101
|
Parasitic Protozoa: Unusual Roles for G-Quadruplexes in Early-Diverging Eukaryotes. Molecules 2019; 24:molecules24071339. [PMID: 30959737 PMCID: PMC6480360 DOI: 10.3390/molecules24071339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Guanine-quadruplex (G4) motifs, at both the DNA and RNA levels, have assumed an important place in our understanding of the biology of eukaryotes, bacteria and viruses. However, it is generally little known that their very first description, as well as the foundational work on G4s, was performed on protozoans: unicellular life forms that are often parasitic. In this review, we provide a historical perspective on the discovery of G4s, intertwined with their biological significance across the protozoan kingdom. This is a history in three parts: first, a period of discovery including the first characterisation of a G4 motif at the DNA level in ciliates (environmental protozoa); second, a period less dense in publications concerning protozoa, during which DNA G4s were discovered in both humans and viruses; and third, a period of renewed interest in protozoa, including more mechanistic work in ciliates but also in pathogenic protozoa. This last period has opened an exciting prospect of finding new anti-parasitic drugs to interfere with parasite biology, thus adding new compounds to the therapeutic arsenal.
Collapse
|
102
|
Archer SA, Raza A, Dröge F, Robertson C, Auty AJ, Chekulaev D, Weinstein JA, Keane T, Meijer AJHM, Haycock JW, MacNeil S, Thomas JA. A dinuclear ruthenium(ii) phototherapeutic that targets duplex and quadruplex DNA. Chem Sci 2019; 10:3502-3513. [PMID: 30996941 PMCID: PMC6430095 DOI: 10.1039/c8sc05084h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
With the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new iso-structural derivative containing RuII(TAP)2 fragments (TAP = 1,4,5,8-tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays Ru → L-based 3MLCT emission in both MeCN and water. Results from electrochemical studies and emission quenching experiments involving guanosine monophosphate are consistent with an excited state located on a TAP moiety. This hypothesis is further supported by detailed DFT calculations, which take into account solvent effects on excited state dynamics. Cell-free steady-state and time-resolved optical studies on the interaction of the new complex with duplex and quadruplex DNA show that the complex binds with high affinity to both structures and indicate that its photoexcited state is also quenched by DNA, a process that is accompanied by the generation of the guanine radical cation sites as photo-oxidization products. Like the parent complex, this new compound is taken up by live cells where it primarily localizes within the nucleus and displays low cytotoxicity in the absence of light. However, in complete contrast to [{RuII(phen)2}2(tpphz)]4+, the new complex is therapeutically activated by light to become highly phototoxic toward malignant human melanoma cell lines showing that it is a promising lead for the treatment of this recalcitrant cancer.
Collapse
Affiliation(s)
- Stuart A Archer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Ahtasham Raza
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - Fabian Dröge
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Craig Robertson
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Alexander J Auty
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Dimitri Chekulaev
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Julia A Weinstein
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Theo Keane
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - Anthony J H M Meijer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| | - John W Haycock
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - Sheila MacNeil
- Materials Science & Engineering , University of Sheffield , Mappin St , Sheffield S1 3JD , UK . ;
| | - James A Thomas
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK . ; Tel: +44 (0)114 222 9325
| |
Collapse
|
103
|
Small Molecule Fluorescent Probes for G- Quadruplex Visualization as Potential Cancer Theranostic Agents. Molecules 2019; 24:molecules24040752. [PMID: 30791494 PMCID: PMC6412342 DOI: 10.3390/molecules24040752] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 11/25/2022] Open
Abstract
G-quadruplexes have gained prominence over the past two decades for their role in gene regulation, control of anti-tumour activity and ageing. The physiological relevance and significance of these non-canonical structures in the context of cancer has been reviewed several times. Putative roles of G-quadruplexes in cancer prognosis and pathogenesis have spurred the search for small molecule ligands that are capable of binding and modulating the effect of such structures. On a related theme, small molecule fluorescent probes have emerged that are capable of selective recognition of G-quadruplex structures. These have opened up the possibility of direct visualization and tracking of such structures. In this review we outline recent developments on G-quadruplex specific small molecule fluorescent probes for visualizing G-quadruplexes. The molecules represent a variety of structural scaffolds, mechanism of quadruplex-recognition and fluorescence signal transduction. Quadruplex selectivity and in vivo imaging potential of these molecules places them uniquely as quadruplex-theranostic agents in the predominantly cancer therapeutic context of quadruplex-selective ligands.
Collapse
|
104
|
Saha P, Panda D, Dash J. The application of click chemistry for targeting quadruplex nucleic acids. Chem Commun (Camb) 2019; 55:731-750. [PMID: 30489575 DOI: 10.1039/c8cc07107a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu(i)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as the "click reaction", has emerged as a powerful and versatile synthetic tool that finds a broad spectrum of applications in chemistry, biology and materials science. The efficiency, selectivity and versatility of the CuAAC reactions have enabled the preparation of vast arrays of triazole compounds with biological and pharmaceutical applications. In this feature article, we outline the applications and future prospects of click chemistry in the synthesis and development of small molecules that target G-quadruplex nucleic acids and show promising biological activities. Furthermore, this article highlights the template-assisted in situ click chemistry for developing G-quadruplex specific ligands and the use of click chemistry for enhancing drug specificity as well as designing imaging and sensor systems to elucidate the biological functions of G-quadruplex nucleic acids in live cells.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | | | | |
Collapse
|
105
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
106
|
Abstract
The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA.
| |
Collapse
|
107
|
Pipier A, De Rache A, Modeste C, Amrane S, Mothes-Martin E, Stigliani JL, Calsou P, Mergny JL, Pratviel G, Gomez D. G-Quadruplex binding optimization by gold(iii) insertion into the center of a porphyrin. Dalton Trans 2019; 48:6091-6099. [PMID: 30860519 DOI: 10.1039/c8dt04703k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyrins represent a valuable class of ligands for G-quadruplex nucleic acids. Herein, we evaluate the binding of cationic porphyrins metallated with gold(iii) to G-quadruplex DNA and we compare it with other porphyrin derivatives. The G-quadruplex stabilization capacity and the selectivity of the various porphyrins were evaluated by biophysical and biochemical assays. The porphyrins were also tested as inhibitors of telomerase. It clearly appeared that the insertion of gold(iii) ion in the center of the porphyrin increases the binding affinity of the porphyrin for the G-quadruplex target. Together with modelling studies, it is possible to propose that the insertion of the square planar gold(iii) ion adds an extra positive charge on the complex and decreases the electron density in the porphyrin aromatic macrocycle, both properties being in favour of stronger electrostatic and π-staking interactions.
