ, Lewis JE, Kemp ML, Tsang AW, Poole LB, Lowther WT, Furdui CM. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Basel) 2019; 8:antiox8010011. [PMID: 30609657 PMCID: PMC6356878 DOI: 10.3390/antiox8010011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins have a long-established cellular function as regulators of redox metabolism by catalyzing the reduction of peroxides (e.g., H2O2, lipid peroxides) with high catalytic efficiency. This activity is also critical to the initiation and relay of both phosphorylation and redox signaling in a broad range of pathophysiological contexts. Under normal physiological conditions, peroxiredoxins protect normal cells from oxidative damage that could promote oncogenesis (e.g., environmental stressors). In cancer, higher expression level of peroxiredoxins has been associated with both tumor growth and resistance to radiation therapies. However, this relationship between the expression of peroxiredoxins and the response to radiation is not evident from an analysis of data in The Cancer Genome Atlas (TCGA) or NCI60 panel of cancer cell lines. The focus of this review is to summarize the current experimental knowledge implicating this class of proteins in cancer, and to provide a perspective on the value of targeting peroxiredoxins in the management of cancer. Potential biases in the analysis of the TCGA data with respect to radiation resistance are also highlighted.
Collapse
Affiliation(s)
- Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Reetta Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Joshua E Lewis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
105
|
Lee YJ, Chang GD. Quantitative display of the redox status of proteins with maleimide-polyethylene glycol tagging. Electrophoresis 2018; 40:491-498. [DOI: 10.1002/elps.201800335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yu-Jung Lee
- Institute of Biochemical Sciences; College of Life Science; National Taiwan University; Taipei Taiwan
| | - Geen-Dong Chang
- Institute of Biochemical Sciences; College of Life Science; National Taiwan University; Taipei Taiwan
| |
Collapse
|
106
|
Pace PE, Peskin AV, Konigstorfer A, Jasoni CJ, Winterbourn CC, Hampton MB. Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay. Free Radic Biol Med 2018; 129:383-393. [PMID: 30315937 DOI: 10.1016/j.freeradbiomed.2018.10.407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2) acts as a signaling molecule in cells by oxidising cysteine residues in regulatory proteins such as phosphatases, kinases and transcription factors. It is unclear exactly how many of these proteins are specifically targeted by H2O2 because they appear too unreactive to be directly oxidised. One proposal is that peroxiredoxins (Prxs) initially react with H2O2 and then oxidise adjacent proteins via a thiol relay mechanism. The aim of this study was to identify constitutive interaction partners of Prx2 in Jurkat T-lymphoma cells, in which thiol protein oxidation occurs at low micromolar concentrations of H2O2. Immunoprecipitation and proximity ligation assays identified a physical interaction between collapsin response mediator protein 2 (CRMP2) and cytoplasmic Prx2. CRMP2 regulates microtubule structure during lymphocyte migration and neuronal development. Exposure of Jurkat cells to low micromolar levels of H2O2 caused rapid and reversible oxidation of CRMP2, in parallel with Prx2 oxidation, despite purified recombinant CRMP2 protein reacting slowly with H2O2 (k~1 M-1s-1). Lowering Prx expression should inhibit oxidation of proteins oxidised by a relay mechanism, however knockout of Prx2 had no effect on CRMP2 oxidation. CRMP2 also interacted with Prx1, suggesting redundancy in single knockout cells. Prx 1 and 2 double knockout Jurkat cells were not viable. An interaction between Prx2 and CRMP2 was also detected in other human and rodent cells, including primary neurons. However, low concentrations of H2O2 did not cause CRMP2 oxidation in these cells. This indicates a cell-type specific mechanism for promoting CRMP2 oxidation in Jurkat cells, with insufficient evidence to attribute oxidation to a Prx-dependent redox relay.
Collapse
Affiliation(s)
- Paul E Pace
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Alexander V Peskin
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andreas Konigstorfer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine J Jasoni
- Department of Anatomy and Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
107
|
Dalla Rizza J, Randall LM, Santos J, Ferrer-Sueta G, Denicola A. Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2. Protein Sci 2018; 28:191-201. [PMID: 30284335 DOI: 10.1002/pro.3520] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Peroxiredoxins are thiol-dependent peroxidases that function in peroxide detoxification and H2 O2 induced signaling. Among the six isoforms expressed in humans, PRDX1 and PRDX2 share 97% sequence similarity, 77% sequence identity including the active site, subcellular localization (cytosolic) but they hold different biological functions albeit associated with their peroxidase activity. Using recombinant human PRDX1 and PRDX2, the kinetics of oxidation and hyperoxidation with H2 O2 and peroxynitrite were followed by intrinsic fluorescence. At pH 7.4, the peroxidatic cysteine of both isoforms reacts nearly tenfold faster with H2 O2 than with peroxynitrite, and both reactions are orders of magnitude faster than with most protein thiols. For both isoforms, the sulfenic acids formed are in turn oxidized by H2 O2 with rate constants of ca 2 × 103 M-1 s-1 and by peroxynitrous acid significantly faster. As previously observed, a crucial difference between PRDX1 and PRDX2 is on the resolution step of the catalytic cycle, the rate of disulfide formation (11 s-1 for PRDX1, 0.2 s-1 for PRDX2, independent of the oxidant) which correlates with their different sensitivity to hyperoxidation. This kinetic pause opens different pathways on redox signaling for these isoforms. The longer lifetime of PRDX2 sulfenic acid allows it to react with other protein thiols to translate the signal via an intermediate mixed disulfide (involving its peroxidatic cysteine), whereas PRDX1 continues the cycle forming disulfide involving its resolving cysteine to function as a redox relay. In addition, the presence of C83 on PRDX1 imparts a difference on peroxidase activity upon peroxynitrite exposure that needs further study.
Collapse
Affiliation(s)
- Joaquín Dalla Rizza
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Lía M Randall
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.,Laboratorio de I+D de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Javier Santos
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, and Department of Physiology, Molecular and Cellular Biology, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
108
|
Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018; 7:antiox7110161. [PMID: 30423872 PMCID: PMC6262534 DOI: 10.3390/antiox7110161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells are abnormal cells that do not comply with tissue homeostasis but undergo uncontrolled proliferation. Such abnormality is driven mostly by somatic mutations on oncogenes and tumor suppressors. Cancerous mutations show intra-tumoral heterogeneity across cancer types and eventually converge into the self-activation of proliferative signaling. While transient production of intracellular reactive oxygen species (ROS) is essential for cell signaling, its persistent production is cytotoxic. Thus, cancer cells require increased levels of intracellular ROS for continuous proliferation, but overexpress cellular peroxidase enzymes, such as 2-Cys peroxiredoxins, to maintain ROS homeostasis. However, suppression of 2-Cys peroxiredoxins has also been reported in some metastatic cancers. Hence, the cancer-associated functions of 2-Cys peroxiredoxins must be illuminated in the cellular context. In this review, we describe the distinctive signaling roles of 2-Cys peroxiredoxins beyond their intrinsic ROS-scavenging role in relation to cancer cell death and survival.
