101
|
Ye X, Zhang D, Wang S, Zhou P, Zhu P. Fluorescent cellulose nanocrystals based on AIE luminogen for rapid detection of Fe 3+ in aqueous solutions. RSC Adv 2022; 12:24633-24639. [PMID: 36128393 PMCID: PMC9426647 DOI: 10.1039/d2ra04272j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Previously, we found that aggregation-induced emission (AIE) luminogen tetraphenylethylene (TPE) based fluorescent cellulose nanocrystals (TPE-CNCs) showed excellent AIE-active fluorescence properties and high selectivity and sensitivity for detecting nitrophenol explosives in aqueous solutions. Here, we further develop the application of TPE-CNCs for fluorescence detection of Fe3+ in aqueous solutions. The fluorescence of TPE-CNC aqueous suspensions is rapidly quenched (response time less than 10 s) due to the electron-transfer process between TPE and Fe3+ upon addition of Fe3+. TPE-CNCs have high sensitivity and selectivity toward Fe3+ over a broad pH range from 4 to 10. The limit of detection is determined to be 264 nM, which is below the World Health Organization (WHO) recommendations (5.36 μM) for Fe3+. Given the superior properties of TPE-CNCs, it has huge potential to be applied as a rapid and visual evaluation tool for drinking water quality. Collectively, we explore and develop fluorescent cellulose nanocrystals for multi-functional applications and TPE-CNCs can be used for practical applications in sensing, sewage treatment and bioimaging. AIE-active fluorescent cellulose nanocrystals (TPE-CNCs) is developed as a high selectivity and sensitivity fluorescent probe for rapid detection of Fe3+ in aqueous solutions.![]()
Collapse
Affiliation(s)
- Xiu Ye
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongyang Zhang
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Sai Wang
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Peng Zhou
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
102
|
Sharma S, Kumar K, Thakur N. Green synthesis of silver nanoparticles and evaluation of their anti-bacterial activities: use of Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The presence of various phytochemicals makes the leaf extract-based green synthesis advantageous to other conventional methods, as it facilitates the production of non-toxic by-product. In the present study, leaf extracts from two different plants: Aloe barbadensis miller and Ocimum tenuiflorum, were used to synthesise Ag nanoparticles. The absorbance at 419-432 nm from UV-visible spectroscopy indicates the formation of Ag in the synthesised samples. The effect of precursors’ concentration on the stability, size and shape of the synthesised samples has also been investigated at constant heating temperature, stirring time, and the pH of the solution. The TEM results showed that all the synthesised samples of nanoparticles demonstrated stability with a size range of 7-70 and 9-48 nm with Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts, respectively. The formation of smaller Ag nanoparticles due to utilisation of different precursor concentration and leaf extracts was also explained. The synthesised samples’ anti-bacterial activity was examined against the pathogens, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. In general, the green synthesis approach established a prospective for developing highly stable Ag nanoparticles with rigid particle shape/size distribution from different leaf extracts for the development of better anti-bacterial agents.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Chemistry , Career Point University Hamirpur (HP) 176041 , India ; Center for Nano-Science and Technology , Career Point University , Hamirpur (HP) 176041 , India
| | - Kuldeep Kumar
- Department of Chemistry , Career Point University Hamirpur (HP) , India ; Center for Nano-Science and Technology , Career Point University Hamirpur (HP) 176041 , India
| | - Naveen Thakur
- Department of Physics , Career Point University Hamirpur (HP) 176041 , India ; Center for Nano-Science and Technology , Career Point University Hamirpur (HP) 176041 , India
| |
Collapse
|
103
|
Wang M, Miao X, Li H, Chen C. Effect of Length of Cellulose Nanofibers on Mechanical Reinforcement of Polyvinyl Alcohol. Polymers (Basel) 2021; 14:128. [PMID: 35012151 PMCID: PMC8747125 DOI: 10.3390/polym14010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Cellulose nanofibers (CNF), representing the nano-structured cellulose, have attained an extensive research attention due to their sustainability, biodegradability, nanoscale dimensions, large surface area, unique optical and mechanical performance, etc. Different lengths of CNF can lead to different extents of entanglements or network-like structures through van der Waals forces. In this study, a series of polyvinyl alcohol (PVA) composite films, reinforced with CNF of different lengths, were fabricated via conventional solvent casting technique. CNF were extracted from jute fibers by tuning the dosage of sodium hypochlorite during the TEMPO-mediated oxidation. The mechanical properties and thermal behavior were observed to be significantly improved, while the optical transparency decreased slightly (Tr. > 75%). Interestingly, the PVA/CNF20 nanocomposite films exhibited higher tensile strength of 34.22 MPa at 2 wt% filler loading than the PVA/CNF10 (32.55 MPa) while displayed higher elastic modulus of 482.75 MPa than the PVA/CNF20 films (405.80 MPa). Overall, the findings reported in this study provide a novel, simple and inexpensive approach for preparing the high-performance polymer nanocomposites with tunable mechanical properties, reinforced with an abundant and renewable material.