Collapse
Affiliation(s)
- Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Jana S, Panda D, Saha P, Pantos̨ GD, Dash J. Dynamic Generation of G-Quadruplex DNA Ligands by Target-Guided Combinatorial Chemistry on a Magnetic Nanoplatform. J Med Chem 2018; 62:762-773. [DOI: 10.1021/acs.jmedchem.8b01459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Snehasish Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deepanjan Panda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Puja Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - G. Dan Pantos̨
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
109
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
110
|
Binding Study of the Fluorescent Carbazole Derivative with Human Telomeric G-Quadruplexes. Molecules 2018; 23:molecules23123154. [PMID: 30513661 PMCID: PMC6321567 DOI: 10.3390/molecules23123154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
The carbazole ligand 3 was synthesized, characterized and its binding interactions with human telomeric (22HT) G-quadruplex DNA in Na+ and K+-containing buffer were investigated by ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence, circular dichroism (CD) spectroscopy, and DNA melting. The results showed that the studied carbazole ligand interacted and stabilized the intramolecular G-quadruplexes formed by the telomeric sequence in the presence of sodium and potassium ions. In the UV-Vis titration experiments a two-step complex formation between ligand and G-quadruplex was observed. Very low fluorescence intensity of the carbazole derivative in Tris HCl buffer in the presence of the NaCl or KCl increased significantly after addition of the 22HT G4 DNA. Binding stoichiometry of the ligand/G-quadruplex was investigated with absorbance-based Job plots. Carbazole ligand binds 22HT with about 2:1 stoichiometry in the presence of sodium and potassium ions. The binding mode appeared to be end-stacking with comparable binding constants of ~105 M−1 as determined from UV-Vis and fluorescence titrations data. The carbazole ligand is able to induce formation of G4 structure of 22HT in the absence of salt, which was proved by CD spectroscopy and melting studies. The derivative of carbazole 3 shows significantly higher cytotoxicity against breast cancer cells then for non-tumorigenic breast epithelial cells. The cytotoxic activity of ligand seems to be not associated with telomerase inhibition.
Collapse
|
111
|
Grande V, Shen CA, Deiana M, Dudek M, Olesiak-Banska J, Matczyszyn K, Würthner F. Selective parallel G-quadruplex recognition by a NIR-to-NIR two-photon squaraine. Chem Sci 2018; 9:8375-8381. [PMID: 30542585 PMCID: PMC6240894 DOI: 10.1039/c8sc02882f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/26/2018] [Indexed: 01/12/2023] Open
Abstract
Fluorescence imaging probes for specific G-quadruplex (G4) conformations are of considerable interest in biomedical research. Herein, we present the synthesis and the binding properties of a new water-soluble near-infrared (NIR) amphiphilic squaraine dye (CAS-C1) which is capable of selective detection of parallel over non-parallel and non G4 topologies. The striking changes in its linear optical response upon binding to parallel G4s give rise to high fluorescence quantum yields (Φ f ≈ 0.7) and one-photon molecular brightness in the far-red-NIR region. The outstanding recognition process of CAS-C1 for parallel G4s via end-stacking provides binding constants in the nanomolar regime (K b = 107 to 108 M-1) awarding it as one of the most potent parallel G4 binders currently available. Moreover, the CAS-C1-parallel G4 system exhibits large two-photon absorption (TPA) cross-sections and molecular brightness in the second NIR biological transparency window (λ ≈ 1275 nm), making it an ideal candidate for NIR-to-NIR ultrasensitive two-photon procedures.
Collapse
Affiliation(s)
- Vincenzo Grande
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Chia-An Shen
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group , Faculty of Chemistry , Wroclaw University of Science and Technology , Wybrzeze Wyspianskiego 27 , 50-370 Wroclaw , Poland .
| | - Marta Dudek
- Advanced Materials Engineering and Modelling Group , Faculty of Chemistry , Wroclaw University of Science and Technology , Wybrzeze Wyspianskiego 27 , 50-370 Wroclaw , Poland .
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group , Faculty of Chemistry , Wroclaw University of Science and Technology , Wybrzeze Wyspianskiego 27 , 50-370 Wroclaw , Poland .
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group , Faculty of Chemistry , Wroclaw University of Science and Technology , Wybrzeze Wyspianskiego 27 , 50-370 Wroclaw , Poland .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
112
|
Nadai M, Doria F, Scalabrin M, Pirota V, Grande V, Bergamaschi G, Amendola V, Winnerdy FR, Phan AT, Richter SN, Freccero M. A Catalytic and Selective Scissoring Molecular Tool for Quadruplex Nucleic Acids. J Am Chem Soc 2018; 140:14528-14532. [PMID: 30351011 PMCID: PMC6242190 DOI: 10.1021/jacs.8b05337] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A copper complex embedded in the structure of a water-soluble naphthalene diimide has been designed to bind and cleave G-quadruplex DNA. We describe the properties of this ligand, including its catalytic activity in the generation of ROS. FRET melting, CD, NMR, gel sequencing, and mass spectrometry experiments highlight a unique and unexpected selectivity in cleaving G-quadruplex sequences. This selectivity relies both on the binding affinity and structural features of the targeted G-quadruplexes.
Collapse
Affiliation(s)
- Matteo Nadai
- Department of Molecular Medicine , University of Padua , via Gabelli 63 , 35121 Padua , Italy
| | - Filippo Doria
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine , University of Padua , via Gabelli 63 , 35121 Padua , Italy
| | - Valentina Pirota
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| | - Vincenzo Grande
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| | - Greta Bergamaschi
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| | - Valeria Amendola
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , via Gabelli 63 , 35121 Padua , Italy
| | - Mauro Freccero
- Department of Chemistry , University of Pavia , V. le Taramelli 10 , 27100 Pavia , Italy
| |
Collapse
|
113
|
Abdelhamid MAS, Gates AJ, Waller ZAE. Destabilization of i-Motif DNA at Neutral pH by G-Quadruplex Ligands. Biochemistry 2018; 58:245-249. [PMID: 30350580 DOI: 10.1021/acs.biochem.8b00968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous studies have been published stressing the importance of finding ligands that can bind specifically to DNA secondary structures. Several have identified ligands that are presented as having specific binding to the G-quadruplex; however, these were not originally tested on the complementary i-motif structure. The i-motif was overlooked and presumed to be irrelevant due to the belief that the hemiprotonated (cytosine+-cytosine) base pair at the core of the structure required acidic pH. The pathophysiological relevance of i-motifs has since been documented, as well as the discovery of several genomic sequences, which can form i-motif at neutral pH. Using different biophysical methodologies, we provide experimental evidence to show that widely used G-quadruplex ligands interact with i-motif structures at neutral pH, generally leading to their destabilization. Crucially, this has implications both for the search for quadruplex binding compounds as well as for the effects of compounds reported to have G-quadruplex specificity without examining their effects on i-motif.