Collapse
|
109
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
110
|
Jänsch N, Meyners C, Muth M, Kopranovic A, Witt O, Oehme I, Meyer-Almes FJ. The enzyme activity of histone deacetylase 8 is modulated by a redox-switch. Redox Biol 2018; 20:60-67. [PMID: 30292946 PMCID: PMC6174833 DOI: 10.1016/j.redox.2018.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023] Open
Abstract
Enzymes from the histone deacetylase (HDAC) family are highly regulated by different mechanisms. However, only very limited knowledge exists about the regulation of HDAC8, an established target in multiple types of cancer. A previous dedicated study of HDAC class I enzymes identified no redox-sensitive cysteinyl thiol in HDAC8. This is in contrast to the observation that HDAC8 preparations show different enzyme activities depending on the addition of reducing agents. In the light of the importance of HDAC8 in tumorigenesis a possible regulation by redox signaling was investigated using biochemical and biophysical methods combined with site directed mutagenesis. The occurrence of a characteristic disulfide bond under oxidizing conditions is associated with a complete but reversible loss of enzyme activity. Cysteines 102 and 153 are the integral components of the redox-switch. A possible regulation of HDAC8 by redox signal transduction is suggested by the observed relationship between inhibition of reactive oxygen species generating NOX and concomitant increased HDAC8 activity in neuroblastoma tumor cells. The slow kinetics for direct oxidation of HDAC8 by hydrogen peroxide suggests that transmitters of oxidative equivalents are required to transfer the H2O2 signal to HDAC8.
Collapse
Affiliation(s)
- Niklas Jänsch
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Christian Meyners
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Marius Muth
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Aleksandra Kopranovic
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Research Consortium (DKTK), Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Germany; Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), INF 280, D-69120 Heidelberg, Germany; German Cancer Research Consortium (DKTK), Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany.
| |
Collapse
|
111
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
112
|
Abstract
Hydrogen peroxide (H2O2) is generated in numerous biological processes. It transmits cellular signals, contributes to oxidative folding of exported proteins, and, in excess, can be damaging to cells and tissues. Although a strong oxidant, high activation energy barriers make it unreactive with most biological molecules. Its main reactions are with transition metal centers, selenoproteins and selected thiol proteins, with glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) being major targets. It reacts slowly with most thiol proteins, and how they become oxidized during redox signal transmission is not well understood. Recent Advances: Kinetic analysis indicates that Prxs and GPxs are overwhelmingly favored as targets for H2O2 in cells. Studies with localized probes indicate that H2O2 can be produced in cellular microdomains and be consumed by highly reactive targets before it can diffuse to other parts of the cell. Inactivation of these targets alone will not confine it to its site of production. Kinetic data indicate that oxidation of regulatory thiol proteins by H2O2 requires a facilitated mechanism such as directed transfer from source to target or a relay mediated through a highly reactive sensor. Critical Issues and Future Directions: Absolute rates of H2O2 production and steady-state concentrations in cells still need to be characterized. More information on cellular sites of production and action is required, and specific mechanisms of oxidation of regulatory proteins during redox signaling require further characterization. Antioxid. Redox Signal. 29, 541-551.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Centre for Free Radical Research, University of Otago Christchurch , Christchurch, New Zealand
| |
Collapse
|
113
|
Diwanji N, Bergmann A. An unexpected friend - ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol 2018; 80:74-82. [PMID: 28688927 PMCID: PMC5756134 DOI: 10.1016/j.semcdb.2017.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Apoptosis-induced compensatory proliferation (AiP) is a form of compensatory proliferation that is triggered by apoptotic cell death to maintain tissue homeostasis. As such, AiP is essential for many tissue repair processes including regeneration. The apoptotic effectors, termed caspases, not only execute apoptosis, but are also directly involved in the generation of the signals required for AiP. Reactive oxygen species (ROS) play an important role for regenerative processes. Recently, it was shown in Drosophila that apoptotic caspases can mediate the generation of ROS for promoting AiP. This review summarizes and discusses these findings in the context of regenerative processes and cancer.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| |
Collapse
|
114
|
Feld K, Geissel F, Liedgens L, Schumann R, Specht S, Deponte M. Tyrosine substitution of a conserved active-site histidine residue activates Plasmodium falciparum peroxiredoxin 6. Protein Sci 2018; 28:100-110. [PMID: 30056630 DOI: 10.1002/pro.3490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Peroxiredoxins efficiently remove hydroperoxides and peroxynitrite in pro- and eukaryotes. However, isoforms of one subfamily of peroxiredoxins, the so-called Prx6-type enzymes, usually have very low activities in standard peroxidase assays in vitro. In contrast to other peroxiredoxins, Prx6 homologues share a conserved histidyl residue at the bottom of the active site. Here we addressed the role of this histidyl residue for redox catalysis using the Plasmodium falciparum homologue PfPrx6 as a model enzyme. Steady-state kinetics with tert-butyl hydroperoxide (tBuOOH) revealed that the histidyl residue is nonessential for Prx6 catalysis and that a replacement with tyrosine can even increase the enzyme activity four- to six-fold in vitro. Stopped-flow kinetics with reduced PfPrx6WT , PfPrx6C128A , and PfPrx6H39Y revealed a preference for H2 O2 as an oxidant with second order rate constants for H2 O2 and tBuOOH around 2.5 × 107 M-1 s-1 and 3 × 106 M-1 s-1 , respectively. Differences between the oxidation kinetics of PfPrx6WT , PfPrx6C128A , and PfPrx6H39Y were observed during a slower second-reaction phase. Our kinetic data support the interpretation that the reductive half-reaction is the rate-limiting step for PfPrx6 catalysis in steady-state measurements. Whether the increased activity of PfPrx6H39Y is caused by a facilitated enzyme reduction because of a destabilization of the fully folded enzyme conformation remains to be analyzed. In summary, the conserved histidyl residue of Prx6-type enzymes is non-essential for catalysis, PfPrx6 is rapidly oxidized by hydroperoxides, and the gain-of-function mutant PfPrx6H39Y might provide a valuable tool to address the influence of conformational changes on the reactivity of Prx6 homologues.