Collapse
Affiliation(s)
- Mengxia Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China; (M.W.); (C.C.)
| | - Xiaran Miao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hui Li
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China; (M.W.); (C.C.)
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China; (M.W.); (C.C.)
| |
Collapse
|
104
|
Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers (Basel) 2021; 14:polym14010078. [PMID: 35012101 PMCID: PMC8747671 DOI: 10.3390/polym14010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young’s modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.
Collapse
|
105
|
Iron-Loaded Carbon Aerogels Derived from Bamboo Cellulose Fibers as Efficient Adsorbents for Cr(VI) Removal. Polymers (Basel) 2021; 13:polym13244338. [PMID: 34960889 PMCID: PMC8703939 DOI: 10.3390/polym13244338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. In SEM images, the aerogel was highly porous with abundant interconnected pores, and its carbon-fiber skeleton was evenly covered by iron particles. Such structures greatly promoted both adsorption and redox reaction of Cr(VI) and endowed Fe/CA with a superb adsorption capacity of Cr(VI) (182 mg/g) with a fast adsorption rate (only 8 min to reach adsorption equilibrium), which outperformed many other adsorbents. Furthermore, the adsorption kinetics and isotherms were also investigated. The experiment data could be much better fitted by the pseudo-second-order kinetics model with a high correlating coefficient, suggesting that the Cr(VI) adsorption of Fe/CA was a chemical adsorption process. Meanwhile, the Langmuir model was found to better describe the isotherm curves, which implied the possible monolayer adsorption mechanism. It is noteworthy that the aerogel adsorbent as a bulk material could be easily separated from the water after adsorption, showing high potential in real-world water treatment.
Collapse
|
106
|
Zhu L, Uetani K, Nogi M, Koga H. Polydopamine Doping and Pyrolysis of Cellulose Nanofiber Paper for Fabrication of Three-Dimensional Nanocarbon with Improved Yield and Capacitive Performances. NANOMATERIALS 2021; 11:nano11123249. [PMID: 34947598 PMCID: PMC8707509 DOI: 10.3390/nano11123249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023]
Abstract
Biomass-derived three-dimensional (3D) porous nanocarbons have attracted much attention due to their high surface area, permeability, electrical conductivity, and renewability, which are beneficial for various electronic applications, including energy storage. Cellulose, the most abundant and renewable carbohydrate polymer on earth, is a promising precursor to fabricate 3D porous nanocarbons by pyrolysis. However, the pyrolysis of cellulosic materials inevitably causes drastic carbon loss and volume shrinkage. Thus, polydopamine doping prior to the pyrolysis of cellulose nanofiber paper is proposed to fabricate the 3D porous nanocarbons with improved yield and volume retention. Our results show that a small amount of polydopamine (4.3 wt%) improves carbon yield and volume retention after pyrolysis at 700 °C from 16.8 to 26.4% and 15.0 to 19.6%, respectively. The pyrolyzed polydopamine-doped cellulose nanofiber paper has a larger specific surface area and electrical conductivity than cellulose nanofiber paper that without polydopamine. Owing to these features, it also affords a good specific capacitance up to 200 F g−1 as a supercapacitor electrode, which is higher than the recently reported cellulose-derived nanocarbons. This method provides a pathway for the effective fabrication of high-performance cellulose-derived 3D porous nanocarbons.