Collapse
Affiliation(s)
- Mahmoud A S Abdelhamid
- School of Pharmacy , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom.,Centre for Molecular and Structural Biochemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom.,School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Zoë A E Waller
- School of Pharmacy , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom.,Centre for Molecular and Structural Biochemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| |
Collapse
|
114
|
Wang L, Wang QM, Wang YR, Xi XG, Hou XM. DNA-unwinding activity of Saccharomyces cerevisiae Pif1 is modulated by thermal stability, folding conformation, and loop lengths of G-quadruplex DNA. J Biol Chem 2018; 293:18504-18513. [PMID: 30305390 DOI: 10.1074/jbc.ra118.005071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded DNA structures formed by Hoogsteen base pairing between stacked sets of four guanines. Pif1 helicase plays critical roles in suppressing genomic instability in the yeast Saccharomyces cerevisiae by resolving G4s. However, the structural properties of G4s in S. cerevisiae and the substrate preference of Pif1 for different G4s remain unknown. Here, using CD spectroscopy and 83 G4 motifs from S. cerevisiae ranging in length from 30 to 60 nucleotides, we first show that G4 structures can be formed with a broad range of loop sizes in vitro and that a parallel conformation is favored. Using single-molecule FRET analysis, we then systematically addressed Pif1-mediated unwinding of various G4s and found that Pif1 is sensitive to G4 stability. Moreover, Pif1 preferentially unfolded antiparallel G4s rather than parallel G4s having similar stability. Furthermore, our results indicate that most G4 structures in S. cerevisiae sequences have long loops and can be efficiently unfolded by Pif1 because of their low stability. However, we also found that G4 structures with short loops can be barely unfolded. This study highlights the formidable capability of Pif1 to resolve the majority of G4s in S. cerevisiae sequences, narrows the fractions of G4s that may be challenging for genomic stability, and provides a framework for understanding the influence of different G4s on genomic stability via their processing by Pif1.
Collapse
Affiliation(s)
- Lei Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Qing-Man Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Yi-Ran Wang
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| | - Xu-Guang Xi
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Xi-Miao Hou
- From the State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China and
| |
Collapse
|
115
|
Li F, Tan W, Chen H, Zhou J, Xu M, Yuan G. Up- and downregulation of mature miR-1587 function by modulating its G-quadruplex structure and using small molecules. Int J Biol Macromol 2018; 121:127-134. [PMID: 30290263 DOI: 10.1016/j.ijbiomac.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Using bioinformatics analysis, we found some mature human miRNAs containing G-rich sequences with four G-tracts that had a high probability of forming G-quadruplex structures. Here, we chose G-rich miR-1587 as a model to characterize the function and regulation of miRNAs. Using electrospray ionization mass spectrometry, magnetic resonance imaging, circular dichroism spectrometry, we had confirmed that miR-1587 folded into a stable parallel G-quadruplex structure. By microarray, Q-RT-PCR and 3'UTR luciferase assay, TAGLN, an early marker of smooth muscle differentiation and tumor suppressor, was identified as a target gene of miR-1587, thus providing a direct target to study miR-1587 functions. We identified three aspects of miR-1587 regulation: 1) KCl induced miR-1587 G-quadruplex formation, reducing the interaction between miR-1587 and the target gene, and inhibiting miR-1587 function; 2) pseudopalmatine ligand further inhibited miR-1587 binding to TAGLN mRNA, which disrupted its function and increased the TAGLN expression; 3) the addition of TMPyP4 ligand interfered G-quadruplex formation, and significantly enhanced miR-1587 regulation of TAGLN expression. This study has revealed the possibility of using the G-quadruplex structure as a strategy to regulate miR-1587 function, showing potential for the development of up- and downregulation of mature G-rich microRNA function by modulating its G-quadruplex and using small molecules.
Collapse
Affiliation(s)
- Fangyuan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ming Xu
- Institute of Vascular Medicine, Department of Cardiology, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health Beijing, 100191, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
116
|
Ihmels H, Jiang S, Mahmoud MMA, Schönherr H, Wesner D, Zamrik I. Fluorimetric Detection of G-Quadruplex DNA in Solution and Adsorbed on Surfaces with a Selective Trinuclear Cyanine Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11866-11877. [PMID: 30173518 DOI: 10.1021/acs.langmuir.8b02382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quadruplex DNA, which is a relevant target for anticancer therapies, may alter its conformation because of interactions with interfaces. In pursuit of a versatile methodology to probe adsorption-induced conformational changes, the interaction between a fluorescent [2.2.2]heptamethinecyanine dye and quadruplex DNA (G4-DNA) was studied in solution and on surfaces. In solution, the cyanine dye exhibits a strong light-up effect upon the association with G4-DNA without interference from double-stranded DNA. In addition, a terminal π-stacking as a binding mode between the cyanine dye and G4-DNA is concluded using NMR spectroscopy. To unravel the effects of adsorption on the conformation of quadruplex-DNA, G4-DNA, and double-stranded and single-stranded DNA were adsorbed to positively charged poly(allylamine) hydrochloride (PAH) surfaces, both in planar and in constrained 55 nm diameter aluminum oxide nanopore formats. All DNA forms showed a very strong affinity to the PAH surfaces as shown by surface plasmon resonance and reflectometric interference spectroscopy. The significant increase of the fluorescence emission intensity of the cyanine light-up probe observed exclusively for surface immobilized G4-DNA affords evidence for the adsorption of G4-DNA on PAH with retained quadruplex conformation.
Collapse
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Siyu Jiang
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Mohamed M A Mahmoud
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Imad Zamrik
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|
117
|
Wu W, Rokutanda N, Takeuchi J, Lai Y, Maruyama R, Togashi Y, Nishikawa H, Arai N, Miyoshi Y, Suzuki N, Saeki Y, Tanaka K, Ohta T. HERC2 Facilitates BLM and WRN Helicase Complex Interaction with RPA to Suppress G-Quadruplex DNA. Cancer Res 2018; 78:6371-6385. [PMID: 30279242 DOI: 10.1158/0008-5472.can-18-1877] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
BLM and WRN are RecQ DNA helicasesessential for genomic stability. Here, we demonstrate that HERC2, a HECT E3 ligase, is critical for their functions to suppress G-quadruplex (G4) DNA. HERC2 interacted with BLM, WRN, and replication protein A (RPA) complexes during the S-phase of the cell cycle. Depletion of HERC2 dissociated RPA from BLM and WRN complexes and significantly increased G4 formation. Triple depletion revealed that HERC2 has an epistatic relationship with BLM and WRN in their G4-suppressing function. In vitro, HERC2 released RPA onto single-stranded DNA (ssDNA) rather than anchoring onto RPA-coated ssDNA. CRISPR/Cas9-mediated deletion of the catalytic ubiquitin-binding site of HERC2 inhibited ubiquitination of RPA2, caused RPA accumulation in the helicase complexes, and increased G4, indicating an essential role for E3 activity in the suppression of G4. Both depletion of HERC2 and inactivation of E3 sensitized cells to the G4-interacting compounds telomestatin and pyridostatin. Overall, these results indicate that HERC2 is a master regulator of G4 suppression that affects the sensitivity of cells to G4 stabilizers. Given that HERC2 expression is frequently reduced in many types of cancers, G4 accumulation as a result of HERC2 deficiency may provide a therapeutic target for G4 stabilizers.Significance: HERC2 is revealed as a master regulator of G-quadruplex, a DNA secondary structure that triggers genomic instability and may serve as a potential molecular target in cancer therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/22/6371/F1.large.jpg Cancer Res; 78(22); 6371-85. ©2018 AACR.