Collapse
Affiliation(s)
- Kristina Feld
- Department of Parasitology, Ruprecht-Karls University, D-69120, Heidelberg, Germany
| | - Fabian Geissel
- Faculty of Chemistry/Biochemistry, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Linda Liedgens
- Department of Parasitology, Ruprecht-Karls University, D-69120, Heidelberg, Germany.,Faculty of Chemistry/Biochemistry, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Robin Schumann
- Faculty of Chemistry/Biochemistry, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Sandra Specht
- Department of Parasitology, Ruprecht-Karls University, D-69120, Heidelberg, Germany.,Faculty of Chemistry/Biochemistry, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120, Heidelberg, Germany.,Faculty of Chemistry/Biochemistry, TU Kaiserslautern, D-67663, Kaiserslautern, Germany
| |
Collapse
|
115
|
Zhang Y, Lee JH, Paull TT, Gehrke S, D'Alessandro A, Dou Q, Gladyshev VN, Schroeder EA, Steyl SK, Christian BE, Shadel GS. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci Signal 2018; 11:eaaq0702. [PMID: 29991649 PMCID: PMC6042875 DOI: 10.1126/scisignal.aaq0702] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are integral to cellular energy metabolism and ATP production and are involved in regulating many cellular processes. Mitochondria produce reactive oxygen species (ROS), which not only can damage cellular components but also participate in signal transduction. The kinase ATM, which is mutated in the neurodegenerative, autosomal recessive disease ataxia-telangiectasia (A-T), is a key player in the nuclear DNA damage response. However, ATM also performs a redox-sensing function mediated through formation of ROS-dependent disulfide-linked dimers. We found that mitochondria-derived hydrogen peroxide promoted ATM dimerization. In HeLa cells, ATM dimers were localized to the nucleus and inhibited by the redox regulatory protein thioredoxin 1 (TRX1), suggesting the existence of a ROS-mediated, stress-signaling relay from mitochondria to the nucleus. ATM dimer formation did not affect its association with chromatin in the absence or presence of nuclear DNA damage, consistent with the separation of its redox and DNA damage signaling functions. Comparative analysis of U2OS cells expressing either wild-type ATM or the redox sensing-deficient C2991L mutant revealed that one function of ATM redox sensing is to promote glucose flux through the pentose phosphate pathway (PPP) by increasing the abundance and activity of glucose-6-phosphate dehydrogenase (G6PD), thereby increasing cellular antioxidant capacity. The PPP produces the coenzyme NADPH needed for a robust antioxidant response, including the regeneration of TRX1, indicating the existence of a regulatory feedback loop involving ATM and TRX1. We propose that loss of the mitochondrial ROS-sensing function of ATM may cause cellular ROS accumulation and oxidative stress in A-T.
Collapse
Affiliation(s)
- Yichong Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Qianhui Dou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA
| | | | - Samantha K Steyl
- Department of Chemistry, Appalachian State University, Boone, NC 28608, USA
| | - Brooke E Christian
- Department of Chemistry, Appalachian State University, Boone, NC 28608, USA.
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
116
|
Sharapov MG, Fesenko EE, Novoselov VI. The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
117
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
118
|
Sharapov MG, Penkov NV, Gudkov SV, Goncharov RG, Novoselov VI, Fesenko EE. The Role of Intermolecular Disulfide Bonds in Stabilizing the Structure of Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
119
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
120
|
Langford TF, Deen WM, Sikes HD. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism. Free Radic Biol Med 2018; 120:239-245. [PMID: 29574146 DOI: 10.1016/j.freeradbiomed.2018.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Appreciation of peroxiredoxins as the major regulators of H2O2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H2O2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H2O2-mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H2O2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3.
Collapse
Affiliation(s)
- Troy F Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA
| | - William M Deen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA.
| |
Collapse
|
121
|
Abstract
Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomotor activity, and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.
Collapse
|
122
|
Selvaggio G, Coelho PMBM, Salvador A. Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin - Thioredoxin system. 1. Understanding commonalities and differences among cell types. Redox Biol 2018; 15:297-315. [PMID: 29304480 PMCID: PMC5975082 DOI: 10.1016/j.redox.2017.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
The system (PTTRS) formed by typical 2-Cys peroxiredoxins (Prx), thioredoxin (Trx), Trx reductase (TrxR), and sulfiredoxin (Srx) is central in antioxidant protection and redox signaling in the cytoplasm of eukaryotic cells. Understanding how the PTTRS integrates these functions requires tracing phenotypes to molecular properties, which is non-trivial. Here we analyze this problem based on a model that captures the PTTRS' conserved features. We have mapped the conditions that generate each distinct response to H2O2 supply rates (vsup), and estimated the parameters for thirteen human cell types and for Saccharomyces cerevisiae. The resulting composition-to-phenotype map yielded the following experimentally testable predictions. The PTTRS permits many distinct responses including ultra-sensitivity and hysteresis. However, nearly all tumor cell lines showed a similar response characterized by limited Trx-S- depletion and a substantial but self-limited gradual accumulation of hyperoxidized Prx at high vsup. This similarity ensues from strong correlations between the TrxR, Srx and Prx activities over cell lines, which contribute to maintain the Prx-SS reduction capacity in slight excess over the maximal steady state Prx-SS production. In turn, in erythrocytes, hepatocytes and HepG2 cells high vsup depletes Trx-S- and oxidizes Prx mainly to Prx-SS. In all nucleated human cells the Prx-SS reduction capacity defined a threshold separating two different regimes. At sub-threshold vsup the cytoplasmic H2O2 concentration is determined by Prx, nM-range and spatially localized, whereas at supra-threshold vsup it is determined by much less active alternative sinks and μM-range throughout the cytoplasm. The yeast shows a distinct response where the Prx Tsa1 accumulates in sulfenate form at high vsup. This is mainly due to an exceptional stability of Tsa1's sulfenate. The implications of these findings for thiol redox regulation and cell physiology are discussed. All estimates were thoroughly documented and provided, together with analytical approximations for system properties, as a resource for quantitative redox biology.