Collapse
Affiliation(s)
- Luting Zhu
- Correspondence: (L.Z.); (H.K.); Tel.: +81-6-6879-8442 (L.Z. & H.K.)
| | | | | | - Hirotaka Koga
- Correspondence: (L.Z.); (H.K.); Tel.: +81-6-6879-8442 (L.Z. & H.K.)
| |
Collapse
|
107
|
Yan M, Tian C, Wu T, Huang X, Zhong Y, Yang P, Zhang L, Ma J, Lu H, Zhou X. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation. Int J Biol Macromol 2021; 191:422-431. [PMID: 34563572 DOI: 10.1016/j.ijbiomac.2021.09.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
To achieve the balance on economy and ecology, it is indispensable to explore the greener and more inexpensive method for the production of cellulose nanofibrils (CNFs). Herein, a deep eutectic solvent (DES) system based on choline chloride (ChCl) and ethylene glycol (EG) was employed as the swollen solvent, combining with screw extrusion and permeant, to fabricate unmodified CNFs with high yield and thermal stability. The proposed method in this work was simple, convenient, and industrially viable. The hydrous DESs were applied in the process of CNFs preparation and dispersion to reduce the cost and viscosity of DES. To reveal the principle of CNFs preparation, the impact of sulfuric acid and water content of DES system on the chemical, physical, morphological, thermal, and dispersive properties of CNFs was systematically studied. Properties of the dispersed solvents were characterized by solvatochromic parameters and viscosity parameters to evaluate the potential influence on the preparation and dispersion of CNFs. In general, this work would play valuable guidance in realizing the preparation and dispersion of CNFs via a versatile DES solvent system, thus endowing cellulose materials high-value utilization.
Collapse
Affiliation(s)
- Ming Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chaochao Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Lab. of Biomass Energy and Materials, Nanjing, Jiangsu Province 210042, PR China
| | - Xingyu Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Pei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Hailong Lu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering of State Administration of Forestry and Grassland, Key Lab of Biomass Energy and Material of Jiangsu Province, No. 16 Suojinwucun Road, Xuanwu District, Nanjing 210042, China.
| | - Xiaofan Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
108
|
Rana AK, Mishra YK, Gupta VK, Thakur VK. Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149129. [PMID: 34303252 DOI: 10.1016/j.scitotenv.2021.149129] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, over utilization of pesticides in agrarian and non- agrarian sectors has resulted in a significant increment in the deposition of their remnants in different segments of the environmental media. The presence of pesticides and transportation of their different metabolites in rivers, ponds, lakes, soils, air, groundwater sources and drinkable water sources has demonstrated a high threat to human wellbeing and the climate. Thus, the removal of pesticides and their metabolites from contaminated water is imperative to lessen the ill effects of pesticides on human beings. In the present article, we have appraised recent advances in pesticides removal utilizing low cost pristine and functionalized cellulose biomass-based derivatives. One of the key focus has been on better understand the destiny of pesticides in the environment as well as their behaviour in the water. In addition, the impact of magnetite cellulose nanocomposites, cellulose derived photo nano-catalyst, cellulose/clay nano composites, CdS/cellulose nanocomposites and activated carbons/biochar on percent removal of pesticides have also been a part of the current review. The impact of different parameters such as adsorbent dosage, pH, time of contact and initials pesticide concentration on adsorption capacity and adsorption kinetics followed during absorption by different cellulosic bio-adsorbents has also been given. The cellulosic biomass is highly efficient in the removal of pesticides and their efficiency further increases upon functionalization or their conversion into activated carbons forms. Nano particles loaded cellulosic materials have in general found to be less efficient than raw, functionalized cellulosic materials and activated carbons. Further, among different nano particles loaded with cellulose-based materials, cellulose/MnO2 photonanocatalyst were noticed to be more effective. So considerable efforts should be given to determine the finest practices that relate to the dissipation of different pesticides from the water.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
109
|