Collapse
Affiliation(s)
- Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Nana Rokutanda
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Jun Takeuchi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yongqiang Lai
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of General Surgery, Gaoming People's Hospital in Foshan, Foshan City, Guangdong Province, China
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroyuki Nishikawa
- Institute of Advanced Medical Science, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Naoko Arai
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.
| |
Collapse
|
118
|
Tassinari M, Cimino-Reale G, Nadai M, Doria F, Butovskaya E, Recagni M, Freccero M, Zaffaroni N, Richter SN, Folini M. Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. J Med Chem 2018; 61:8625-8638. [PMID: 30188709 DOI: 10.1021/acs.jmedchem.8b00502] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stabilization of the G-quadruplexes (G4s) within the androgen receptor (AR) gene promoter to block transcription may represent an innovative approach to interfere with aberrant AR signaling in castration resistant prostate cancer (CRPC). A library of differently functionalized naphthalene diimides (NDIs) was screened for their ability to stabilize AR G4s: the core-extended NDI (7) stood out as the most promising ligand. AR-positive cells were remarkably sensitive to 7 in comparison to AR-negative CRCP or normal prostate epithelial cells; 7 induced remarkable impairment of AR mRNA and protein amounts and significant perturbations in the expression levels of KLK3 and of genes involved in the activation of AR program via feedback mechanisms. Moreover, 7 synergistically interacted with Enzalutamide, an inhibitor of AR signaling used in second-line therapies. Overall, our data show that stabilization of AR G4s may represent an alternative treatment options for CRPC and other malignancies relying on aberrant androgen signaling.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Graziella Cimino-Reale
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Matteo Nadai
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Filippo Doria
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Elena Butovskaya
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marta Recagni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Mauro Freccero
- Department of Chemistry , University of Pavia , v. le Taramelli 10 , 27100 , Pavia , Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| | - Sara N Richter
- Department of Molecular Medicine , University of Padua , via A. Gabelli 63 , 35121 Padua , Italy
| | - Marco Folini
- Department of Applied Research and Technological Development , Fondazione IRCCS Istituto Nazionale dei Tumori di Milano , Via G. A. Amadeo 42 , 20133 Milan , Italy
| |
Collapse
|
119
|
Jäger S, Gude L, Arias-Pérez MS. 4,5-Diazafluorene N-glycopyranosyl hydrazones as scaffolds for potential bioactive metallo-organic compounds: Synthesis, structural study and cytotoxic activity. Bioorg Chem 2018; 81:405-413. [PMID: 30205247 DOI: 10.1016/j.bioorg.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 02/05/2023]
Abstract
A series of novel N1-(4,5-diazafluoren-9-yliden)-N2-glycopyranosyl hydrazines was prepared in synthetically useful yields by treatment of 9H-4,5-diazafluoren-9-hydrazone with different unprotected monosaccharides. The reactions with the monosaccharides tested afforded stereoselectively, and exclusively, cyclic derivatives, whose structures correspond to N-β-glycopyranosyl hydrazones except for the d-arabinose derivative that agrees with the α-anomer. Several copper(II) complexes having a 2:1 ligand to metal mole ratio were also prepared. The metal complexes can bind DNA sequences and preferentially stabilize G-quadruplex DNA structures over dsDNA. The fucose, rhamnose and deoxyglucose copper(II) complexes exhibited a cytotoxic activity against cultured HeLa and PC3 tumor cells comparable to other metal complexes normally used for chemotherapeutic purposes, such as cisplatin.
Collapse
Affiliation(s)
- Sebastian Jäger
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - María-Selma Arias-Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
120
|
Solís-Calero C, Augusto TM, Carvalho HF. Human-specific features of the G-quadruplex in the androgen receptor gene promoter: A comparative structural and dynamics study. J Steroid Biochem Mol Biol 2018; 182:95-105. [PMID: 29709633 DOI: 10.1016/j.jsbmb.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The androgen receptor (AR) promoter contains guanine-rich regions that are able to fold into polymorphic G-quadruplex (GQ) structures, and whose deletion decreases AR gene transcription. Our attention was focused on this region because of the frequent termination of sequencing reactions during promoter methylation studies. UV and circular dichroism (CD) spectroscopy of synthetic oligonucleotides encompassing these guanine-rich regions suggested a parallel quadruplex topology with three guanine quartets and three side loops in the three cases. Melting curves revealed a lower thermostability of the human GQ compared to the rat/mouse QG structures, which is attributed to the presence of a longer central loop in the former. One molecular model is proposed for the highly similar sequences in the rat/mouse. Due to the polymorphism resulting from possible arrangements of the guanine tracts, two models were derived for the human GQ. Molecular dynamics (MD) simulations determined that both models for the human GQ had higher flexibility and lower stability than the rodent GQ models. These properties result from the presence of a longer central loop in the human GQ models, which contains 11 and 13 nucleotides, in comparison to the 2-nucleotide long loop in the rat/mouse GQ. Overall, the unveiled structural and dynamics features provide sufficient detail for the intelligent design of drugs targeting the human AR promoter.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
121
|
Villani G. Quantum Mechanical Investigation of the G-Quadruplex Systems of Human Telomere. ACS OMEGA 2018; 3:9934-9944. [PMID: 31459122 PMCID: PMC6644616 DOI: 10.1021/acsomega.8b01678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 05/17/2023]
Abstract
The three G-quadruplexes involved in the human telomere have been studied with an accurate quantum mechanical approach, and the possibility of reducing them to a simpler model has been tested. The similarities and the differences of these three systems are shown and discussed. Each system has been analyzed through different properties and compared to the others. In particular, we have considered: (1) the shape of the cavity and the atomic charges around it; (2) the electric field in and out of the cavity; (3) the stabilization energy due to the stacking of G-tetrads, to the H-bonds and to the ion interactions; and, finally, (4) to study the mechanism of the process of the ion inclusion in the cavity, the curves of potential energy due to the movement of the Na+ and K+ ions toward the cavity. The results suggest that a detailed study is essential in order to obtain the quantitative properties of these complex systems, but also that some qualitative behaviors can be schematized. Our study makes it clear that the entry of an ion in the cavity of these systems is a complex process, where it is possible to find stable structures with the ion out and in the cavity. Moreover, it is possible that more than one diabatic state is involved in this process.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici, ICCOM—CNR
(UOS Pisa), Area della Ricerca di Pisa, Via G. Moruzzi, 1, I-56124 Pisa, Italy
| |
Collapse
|
122
|
Raffa RB, Pergolizzi JV, Taylor R, Ossipov MH. Discovery of "folded DNA" structures in human cells: Potential drug targets. J Clin Pharm Ther 2018; 44:125-128. [PMID: 30144395 DOI: 10.1111/jcpt.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The double-helical conformation of human DNA (hDNA) is so axiomatic that it is called the "canonical" form. Recently, though, intrastrand folds ("I-motifs" and "G-quadruplexes") have been identified in hDNA. These could be targets for novel drug discovery. COMMENT Any interruption of the canonical form of hDNA fundamentally impacts the normal progression of transduction and translation. In particular, the synthesis of receptors and cognate protein ligands would be affected, as well as their affinity for-and signal transduction of-pharmacotherapeutic agents. Recent studies have identified normally occurring, folded structures superimposed on the usual double-helix motif of hDNA. WHAT IS NEW AND CONCLUSION The newly identified "folded DNA" structures ("I-motifs" and "G-quadruplexes") could represent novel drug-discovery targets, most likely for cancer.