Collapse
Affiliation(s)
- Gianluca Selvaggio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; MIT-Portugal Program Bioengineering Systems Doctoral Program, Portugal
| | - Pedro M B M Coelho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Armindo Salvador
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CQC, Department of Chemistry, University of Coimbra, Portugal.
| |
Collapse
|
123
|
Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway. Cell Death Discov 2018; 4:47. [PMID: 29707240 PMCID: PMC5919897 DOI: 10.1038/s41420-018-0050-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 01/02/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced osteoblast apoptosis is a prominent factor to the defect in periodontal tissue repair in periodontal disease. LPS challenge contributes to the production of reactive oxygen species (ROS) in periodontitis, and peroxiredoxin 1 (Prx1) is an antioxidant protein that protect cells against oxidative damage from ROS. Without LPS stimulation, apoptotic rates were higher in both Prx1 knockout (Prx1KO) and Prx1 overexpression (Prx1OE) cells compared with wild type. After LPS stimulation, intracellular ROS in Prx1KO cells showed the highest level and Prx1OE cells showed the least. Treatment with LPS significantly elevated the expression of Bax, Cyto-c, and caspase 3 in Prx1KO cells compared with wild type, although this could be completely abolished by NAC. In Prx1OE cells, the expression and activation of ASK1 were significantly increased, and this was slightly reduced by LPS stimulation. NQDI-1 completely abolished the increased phosphorylation of JNK and p38 and the expression of caspase 3 in LPS-stimulated cells. These results indicate that Prx1 eliminates intracellular ROS and exhibits a cytoprotective role in LPS-induced apoptosis. However, under physiological conditions, Prx1 overexpression acts as a H2O2 messenger, triggering the expression of ASK1 and its downstream cascades.
Collapse
|
124
|
Portillo-Ledesma S, Randall LM, Parsonage D, Dalla Rizza J, Karplus PA, Poole LB, Denicola A, Ferrer-Sueta G. Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing. Biochemistry 2018; 57:3416-3424. [PMID: 29553725 DOI: 10.1021/acs.biochem.8b00188] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-cysteine peroxiredoxins (Prx) have a three-step catalytic cycle consisting of (1) reduction of peroxide and formation of sulfenic acid on the enzyme, (2) condensation of the sulfenic acid with a thiol to form disulfide, also known as resolution, and (3) reduction of the disulfide by a reductant protein. By following changes in protein fluorescence, we have studied the pH dependence of reaction 2 in human peroxiredoxins 1, 2, and 5 and in Salmonella typhimurium AhpC and obtained rate constants for the reaction and p Ka values of the thiol and sulfenic acid involved for each system. The observed reaction 2 rate constant spans 2 orders of magnitude, but in all cases, reaction 2 appears to be slow compared to the same reaction in small-molecule systems, making clear the rates are limited by conformational features of the proteins. For each Prx, reaction 2 will become rate-limiting at some critical steady-state concentration of H2O2 producing the accumulation of Prx as sulfenic acid. When this happens, an alternative and faster-resolving Prx (or other peroxidase) may take over the antioxidant role. The accumulation of sulfenic acid Prx at distinct concentrations of H2O2 is embedded in the kinetic limitations of the catalytic cycle and may constitute the basis of a H2O2-mediated redox signal transduction pathway requiring neither inactivation nor posttranslational modification. The differences in the rate constants of resolution among Prx coexisting in the same compartment may partially explain their complementation in antioxidant function and stepwise sensing of H2O2 concentration.
Collapse
Affiliation(s)
| | - Lía M Randall
- Laboratorio de I+D de Moléculas Bioactivas, CENUR Litoral Norte , Universidad de la República , Paysandú , Uruguay
| | - Derek Parsonage
- Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | | | - P Andrew Karplus
- Department of Biochemistry and Biophysics , Oregon State University , 2011 Agricultural & Life Sciences Building , Corvallis , Oregon 97331 , United States
| | - Leslie B Poole
- Department of Biochemistry and Centers for Structural Biology and for Redox Biology and Medicine , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | | | | |
Collapse
|
125
|
Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, Salsbury FR, Karplus PA, Poole LB. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal 2018; 28:521-536. [PMID: 28375740 PMCID: PMC5806077 DOI: 10.1089/ars.2016.6922] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases involved in oxidant defense and signal transduction. Despite much study, the precise roles of conserved residues remain poorly defined. In this study, we carried out extensive functional and structural characterization of 10 variants of such residues in a model decameric bacterial Prx. RESULTS Three active site proximal mutations of Salmonella typhimurium AhpC, T43V, R119A, and E49Q, lowered catalytic efficiency with hydrogen peroxide by 4-5 orders of magnitude, but did not affect reactivity toward their reductant, AhpF. pKa values of the peroxidatic cysteine were also shifted up by 1-1.3 pH units for these and a decamer disruption mutant, T77I. Except for the decamer-stabilizing T77V, all mutations destabilized decamers in the reduced form. In the oxidized form, three mutants-T77V, T43A, and T43S-exhibited stabilized decamers and were more efficiently reduced by AhpF than wild-type AhpC. Crystal structures of most mutants were solved and many showed alterations in stability of the fully folded active site loop. INNOVATION This is the first study of Prx mutants to comprehensively assess the effects of mutations on catalytic activities, the active site cysteine pKa, and the protein structure and oligomeric status. CONCLUSION The Arg119 side chain must be properly situated for efficient catalysis, but for other debilitating variants, the functional defects could be explained by structural perturbations and/or associated decamer destabilization rather than direct effects. This underscores the importance of our comprehensive approach. A remarkable new finding was the preference of the reductant for decamers. Antioxid. Redox Signal. 28, 521-536.