Design and preparation of oral jelly candies of acetaminophen and its nanoparticles. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02231-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
110
|
Rana AK, Thakur VK, Singha AS. Towards the use of acrylic acid graft-copolymerized plant biofiber in sustainable fortified composites: Manufacturing and characterization. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
In this study, the impact of particle form of the Cannabis indica plant biofibers and the fiber’s surface tailoring on the physical, thermal, dielectric, and mechanical properties of unsaturated polyester composite specimens manufactured utilizing nonconventional materials were investigated. The mechanical properties such as compressive, flexural, and tensile strengths of the composite specimens were noticed to increase after functionalization of biofiber with acrylic acid and maximum enhancement was found at 20% of biofiber sacking. The physical characterization was concentrated on the assurance of the dielectric constant, dielectric strength, dielectric loss, moisture absorption, chemical resistance, percentage of swelling, limiting oxygen index, and biodegradation of polymer composites under red soil. An increase in dielectric strength from 28 to 29 kV, limiting oxygen index values from 19% to 23%, and moisture/water absorption behavior was noted for resulted bio-composites after surface tailoring of biofiber. To assess the deterioration of the polymeric materials with the temperature, differential scanning calorimetric and the thermogravimetric tests were carried out and enhancement in thermal stability was noted after fortification of polyester composites with functionalized biofiber.
Collapse
Affiliation(s)
- Ashvinder K. Rana
- Department of Chemistry, Sri Sai University , Palampur , 176061 , India
- Department of Chemistry, Maharishi Markandeshwar University , Mullana , Haryana, 133-207 , India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC , Edinburgh , United Kingdom
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University , Uttar Pradesh , 201314 , India
- School of Engineering, University of Petroleum & Energy Studies (UPES) , Dehradun , Uttarakhand , India
| | - Amar S. Singha
- Department of Chemistry, National Institute of Technology , Hamirpur , 177005 , India
| |
Collapse
|
111
|
Phookum T, Siripongpreda T, Rodthongkum N, Ummartyotin S. Development of cellulose from recycled office waste paper-based composite as a platform for the colorimetric sensor in food spoilage indicator. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
112
|
Highly Effective Covalently Crosslinked Composite Alginate Cryogels for Cationic Dye Removal. Gels 2021; 7:gels7040178. [PMID: 34698202 PMCID: PMC8544462 DOI: 10.3390/gels7040178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g-1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.
Collapse
|
113
|
Ciecholewska-Juśko D, Broda M, Żywicka A, Styburski D, Sobolewski P, Gorący K, Migdał P, Junka A, Fijałkowski K. Potato Juice, a Starch Industry Waste, as a Cost-Effective Medium for the Biosynthesis of Bacterial Cellulose. Int J Mol Sci 2021; 22:ijms221910807. [PMID: 34639147 PMCID: PMC8509763 DOI: 10.3390/ijms221910807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
In this work, we verified the possibility of valorizing a major waste product of the potato starch industry, potato tuber juice (PJ). We obtained a cost-effective, ecological-friendly microbiological medium that yielded bacterial cellulose (BC) with properties equivalent to those from conventional commercial Hestrin–Schramm medium. The BC yield from the PJ medium (>4 g/L) was comparable, despite the lack of any pre-treatment. Likewise, the macro- and microstructure, physicochemical parameters, and chemical composition showed no significant differences between PJ and control BC. Importantly, the BC obtained from PJ was not cytotoxic against fibroblast cell line L929 in vitro and did not contain any hard-to-remove impurities. The PJ-BC soaked with antiseptic exerted a similar antimicrobial effect against Staphylococcus aureus and Pseudomonas aeruginosa as to BC obtained in the conventional medium and supplemented with antiseptic. These are very important aspects from an application standpoint, particularly in biomedicine. Therefore, we conclude that using PJ for BC biosynthesis is a path toward significant valorization of an environmentally problematic waste product of the starch industry, but also toward a significant drop in BC production costs, enabling wider application of this biopolymer in biomedicine.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (D.C.-J.); (M.B.); (A.Ż.)
| | - Michał Broda
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (D.C.-J.); (M.B.); (A.Ż.)