Collapse
Affiliation(s)
- Robert B Raffa
- University of Arizona College of Pharmacy, Tucson, Arizona.,Temple University School of Pharmacy, Philadelphia, Pennsylvania.,Neumentum, Inc., Palo Alto, California
| | - Joseph V Pergolizzi
- Neumentum, Inc., Palo Alto, California.,NEMA Research, Inc., Naples, Florida
| | | | | | | |
Collapse
|
123
|
Ghoshdastidar D, Bansal M. Dynamics of physiologically relevant noncanonical DNA structures: an overview from experimental and theoretical studies. Brief Funct Genomics 2018; 18:192-204. [DOI: 10.1093/bfgp/ely026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022] Open
Abstract
Abstract
DNA is a complex molecule with phenomenal inherent plasticity and the ability to form different hydrogen bonding patterns of varying stabilities. These properties enable DNA to attain a variety of structural and conformational polymorphic forms. Structurally, DNA can exist in single-stranded form or as higher-order structures, which include the canonical double helix as well as the noncanonical duplex, triplex and quadruplex species. Each of these structural forms in turn encompasses an ensemble of dynamically heterogeneous conformers depending on the sequence composition and environmental context. In vivo, the widely populated canonical B-DNA attains these noncanonical polymorphs during important cellular processes. While several investigations have focused on the structure of these noncanonical DNA, studying their dynamics has remained nontrivial. Here, we outline findings from some recent advanced experimental and molecular simulation techniques that have significantly contributed toward understanding the complex dynamics of physiologically relevant noncanonical forms of DNA.
Collapse
Affiliation(s)
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
124
|
Zhang F, Li G, Lv FL, Jiang GB, Wang HX, Wang MQ, Li S. A far-red fluorescent probe for selective G-quadruplex DNA targeting. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
125
|
Bandaru SSM, Dzubiel D, Ihmels H, Karbasiyoun M, Mahmoud MMA, Schulzke C. Synthesis of 9-arylalkynyl- and 9-aryl-substituted benzo[ b]quinolizinium derivatives by Palladium-mediated cross-coupling reactions. Beilstein J Org Chem 2018; 14:1871-1884. [PMID: 30112092 PMCID: PMC6071731 DOI: 10.3762/bjoc.14.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
9-Arylbenzo[b]quinolizinium derivatives were prepared with base-free Suzuki-Miyaura coupling reactions between benzo[b]quinolizinium-9-trifluoroborate and selected benzenediazonium salts. In addition, the Sonogashira coupling reaction between 9-iodobenzo[b]quinolizinium and the arylalkyne derivatives yielded four novel 9-(arylethynyl)benzo[b]quinolizinium derivatives under relatively mild reaction conditions. The 9-(N,N-dimethylaminophenylethynyl)benzo[b]quinolizinium is only very weakly emitting, but the emission intensity increases by a factor >200 upon protonation, so that this derivative may operate as pH-sensitive light-up probe. Photometric and fluorimetric titrations of duplex and quadruplex DNA to 9-(arylethynyl)benzo[b]quinolizinium derivatives revealed a significant binding affinity of these compounds towards both DNA forms with binding constants of Kb = 0.2-2.2 × 105 M-1.
Collapse
Affiliation(s)
- Siva Sankar Murthy Bandaru
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Darinka Dzubiel
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | | | | | - Carola Schulzke
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
126
|
Das T, Panda D, Saha P, Dash J. Small Molecule Driven Stabilization of Promoter G-Quadruplexes and Transcriptional Regulation of c-MYC. Bioconjug Chem 2018; 29:2636-2645. [DOI: 10.1021/acs.bioconjchem.8b00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tania Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deepanjan Panda
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Puja Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
127
|
Wang MQ, Ren GY, Zhao S, Lian GC, Chen TT, Ci Y, Li HY. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:441-447. [PMID: 29649680 DOI: 10.1016/j.saa.2018.03.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.
Collapse
Affiliation(s)
- Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Gui-Ying Ren
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuang Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Guang-Chang Lian
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ting-Ting Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Ci
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Hong-Yao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
128
|
Abstract
Advances in understanding mechanisms of nucleic acids have revolutionized molecular biology and medicine, but understanding of nontraditional nucleic acid conformations is less developed. The guanine quadruplex (G4) alternative DNA structure was first described in the 1960s, but the existence of G4 structures (G4-S) and their participation in myriads of biological functions are still underappreciated. Despite many tools to study G4s and many examples of roles for G4s in eukaryotic molecular processes and issues with uncontrolled G4-S formation, there is relatively little knowledge about the roles of G4-S in viral or prokaryotic systems. This review summarizes the state of the art with regard to G4-S in eukaryotes and their potential roles in human disease before discussing the evidence that G4-S have equivalent importance in affecting viral and bacterial life.