Collapse
Affiliation(s)
- Kimberly J Nelson
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Arden Perkins
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Amanda E D Van Swearingen
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Steven Hartman
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Andrew E Brereton
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Derek Parsonage
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Freddie R Salsbury
- 2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina.,4 Department of Physics, Wake Forest University , Winston-Salem, North Carolina
| | - P Andrew Karplus
- 3 Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon
| | - Leslie B Poole
- 1 Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina.,2 Center for Redox Biology and Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
126
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
127
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
128
|
Fang Y, He J, Janssen HLA, Wu J, Dong L, Shen XZ. Peroxiredoxin 1, restraining cell migration and invasion, is involved in hepatocellular carcinoma recurrence. J Dig Dis 2018; 19:155-169. [PMID: 29377617 DOI: 10.1111/1751-2980.12580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a high-burden disease. Peroxiredoxin 1 (PRDX1) is a member of the peroxiredoxin family of antioxidant enzymes. The aim of this study was to assess the value of PRDX1 for predicting HCC recurrence after curative resection and to explore the role of PRDX1 in HCC cell migration and invasion. METHODS Data of patients with HCC who had undergone complete resection between 2002 and 2006 were collected. Immunohistochemical detection of PRDX1 in HCC tissue and adjacent non-cancerous tissue was conducted. Kaplan-Meier survival estimate and log-rank test were used to assess the relationship between PRDX1 expression and prognostic significance. HCC cell migration and invasion together with the interaction between PRDX1 and ubiquitin C-terminal hydrolase 37 (UCH37) were studied in vitro. RESULTS PRDX1 was expressed at lower levels in HCC tissues than in adjacent non-cancerous tissues, and PRDX1 was found to be an independent risk factor for disease-free survival and overall survival. PRDX1 restrained cell migration and invasion in vitro. PRDX1 was found to interact with UCH37 to affect HCC cell migration and invasion. CONCLUSION PRDX1 restrains cell migration and invasion in HCC cell lines and that may be involved in a UCH37-relevant pathway, suggesting that PRDX1 may be a new marker for HCC recurrence after surgery.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan He
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Harry L A Janssen
- Francis Family Liver Clinic, University of Toronto & University Health Network, Toronto, Canada
| | - Jian Wu
- Key Laboratory of Medical Molecule Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University, Shanghai, China
| |
Collapse
|
129
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
130
|
Stöcker S, Van Laer K, Mijuskovic A, Dick TP. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid Redox Signal 2018; 28:558-573. [PMID: 28587525 DOI: 10.1089/ars.2017.7162] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is known to act as a messenger in signal transduction. How H2O2 leads to selective and efficient oxidation of specific thiols on specific signaling proteins remains one of the most important open questions in redox biology. Recent Advances: Increasing evidence implicates thiol peroxidases as mediators of protein thiol oxidation. Recently, this evidence has been extended to include the peroxiredoxins (Prxs). Prxs are exceptionally sensitive to H2O2, abundantly expressed and capture most of the H2O2 that is generated inside cells. CRITICAL ISSUES The overall prevalence and importance of Prx-based redox signaling relays are still unknown. The same is true for alternative mechanisms of redox signaling. FUTURE DIRECTIONS It will be important to clarify the relative contributions of Prx-mediated and direct thiol oxidation to H2O2 signaling. Many questions relating to Prx-based redox relays remain to be answered, including their mechanism, structural organization, and the potential role of adaptor proteins. Antioxid. Redox Signal. 28, 558-573.
Collapse
Affiliation(s)
- Sarah Stöcker
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Koen Van Laer
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ana Mijuskovic
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
131
|
Han B, Shin HJ, Bak IS, Bak Y, Jeong YL, Kwon T, Park YH, Sun HN, Kim CH, Yu DY. Peroxiredoxin I is important for cancer-cell survival in Ras-induced hepatic tumorigenesis. Oncotarget 2018; 7:68044-68056. [PMID: 27517622 PMCID: PMC5356538 DOI: 10.18632/oncotarget.11172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxin I (Prx I), an antioxidant enzyme, has multiple functions in human cancer. However, the role of Prx I in hepatic tumorigenesis has not been characterized. Here we investigated the relevance and underlying mechanism of Prx I in hepatic tumorigenesis. Prx I increased in tumors of hepatocellular carcinoma (HCC) patients that aligned with overexpression of oncogenic H-ras. Prx I also increased in H-rasG12V transfected HCC cells and liver tumors of H-rasG12V transgenic (Tg) mice, indicating that Prx I may be involved in Ras-induced hepatic tumorigenesis. When Prx I was knocked down or deleted in HCC-H-rasG12V cells or H-rasG12V Tg mice, cell colony or tumor formation was significantly reduced that was associated with downregulation of pERK pathway as well as increased intracellular reactive oxygen species (ROS) induced DNA damage and cell death. Overexpressing Prx I markedly increased Ras downstream pERK/FoxM1/Nrf2 signaling pathway and inhibited oxidative damage in HCC cells and H-rasG12V Tg mice. In this study, we found Nrf2 was transcriptionally activated by FoxM1, and Prx I was activated by the H-rasG12V/pERK/FoxM1/Nrf2 pathway and suppressed ROS-induced hepatic cancer-cell death along with formation of a positive feedback loop with Ras/ERK/FoxM1/Nrf2 to promote hepatic tumorigenesis.
Collapse
Affiliation(s)
- Bing Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea.,Department of Biology, Chungnam National University, Daejeon, 305-764, Korea
| | - Hye-Jun Shin
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - In Seon Bak
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea.,Department of Toxicology Evaluation, Graduate School of Preclinical Laboratory Science, Konyang University, Daejeon, 363-700, Korea
| | - Yesol Bak
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea.,Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Korea
| | - Ye-Lin Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea.,Department of Animal Biosystem Sciences, Chungnam National University, Daejeon, 305-764, Korea
| | - Taeho Kwon
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Young-Ho Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 305-764, Korea
| | - Dae-Yeul Yu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| |
Collapse
|
132
|
Hopkins BL, Nadler M, Skoko JJ, Bertomeu T, Pelosi A, Shafaei PM, Levine K, Schempf A, Pennarun B, Yang B, Datta D, Bucur O, Ndebele K, Oesterreich S, Yang D, Giulia Rizzo M, Khosravi-Far R, Neumann CA. A Peroxidase Peroxiredoxin 1-Specific Redox Regulation of the Novel FOXO3 microRNA Target let-7. Antioxid Redox Signal 2018; 28:62-77. [PMID: 28398822 PMCID: PMC5695745 DOI: 10.1089/ars.2016.6871] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Precision in redox signaling is attained through posttranslational protein modifications such as oxidation of protein thiols. The peroxidase peroxiredoxin 1 (PRDX1) regulates signal transduction through changes in thiol oxidation of its cysteines. We demonstrate here that PRDX1 is a binding partner for the tumor suppressive transcription factor FOXO3 that directly regulates the FOXO3 stress response. Heightened oxidative stress evokes formation of disulfide-bound heterotrimers linking dimeric PRDX1 to monomeric FOXO3. Absence of PRDX1 enhances FOXO3 nuclear localization and transcription that are dependent on the presence of Cys31 or Cys150 within FOXO3. Notably, FOXO3-T32 phosphorylation is constitutively enhanced in these mutants, but nuclear translocation of mutant FOXO3 is restored with PI3K inhibition. Here we show that on H2O2 exposure, transcription of tumor suppressive miRNAs let-7b and let-7c is regulated by FOXO3 or PRDX1 expression levels and that let-7c is a novel target for FOXO3. Conjointly, inhibition of let-7 microRNAs increases let-7-phenotypes in PRDX1-deficient breast cancer cells. Altogether, these data ascertain the existence of an H2O2-sensitive PRDX1-FOXO3 signaling axis that fine tunes FOXO3 activity toward the transcription of gene targets in response to oxidative stress. Antioxid. Redox Signal. 28, 62-77.