Collapse
Affiliation(s)
- H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
129
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole Derivatives' Binding to c-KIT G-Quadruplex DNA. Molecules 2018; 23:E1134. [PMID: 29747481 PMCID: PMC6099540 DOI: 10.3390/molecules23051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
The binding affinities of three carbazole derivatives to the intramolecular G-quadruplex (GQ) DNA formed by the sequence 5′-AGGGAGGGCGCTGGGAGGAGGG-3′, derived from the c-KIT 1 oncogene region, were investigated. All carbazole cationic ligands that differed in the substituents on the nitrogen atom were able to stabilize G-quadruplex, as demonstrated using UV-Vis, fluorescence and CD spectroscopic techniques as well as molecular modeling. The spectrophotometric titration results showed spectral features characteristic of these ligands-bathochromic shifts and initial hypochromicity followed by hyperchromicity at higher GQ concentrations. All free carbazole ligands exhibited modest fluorescent properties, but after binding to the DNA the fluorescence intensity increased significantly. The binding affinities of carbazole ligands to the c-KIT 1 DNA were comparable showing values in the order of 10⁵ M−1. Molecular modeling highlights the differences in interactions between each particular ligand and studied G-quadruplex, which potentially influenced binding strength. Obtained results relevant that all three investigated ligands have stabilization properties on studied G-quadruplex.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Martyna Kuta-Siejkowska
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
130
|
Bhattacharyya T, Saha P, Dash J. Guanosine-Derived Supramolecular Hydrogels: Recent Developments and Future Opportunities. ACS OMEGA 2018; 3:2230-2241. [PMID: 31458525 PMCID: PMC6641365 DOI: 10.1021/acsomega.7b02039] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 05/21/2023]
Abstract
Hydrogels are attractive materials for designing sensors, catalysts, scaffolds for tissue engineering, stimuli responsive soft materials, and controlled-release drug delivery systems. In recent years, self-assembly of guanosine and its derivatives has received immense interests for devising programmable supramolecular biomaterials including hydrogels. This perspective highlights some of the history and the recent developments of guanosine-based supramolecular hydrogels and their applications. Future prospects and scope of the guanosine-based hydrogels have also been discussed.
Collapse
Affiliation(s)
- Tanima Bhattacharyya
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Puja Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
131
|
Roy SS, Mukherjee AK, Chowdhury S. Insights about genome function from spatial organization of the genome. Hum Genomics 2018; 12:8. [PMID: 29458419 PMCID: PMC5819253 DOI: 10.1186/s40246-018-0140-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 03/04/2023] Open
Abstract
Over the last 15 years, development of chromosome conformation capture (3C) and its subsequent high-throughput variants in conjunction with the fast development of sequencing technology has allowed investigators to generate large volumes of data giving insights into the spatial three-dimensional (3D) architecture of the genome. This huge data has been analyzed and validated using various statistical, mathematical, genomics, and biophysical tools in order to examine the chromosomal interaction patterns, understand the organization of the chromosome, and find out functional implications of the interactions. This review summarizes the data generated by several large-scale high-throughput chromosome conformation capture studies and the functional implications obtained from the data analyses. We also discuss emerging results on factors (both CCCTC binding factor (CTCF) related and CTCF independent) that could contribute to looping interactions.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ananda Kishore Mukherjee
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Shantanu Chowdhury
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
132
|
Das RN, Kumar YP, Kumar SA, Schütte OM, Steinem C, Dash J. Self-Assembly of a Guanosine Derivative To Form Nanostructures and Transmembrane Channels. Chemistry 2018; 24:4002-4005. [DOI: 10.1002/chem.201800205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Rabindra Nath Das
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Y. Pavan Kumar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - S. Arun Kumar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Ole Mathis Schütte
- Institute for Organic and Biomolecular Chemistry; Georg August University Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry; Georg August University Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Jyotirmayee Dash
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| |
Collapse
|
133
|
Maiti S, Saha P, Das T, Bessi I, Schwalbe H, Dash J. Human Telomeric G-Quadruplex Selective Fluoro-Isoquinolines Induce Apoptosis in Cancer Cells. Bioconjug Chem 2018; 29:1141-1154. [DOI: 10.1021/acs.bioconjchem.7b00781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhadip Maiti
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Puja Saha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tania Das
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Irene Bessi
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
134
|
Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications. J Nucleic Acids 2018; 2018:5307106. [PMID: 29666699 PMCID: PMC5831849 DOI: 10.1155/2018/5307106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023] Open
Abstract
Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited.
Collapse
|
135
|
Wang MQ, Liu XN, Guo ZJ, Feng C, Rui M. Synthesis of quinolinium-based probes and studies of their effects for selective G-quadruplex DNA targeting. NEW J CHEM 2018. [DOI: 10.1039/c8nj00203g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two quinolinium conjugates as G-quadruplex probes were presented. The binding properties and mechanism were investigated using both experimental and docking studies.
Collapse
Affiliation(s)
- Ming-Qi Wang
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Xiao-Ning Liu
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Zhong-Jian Guo
- Institute of Life Sciences
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Chunlai Feng
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Mengjie Rui
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|
136
|
Engelhard DM, Meyer A, Berndhäuser A, Schiemann O, Clever GH. Di-copper(ii) DNA G-quadruplexes as EPR distance rulers. Chem Commun (Camb) 2018; 54:7455-7458. [DOI: 10.1039/c8cc04053b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Paramagnetic Cu(ii) complexes, immobilized via four-point-attachment to both ends of G-quadruplexes, serve as EPR-based distance rulers for studying DNA structure.
Collapse
Affiliation(s)
- David M. Engelhard
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| | - Andreas Meyer
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Andreas Berndhäuser
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry
- Wegelerstr. 12
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Bonn
- Germany
| | - Guido H. Clever
- Depart. of Chemistry and Chemical Biology
- TU Dortmund University
- Dortmund
- Germany
| |
Collapse
|
137
|
Jarosova P, Paroulek P, Rajecky M, Rajecka V, Taborska E, Eritja R, Aviñó A, Mazzini S, Gargallo R, Taborsky P. Naturally occurring quaternary benzo[c]phenanthridine alkaloids selectively stabilize G-quadruplexes. Phys Chem Chem Phys 2018; 20:21772-21782. [DOI: 10.1039/c8cp02681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the interaction of six natural benzo[c]phenanthridine alkaloids (macarpine, sanguilutine, sanguirubine, chelerythrine, sanguinarine and chelirubine) with parallel and antiparallel G-quadruplex DNA structures was studied.
Collapse
Affiliation(s)
- Petra Jarosova
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Petr Paroulek
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | - Michal Rajecky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| | | | - Eva Taborska
- Faculty of Medicine
- Masaryk University
- Brno 62500
- Czech Republic
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Stefania Mazzini
- Department of Food
- Environmental and Nutritional Sciences (DEFENS)
- Section of Chemical and Biomolecular Sciences
- University of Milan
- Milan 20133
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Petr Taborsky
- Faculty of Science
- Masaryk University
- Brno 62500
- Czech Republic
| |
Collapse
|
138
|
Benameur L, Baudequin T, Mekhail M, Tabrizian M. The bioconjugation mechanism of purine cross-linkers affects microstructure and cell response to ultra rapidly gelling purine–chitosan sponges. J Mater Chem B 2018; 6:602-613. [DOI: 10.1039/c7tb02968c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As a cell carrier, cross-linking is one of the most common approaches used to provide chitosan with greater structural integrity.
Collapse
Affiliation(s)
- Laila Benameur
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
| | | | - Mina Mekhail
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering
- McGill University
- Montreal
- Canada
- Faculty of Dentistry
| |
Collapse
|
139
|
Engelhard DM, Stratmann LM, Clever GH. Structure-Property Relationships in Cu II -Binding Tetramolecular G-Quadruplex DNA. Chemistry 2017; 24:2117-2125. [PMID: 29139578 DOI: 10.1002/chem.201703409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Indexed: 12/29/2022]
Abstract
A series of artificial metal-base tetrads composed of a CuII cation coordinating to four pyridines, covalently attached to the ends of tetramolecular G-quadruplex DNA strands [LA-D d(G4 )]4 (LA-D =ligand derivatives), was systematically studied. Structurally, the square-planar [Cu(pyridine)4 ] complex behaves analogously to the canonical guanine quartet. Copper coordination to all studied ligand derivatives was found to increase G-quadruplex thermodynamic stability, tolerating a great variety of ligand linker lengths (1-5 atoms) and thus demonstrating the robustness of the chosen ligand design. Only at long linker lengths, the stabilizing effect of copper binding is compensated by the loss of conformational freedom. A previously reported ligand LE with chiral backbone enables incorporation at any oligonucleotide position. We show that ligand chirality distinctly steers CuII -induced G-quadruplex stabilization. 5'-End formation of two metal-base tetrads by tetramolecular G-quadruplex [LE2 d(G)4 ]4 shows that stabilization in the presence of CuII is not additive. All results are based on UV/Vis thermal denaturation, thermal difference, circular dichroism experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- David M Engelhard
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
140
|
Investigation of 'Head-to-Tail'-Connected Oligoaryl N,O-Ligands as Recognition Motifs for Cancer-Relevant G-Quadruplexes. Molecules 2017; 22:molecules22122160. [PMID: 29210998 PMCID: PMC6149995 DOI: 10.3390/molecules22122160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C–H activation of the formed oxazoles and their subsequent C–C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, ‘head-to-tail’-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer) with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22), the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na+-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10−7 M−1 and 0.8 × 10−7 M−1, respectively), and satisfactory (albeit lower) affinities for the 22AG/K+ and Myc2345-Pu22/K+ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26) DNA, as evidenced by competitive Förster resonance energy transfer (FRET) melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K+ G-quadruplex.
Collapse
|
141
|
Zorzan E, Da Ros S, Musetti C, Shahidian LZ, Coelho NFR, Bonsembiante F, Létard S, Gelain ME, Palumbo M, Dubreuil P, Giantin M, Sissi C, Dacasto M. Screening of candidate G-quadruplex ligands for the human c-KIT promotorial region and their effects in multiple in-vitro models. Oncotarget 2017; 7:21658-75. [PMID: 26942875 PMCID: PMC5008313 DOI: 10.18632/oncotarget.7808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/20/2016] [Indexed: 12/11/2022] Open
Abstract
Stabilization of G-quadruplex (G4) structures in promoters is a novel promising strategy to regulate gene expression at transcriptional and translational levels. c-KIT proto-oncogene encodes for a tyrosine kinase receptor. It is involved in several physiological processes, but it is also dysregulated in many diseases, including cancer. Two G-rich sequences able to fold into G4, have been identified in c-KIT proximal promoter, thus representing suitable targets for anticancer intervention. Herein, we screened an “in house” library of compounds for the recognition of these G4 elements and we identified three promising ligands. Their G4-binding properties were analyzed and related to their antiproliferative, transcriptional and post-transcriptional effects in MCF7 and HGC27 cell lines. Besides c-KIT, the transcriptional analysis covered a panel of oncogenes known to possess G4 in their promoters. From these studies, an anthraquinone derivative (AQ1) was found to efficiently downregulate c-KIT mRNA and protein in both cell lines. The targeted activity of AQ1 was confirmed using c-KIT–dependent cell lines that present either c-KIT mutations or promoter engineered (i.e., α155, HMC1.2 and ROSA cells). Present results indicate AQ1 as a promising compound for the target therapy of c-KIT-dependent tumors, worth of further and in depth molecular investigations.
Collapse
Affiliation(s)
- Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Silvia Da Ros
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Caterina Musetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Lara Zorro Shahidian
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Nuno Filipe Ramos Coelho
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Sébastien Létard
- Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Université Aix-Marseille (UM105), Marseille, France
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Patrice Dubreuil
- Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Université Aix-Marseille (UM105), Marseille, France
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
142
|
Miglietta G, Cogoi S, Marinello J, Capranico G, Tikhomirov AS, Shchekotikhin A, Xodo LE. RNA G-Quadruplexes in Kirsten Ras (KRAS) Oncogene as Targets for Small Molecules Inhibiting Translation. J Med Chem 2017; 60:9448-9461. [PMID: 29140695 DOI: 10.1021/acs.jmedchem.7b00622] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human KRAS transcript contains a G-rich 5'-UTR sequence (77% GC) harboring several G4 motifs capable to form stable RNA G-quadruplex (RG4) structures that can serve as targets for small molecules. A biotin-streptavidin pull-down assay showed that 4,11-bis(2-aminoethylamino)anthra[2,3-b]furan-5,10-dione (2a) binds to RG4s in the KRAS transcript under low-abundance cellular conditions. Dual-luciferase assays demonstrated that 2a and its analogue 4,11-bis(2-aminoethylamino)anthra[2,3-b]thiophene-5,10-dione (2b) repress translation in a dose-dependent manner. The effect of the G4-ligands on Panc-1 cancer cells has also been examined. Both 2a and 2b efficiently penetrate the cells, suppressing protein p21KRAS to <10% of the control. The KRAS down-regulation induces apoptosis together with a dramatic reduction of cell growth and colony formation. In summary, we report a strategy to suppress the KRAS oncogene in pancreatic cancer cells by means of small molecules binding to RG4s in the 5'-UTR of mRNA.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Medicine, Biochemistry Laboratory, University of Udine , 33100 Udine, Italy
| | - Susanna Cogoi
- Department of Medicine, Biochemistry Laboratory, University of Udine , 33100 Udine, Italy
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna , 40100 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna , 40100 Bologna, Italy
| | | | | | - Luigi E Xodo
- Department of Medicine, Biochemistry Laboratory, University of Udine , 33100 Udine, Italy
| |
Collapse
|
143
|
Wang SR, Zhang QY, Wang JQ, Ge XY, Song YY, Wang YF, Li XD, Fu BS, Xu GH, Shu B, Gong P, Zhang B, Tian T, Zhou X. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem Biol 2017; 23:1113-1122. [PMID: 27617851 DOI: 10.1016/j.chembiol.2016.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, our bioinformatics analysis first reveals the existence of a conserved guanine-rich sequence within the Zaire ebolavirus L gene. Using various methods, we show that this sequence tends to fold into G-quadruplex RNA. TMPyP4 treatment evidently inhibits L gene expression at the RNA level. Moreover, the mini-replicon assay demonstrates that TMPyP4 effectively inhibits the artificial Zaire ebolavirus mini-genome and is a more potent inhibitor than ribavirin. Although TMPyP4 treatment reduced the replication of the mutant mini-genome when G-quadruplex formation was abolished in the L gene, its inhibitory effect was significantly alleviated compared with wild-type. Our findings thus provide the first evidence that G-quadruplex RNA is present in a negative-sense RNA virus. Finally, G-quadruplex RNA stabilization may represent a new therapeutic strategy against Ebola virus disease.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Qiu-Yan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xing-Yi Ge
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Yan-Yan Song
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Ya-Fen Wang
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xiao-Dan Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Shu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
144
|
Guilbaud G, Murat P, Recolin B, Campbell BC, Maiter A, Sale JE, Balasubramanian S. Local epigenetic reprogramming induced by G-quadruplex ligands. Nat Chem 2017; 9:1110-1117. [PMID: 29064488 PMCID: PMC5669467 DOI: 10.1038/nchem.2828] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.