Collapse
Affiliation(s)
- Barbara L Hopkins
- 1 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Monica Nadler
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - John J Skoko
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Thierry Bertomeu
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Andrea Pelosi
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Parisa Mousavi Shafaei
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Kevin Levine
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Anja Schempf
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Bodvael Pennarun
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Bo Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dipak Datta
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Octavian Bucur
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts.,6 Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Kenneth Ndebele
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Steffi Oesterreich
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| | - Da Yang
- 5 Department of Pharmaceutical Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Maria Giulia Rizzo
- 4 Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area Regina Elena National Cancer Institute , Rome, Italy
| | - Roya Khosravi-Far
- 3 Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Carola A Neumann
- 2 Department of Pharmacology and Chemical Biology, Magee Womens Research Institute, University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
133
|
de Mattos IM, Soares AEE, Tarpy DR. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:32-44. [PMID: 29067534 DOI: 10.1007/s10646-017-1868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.
Collapse
Affiliation(s)
- Igor Medici de Mattos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil.
| | - Ademilson E E Soares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil
| | - David R Tarpy
- Department of Entomology & Plant Pathology, College of Agriculture and Life Science, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
134
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
135
|
Dietl A, Maack C. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Curr Heart Fail Rep 2017; 14:338-349. [PMID: 28656516 DOI: 10.1007/s11897-017-0347-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In highly prevalent cardiac diseases, new therapeutic approaches are needed. Since the first description of oxidative stress in heart failure, reactive oxygen species (ROS) have been considered as attractive drug targets. Though clinical trials evaluating antioxidant vitamins as ROS-scavenging agents yielded neutral results in patients at cardiovascular risk, the knowledge of ROS as pathophysiological factors has considerably advanced in the past few years and led to novel treatment approaches. Here, we review recent new insights and current strategies in targeting mitochondrial calcium handling and ROS in heart failure. RECENT FINDINGS Mitochondria are an important ROS source, and more recently, drug development focused on targeting mitochondria (e.g. by SS-31 or MitoQ). Important advancement has also been made to decipher how the matching of energy supply and demand through calcium (Ca2+) handling impacts on mitochondrial ROS production and elimination. This opens novel opportunities to ameliorate mitochondrial dysfunction in heart failure by targeting cytosolic and mitochondrial ion transporters to improve this matching process. According to this approach, highly specific substances as the preclinical CGP-37157, as well as the clinically used ranolazine and empagliflozin, provide promising results on different levels of evidence. Furthermore, the understanding of redox signalling relays, resembled by catalyst-mediated protein oxidation, is about to change former paradigms of ROS signalling. Novel methods, as redox proteomics, allow to precisely analyse key regulatory thiol switches, which may induce adaptive or maladaptive signalling. Additionally, the generation of genetically encoded probes increased the spatial and temporal resolution of ROS imaging and opened a new methodological window to subtle, formerly obscured processes. These novel insights may broaden our understanding of why previous attempts to target oxidative stress have failed, and at the same time provide us with new targets for drug development.
Collapse
Affiliation(s)
- Alexander Dietl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany.
| |
Collapse
|
136
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 2017; 15:347-362. [PMID: 29306792 PMCID: PMC5756055 DOI: 10.1016/j.redox.2017.12.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) have been implicated in tumorigenesis (tumor initiation, tumor progression, and metastasis). Of the many cellular sources of ROS generation, the mitochondria and the NADPH oxidase family of enzymes are possibly the most prevalent intracellular sources. In this article, we discuss the methodologies to detect mitochondria-derived superoxide and hydrogen peroxide using conventional probes as well as newly developed assays and probes, and the necessity of characterizing the diagnostic marker products with HPLC and LC-MS in order to rigorously identify the oxidizing species. The redox signaling roles of mitochondrial ROS, mitochondrial thiol peroxidases, and transcription factors in response to mitochondria-targeted drugs are highlighted. ROS generation and ROS detoxification in drug-resistant cancer cells and the relationship to metabolic reprogramming are discussed. Understanding the subtle role of ROS in redox signaling and in tumor proliferation, progression, and metastasis as well as the molecular and cellular mechanisms (e.g., autophagy) could help in the development of combination therapies. The paradoxical aspects of antioxidants in cancer treatment are highlighted in relation to the ROS mechanisms in normal and cancer cells. Finally, the potential uses of newly synthesized exomarker probes for in vivo superoxide and hydrogen peroxide detection and the low-temperature electron paramagnetic resonance technique for monitoring oxidant production in tumor tissues are discussed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- Aix Marseille Univ CNRS ICR UMR 7273, Marseille 13013, France
| | - Brian Bennett
- Department of Physics, Marquette University, 540 North 15th Street, Milwaukee, WI 53233, United States
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
137
|
A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat Chem Biol 2017; 14:148-155. [PMID: 29251718 DOI: 10.1038/nchembio.2536] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Hydrogen peroxide (H2O2) acts as a signaling messenger by triggering the reversible oxidation of redox-regulated proteins. It remains unclear how proteins can be oxidized by signaling levels of H2O2 in the presence of peroxiredoxins, which are highly efficient peroxide scavengers. Here we show that the rapid formation of disulfide bonds in cytosolic proteins is enabled, rather than competed, by cytosolic 2-Cys peroxiredoxins. Under the conditions tested, the combined deletion or depletion of cytosolic peroxiredoxins broadly frustrated H2O2-dependent protein thiol oxidation, which is the exact opposite of what would be predicted based on the assumption that H2O2 oxidizes proteins directly. We find that peroxiredoxins enable rapid and sensitive protein thiol oxidation by relaying H2O2-derived oxidizing equivalents to other proteins. Although these findings do not rule out the existence of Prx-independent H2O2 signaling mechanisms, they suggest a broader role for peroxiredoxins as sensors and transmitters of H2O2 signals than hitherto recognized.
Collapse
|
138
|
Abstract
SIGNIFICANCE Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. CRITICAL ISSUES Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. FUTURE DIRECTIONS A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal. 27, 1130-1161.