Collapse
Affiliation(s)
- Guillaume Guilbaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre Murat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Bénédicte Recolin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Beth C. Campbell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ahmed Maiter
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E. Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| |
Collapse
|
145
|
Pérez-Arnaiz C, Busto N, Santolaya J, Leal JM, Barone G, García B. Kinetic evidence for interaction of TMPyP4 with two different G-quadruplex conformations of human telomeric DNA. Biochim Biophys Acta Gen Subj 2017; 1862:522-531. [PMID: 29097300 DOI: 10.1016/j.bbagen.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in >80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. METHODS UV-Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. RESULTS TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na+ or K+. T-Jump kinetic experiments show that the rates of formation and dissociation of these complexes in the ms time scale differ by one order of magnitude. MD simulations reveal that, in K+ buffer, "hybrid 1" conformation yields kinetic constants on interaction with TMPyP4 one order lower than "hybrid 2". The binding involves π-π stacking with external loop bases. CONCLUSIONS For the first time we show that for a particular buffer TMPyP4 interacts in a kinetically different way with the two Tel22 conformations even if the complexes formed are thermodynamically indistinguishable. GENERAL SIGNIFICANCE G-quadruplexes, endowed with technological applications and potential impact on regulation mechanisms, define a new research field. The possibility of building different conformations from same sequence is a complex issue that confers G-quadruplexes very interesting features. The obtaining of reliable kinetic data constitutes an efficient tool to determine reaction mechanisms between conformations and small molecules.
Collapse
Affiliation(s)
| | - Natalia Busto
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Javier Santolaya
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - José M Leal
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy.
| | - Begoña García
- Department of Chemistry, University of Burgos, 09001 Burgos, Spain.
| |
Collapse
|
146
|
Giancola C, Montesarchio D. Not unusual, just different! Chemistry, biology and applications of G-quadruplex nucleic acids. Biochim Biophys Acta Gen Subj 2017; 1861:1201-1204. [PMID: 28578868 DOI: 10.1016/j.bbagen.2017.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, I-80131 Naples Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21,I-80126 Naples Italy
| |
Collapse
|
147
|
Ren X, Gelinas AD, von Carlowitz I, Janjic N, Pyle AM. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat Commun 2017; 8:810. [PMID: 28993621 PMCID: PMC5634487 DOI: 10.1038/s41467-017-00864-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/01/2017] [Indexed: 01/07/2023] Open
Abstract
IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics. The cytokine interleukin 1α (IL-1α) plays an important role in inflammatory processes. Here the authors use SELEX to generate a modified DNA aptamer which specifically binds IL-1α, present the structure of the IL-1α/aptamer complex and show that this aptamer inhibits the IL-1α signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, 06511, USA
| | - Amy D Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO, 80301, USA
| | | | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO, 80301, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
148
|
Lietard J, Abou Assi H, Gómez-Pinto I, González C, Somoza MM, Damha MJ. Mapping the affinity landscape of Thrombin-binding aptamers on 2΄F-ANA/DNA chimeric G-Quadruplex microarrays. Nucleic Acids Res 2017; 45:1619-1632. [PMID: 28100695 PMCID: PMC5389548 DOI: 10.1093/nar/gkw1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023] Open
Abstract
In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2΄-Fluoroarabinonucleic acid (2΄F-ANA) is a prime candidate for such use in microarrays. Indeed, 2΄F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2΄F-ANA and 2΄F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2΄F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2΄F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2΄F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2΄F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.,Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| | | | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, 28006 Madrid, Spain
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Rue Sherbrooke O, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
149
|
Bhattacharyya T, Kumar YP, Dash J. Supramolecular Hydrogel Inspired from DNA Structures Mimics Peroxidase Activity. ACS Biomater Sci Eng 2017; 3:2358-2365. [DOI: 10.1021/acsbiomaterials.7b00563] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanima Bhattacharyya
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Y. Pavan Kumar
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
150
|
G-quadruplex unwinding helicases and their function in vivo. Biochem Soc Trans 2017; 45:1173-1182. [DOI: 10.1042/bst20170097] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
Abstract
The concept that G-quadruplex (G4) structures can form within DNA or RNA in vitro has been long known and extensively discussed. In recent years, accumulating evidences imply that G-quadruplex structures form in vivo. Initially, inefficient regulation of G-quadruplex structures was mainly associated with genome instability. However, due to the location of G-quadruplex motifs and their evolutionary conservation, different cellular functions of these structures have been postulated (e.g. in telomere maintenance, DNA replication, transcription, and translation). Regardless of their function, efficient and controlled formation and unwinding are very important, because ‘mis’-regulated G-quadruplex structures are detrimental for a given process, causing genome instability and diseases. Several helicases have been shown to target and regulate specific G-quadruplex structures. This mini-review focuses on the biological consequences of G4 disruption by different helicases in vivo.
Collapse
|