Collapse
Affiliation(s)
- Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University , Heidelberg, Germany
| |
Collapse
|
139
|
Kim JG, Choi KC, Hong CW, Park HS, Choi EK, Kim YS, Park JB. Tyr42 phosphorylation of RhoA GTPase promotes tumorigenesis through nuclear factor (NF)-κB. Free Radic Biol Med 2017; 112:69-83. [PMID: 28712859 DOI: 10.1016/j.freeradbiomed.2017.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023]
Abstract
Dysregulation of reactive oxygen species (ROS) levels is implicated in the pathogenesis of several diseases, including cancer. However, the molecular mechanisms for ROS in tumorigenesis have not been well established. In this study, hydrogen peroxide activated nuclear factor-κB (NF-κB) and RhoA GTPase. In particular, we found that hydrogen peroxide lead to phosphorylation of RhoA at Tyr42 via tyrosine kinase Src. Phospho-Tyr42 (p-Tyr42) residue of RhoA is a binding site for Vav2, a guanine nucleotide exchange factor (GEF), which then activates p-Tyr42 form of RhoA. P-Tyr42 RhoA then binds to IκB kinase γ (IKKγ), leading to IKKβ activation. Furthermore, RhoA WT and phospho-mimic RhoA, RhoA Y42E, both promoted tumorigenesis, whereas the dephospho-mimic RhoA, RhoA Y42F suppressed it. In addition, hydrogen peroxide induced NF-κB activation and cell proliferation, along with expression of c-Myc and cyclin D1 in the presence of RhoA WT and RhoA Y42E, but not RhoA Y42F. Indeed, levels of p-Tyr42 Rho, p-Src, and p-65 are significantly increased in human breast cancer tissues and show correlations between each of the two components. Conclusively, the posttranslational modification of as RhoA p-Tyr42 may be essential for promoting tumorigenesis in response to generation of ROS.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Kyoung-Chan Choi
- Department of Pathology, Chuncheon Sacred Hospital Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do 41944, Republic of Korea
| | - Hwee-Seon Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea; Department of Microbiology, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea; Institute of Cell Differentiation and Ageing, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea.
| |
Collapse
|
140
|
Kuksal N, Chalker J, Mailloux RJ. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling. Biol Chem 2017; 398:1209-1227. [PMID: 28675747 DOI: 10.1515/hsz-2017-0160] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/15/2022]
Abstract
The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.
Collapse
|
141
|
Peroxiredoxin1, a novel regulator of pronephros development, influences retinoic acid and Wnt signaling by controlling ROS levels. Sci Rep 2017; 7:8874. [PMID: 28827763 PMCID: PMC5567039 DOI: 10.1038/s41598-017-09262-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Peroxiredoxin1 (Prdx1) is an antioxidant enzyme belonging to the peroxiredoxin family of proteins. Prdx1 catalyzes the reduction of H2O2 and alkyl hydroperoxide and plays an important role in different biological processes. Prdx1 also participates in various age-related diseases and cancers. In this study, we investigated the role of Prdx1 in pronephros development during embryogenesis. Prdx1 knockdown markedly inhibited proximal tubule formation in the pronephros and significantly increased the cellular levels of reactive oxygen species (ROS), which impaired primary cilia formation. Additionally, treatment with ROS (H2O2) severely disrupted proximal tubule formation, whereas Prdx1 overexpression reversed the ROS-mediated inhibition in proximal tubule formation. Epistatic analysis revealed that Prdx1 has a crucial role in retinoic acid and Wnt signaling pathways during pronephrogenesis. In conclusion, Prdx1 facilitates proximal tubule formation during pronephrogenesis by regulating ROS levels.
Collapse
|
142
|
Travasso RDM, Sampaio Dos Aidos F, Bayani A, Abranches P, Salvador A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol 2017; 12:233-245. [PMID: 28279943 PMCID: PMC5339411 DOI: 10.1016/j.redox.2017.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a key signaling agent. Its best characterized signaling actions in mammalian cells involve the early oxidation of thiols in cytoplasmic phosphatases, kinases and transcription factors. However, these redox targets are orders of magnitude less H2O2-reactive and abundant than cytoplasmic peroxiredoxins. How can they be oxidized in a signaling time frame? Here we investigate this question using computational reaction-diffusion models of H2O2 signaling. The results show that at H2O2 supply rates commensurate with mitogenic signaling a H2O2 concentration gradient with a length scale of a few tenths of μm is established. Even near the supply sites H2O2 concentrations are far too low to oxidize typical targets in an early mitogenic signaling time frame. Furthermore, any inhibition of the peroxiredoxin or increase in H2O2 supply able to drastically increase the local H2O2 concentration would collapse the concentration gradient and/or cause an extensive oxidation of the peroxiredoxins I and II, inconsistent with experimental observations. In turn, the local concentrations of peroxiredoxin sulfenate and disulfide forms exceed those of H2O2 by several orders of magnitude. Redox targets reacting with these forms at rate constants much lower than that for, say, thioredoxin could be oxidized within seconds. Moreover, the spatial distribution of the concentrations of these peroxiredoxin forms allows them to reach targets within 1 μm from the H2O2 sites while maintaining signaling localized. The recruitment of peroxiredoxins to specific sites such as caveolae can dramatically increase the local concentrations of the sulfenic and disulfide forms, thus further helping these species to outcompete H2O2 for the oxidation of redox targets. Altogether, these results suggest that H2O2 signaling is mediated by localized redox relays whereby peroxiredoxins are oxidized to sulfenate and disulfide forms at H2O2 supply sites and these forms in turn oxidize the redox targets near these sites.
Collapse
Affiliation(s)
- Rui D M Travasso
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal.
| | - Fernando Sampaio Dos Aidos
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Anahita Bayani
- Department of Physics & Mathematics, School of Science & Technology, Nottingham Trent University, UK
| | - Pedro Abranches
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CQC, Department of Chemistry, University of Coimbra, Portugal.
| |
Collapse
|
143
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
144
|
Bersweiler A, D'Autréaux B, Mazon H, Kriznik A, Belli G, Delaunay-Moisan A, Toledano MB, Rahuel-Clermont S. A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling. Nat Chem Biol 2017. [DOI: 10.1038/nchembio.2412] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
145
|
Vilhardt F, Haslund‐Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174:1719-1732. [PMID: 26754582 PMCID: PMC5446583 DOI: 10.1111/bph.13426] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022] Open
Abstract
For many years, microglia, the resident CNS macrophages, have been considered only in the context of pathology, but microglia are also glial cells with important physiological functions. Microglia-derived oxidant production by NADPH oxidase (NOX2) is implicated in many CNS disorders. Oxidants do not stand alone, however, and are not always pernicious. We discuss in general terms, and where available in microglia, GSH synthesis and relation to cystine import and glutamate export, and the thioredoxin system as the most important antioxidative defence mechanism, and further, we discuss in the context of protein thiolation of target redox proteins the necessity for tightly localized, timed and confined oxidant production to work in concert with antioxidant proteins to promote redox signalling. NOX2-mediated redox signalling modulates the acquisition of the classical or alternative microglia activation phenotypes by regulating major transcriptional programs mediated through NF-κB and Nrf2, major regulators of the inflammatory and antioxidant response respectively. As both antioxidants and NOX-derived oxidants are co-secreted, in some instances redox signalling may extend to neighboring cells through modification of surface or cytosolic target proteins. We consider a role for microglia NOX-derived oxidants in paracrine modification of synaptic function through long term depression and in the communication with the adaptive immune system. There is little doubt that a continued foray into the functions of the antioxidant response in microglia will reveal antioxidant proteins as dynamic players in redox signalling, which in concert with NOX-derived oxidants fulfil important roles in the autocrine or paracrine regulation of essential enzymes or transcriptional programs. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
| | - J Haslund‐Vinding
- Institute of Cellular and Molecular MedicineCopenhagen UniversityCopenhagenDenmark
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - V Jaquet
- Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
146
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
147
|
Quantitative biology of hydrogen peroxide signaling. Redox Biol 2017; 13:1-7. [PMID: 28528123 PMCID: PMC5436100 DOI: 10.1016/j.redox.2017.04.039] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2) controls signaling pathways in cells by oxidative modulation of the activity of redox sensitive proteins denominated redox switches. Here, quantitative biology concepts are applied to review how H2O2 fulfills a key role in information transmission. Equations described lay the foundation of H2O2 signaling, give new insights on H2O2 signaling mechanisms, and help to learn new information from common redox signaling experiments. A key characteristic of H2O2 signaling is that the ratio between reduction and oxidation of redox switches determines the range of H2O2 concentrations to which they respond. Thus, a redox switch with low H2O2-dependent oxidability and slow reduction rate responds to the same range of H2O2 concentrations as a redox switch with high H2O2-dependent oxidability, but that is rapidly reduced. Yet, in the first case the response time is slow while in the second case is rapid. H2O2 sensing and transmission of information can be done directly or by complex mechanisms in which oxidation is relayed between proteins before oxidizing the final regulatory redox target. In spite of being a very simple molecule, H2O2 has a key role in cellular signaling, with the reliability of the information transmitted depending on the inherent chemical reactivity of redox switches, on the presence of localized H2O2 pools, and on the molecular recognition between redox switches and their partners. Hydrogen peroxide signaling proceeds through oxidation of redox switches. Oxidation of redox switches can be direct or mediated by highly reactive sensors. Response of redox switches is controlled by their oxidability and reduction rate. Localized protein interactions ensure the accuracy of information transmission.
Collapse
|
148
|
Carvalho LAC, Truzzi DR, Fallani TS, Alves SV, Toledo JC, Augusto O, Netto LES, Meotti FC. Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2. J Biol Chem 2017; 292:8705-8715. [PMID: 28348082 DOI: 10.1074/jbc.m116.767657] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
Urate hydroperoxide is a product of the oxidation of uric acid by inflammatory heme peroxidases. The formation of urate hydroperoxide might be a key event in vascular inflammation, where there is large amount of uric acid and inflammatory peroxidases. Urate hydroperoxide oxidizes glutathione and sulfur-containing amino acids and is expected to react fast toward reactive thiols from peroxiredoxins (Prxs). The kinetics for the oxidation of the cytosolic 2-Cys Prx1 and Prx2 revealed that urate hydroperoxide oxidizes these enzymes at rates comparable with hydrogen peroxide. The second-order rate constants of these reactions were 4.9 × 105 and 2.3 × 106 m-1 s-1 for Prx1 and Prx2, respectively. Kinetic and simulation data suggest that the oxidation of Prx2 by urate hydroperoxide occurs by a three-step mechanism, where the peroxide reversibly associates with the enzyme; then it oxidizes the peroxidatic cysteine, and finally, the rate-limiting disulfide bond is formed. Of relevance, the disulfide bond formation was much slower in Prx2 (k3 = 0.31 s-1) than Prx1 (k3 = 14.9 s-1). In addition, Prx2 was more sensitive than Prx1 to hyperoxidation caused by both urate hydroperoxide and hydrogen peroxide. Urate hydroperoxide oxidized Prx2 from intact erythrocytes to the same extent as hydrogen peroxide. Therefore, Prx1 and Prx2 are likely targets of urate hydroperoxide in cells. Oxidation of Prxs by urate hydroperoxide might affect cell function and be partially responsible for the pro-oxidant and pro-inflammatory effects of uric acid.
Collapse
Affiliation(s)
| | - Daniela R Truzzi
- From the Departamento de Bioquímica, Instituto de Química (IQUSP)
| | | | - Simone V Alves
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências (IB-USP), and
| | - José Carlos Toledo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo-SP CEP 05508-000, Brazil
| | - Ohara Augusto
- From the Departamento de Bioquímica, Instituto de Química (IQUSP)
| | - Luís E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências (IB-USP), and
| | - Flavia C Meotti
- From the Departamento de Bioquímica, Instituto de Química (IQUSP),
| |
Collapse
|
149
|
Bennett CF, Kwon JJ, Chen C, Russell J, Acosta K, Burnaevskiy N, Crane MM, Bitto A, Vander Wende H, Simko M, Pineda V, Rossner R, Wasko BM, Choi H, Chen S, Park S, Jafari G, Sands B, Perez Olsen C, Mendenhall AR, Morgan PG, Kaeberlein M. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006695. [PMID: 28355222 PMCID: PMC5389855 DOI: 10.1371/journal.pgen.1006695] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.
Collapse
Affiliation(s)
- Christopher F. Bennett
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
| | - Jane J. Kwon
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Christine Chen
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Joshua Russell
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Kathlyn Acosta
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Nikolay Burnaevskiy
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Matthew M. Crane
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Helen Vander Wende
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Marissa Simko
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Victor Pineda
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Ryan Rossner
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, United States of America
| | - Brian M. Wasko
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Haeri Choi
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Shiwen Chen
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Shirley Park
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Gholamali Jafari
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Bryan Sands
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Carissa Perez Olsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | | | - Philip G. Morgan
- Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
150
|
Ledgerwood EC, Marshall JW, Weijman JF. The role of peroxiredoxin 1 in redox sensing and transducing. Arch Biochem Biophys 2017; 617:60-67. [DOI: 10.1016/j.abb.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
|