- Pomeranian-Masurian Potato Breeding Company, 76-024 Strzekęcino, Poland
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (D.C.-J.); (M.B.); (A.Ż.)
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (P.S.); (K.G.)
| | - Krzysztof Gorący
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (P.S.); (K.G.)
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; (D.C.-J.); (M.B.); (A.Ż.)
- Correspondence: ; Tel.: +48-91-449-6714
| |
Collapse
|
114
|
Siwal SS, Chaudhary G, Saini AK, Kaur H, Saini V, Mokhta SK, Chand R, Chandel UK, Christie G, Thakur VK. Key ingredients and recycling strategy of personal protective equipment (PPE): Towards sustainable solution for the COVID-19 like pandemics. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106284. [PMID: 34485055 PMCID: PMC8404393 DOI: 10.1016/j.jece.2021.106284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic has intensified the complications of plastic trash management and disposal. The current situation of living in fear of transmission of the COVID-19 virus has further transformed our behavioural models, such as regularly using personal protective equipment (PPE) kits and single-use applications for day to day needs etc. It has been estimated that with the passage of the coronavirus epidemic every month, there is expected use of 200 billion pieces of single-use facemasks and gloves. PPE are well established now as life-saving items for medicinal specialists to stay safe through the COVID-19 pandemic. Different processes such as glycolysis, hydrogenation, aminolysis, hydrolysis, pyrolysis, and gasification are now working on finding advanced technologies to transfer waste PPE into value-added products. Here, in this article, we have discussed the recycling strategies of PPE, important components (such as medical gloves, gowns, masks & respirators and other face and eye protection) and the raw materials used in PPE kits. Further, the value addition methods to recycling the PPE kits, chemical & apparatus used in recycling and recycling components into value-added products. Finally, the biorenewable materials in PPE for textiles components have been discussed along with concluded remarks.
Collapse
Affiliation(s)
- Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Gauri Chaudhary
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Vipin Saini
- Department of Pharmacy, Maharishi Markandeshwar University, Kumarhatti, Solan, Himachal Pradesh, 173229, India
| | - Sudesh Kumar Mokhta
- Department of Environment, Science & Technology, Government of Himachal Pradesh, 171001, India
| | - Ramesh Chand
- Department of Health and Family Welfare, Government of Himachal Pradesh, 171001, India
| | - U K Chandel
- Department of surgery, Indira Gandhi Medical College and Hospital (IGMC), Shimla, Himachal Pradesh 171001, India
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
- Faculty of Materials Science and Applied Chemistry Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
115
|
Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021; 12:54. [PMID: 34698244 PMCID: PMC8544389 DOI: 10.3390/jfb12040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent complication during pregnancy. This complex disease is characterized by glucose intolerance and consequent hyperglycemia that begins or is first diagnosed in pregnancy, and affects almost 7% of pregnant women. Previous reports have shown that GDM is associated with increased pregnancy complications and might cause abnormal fetal development. At present, treatments are not suitable for the prevention and management of these patients. As an alternative therapeutic opportunity and a leading scientific technique, nanotechnology has helped enlighten the health of these affected women. Theranostic nanomaterials with unique properties and small sizes (at least <100 nm in one of their dimensions) have been recently engineered for clinics and pharmaceutics. Reducing materials to the nanoscale has successfully changed their properties and enabled them to uniquely interact with cell biomolecules. Several biosensing methods have been developed to monitor glucose levels in GDM patients. Moreover, cerium oxide nanoparticles (NPs), selenium NPs, polymeric NPs, and drug-loaded NPs loaded with therapeutic agents have been used for GDM treatment. Still, there are some challenges associated with the detection limits and toxicity of such nanomaterials. This preliminary review covers the aspects from a fast-developing field to generating nanomaterials and their applications in GDM diagnosis and treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 53898615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
116
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|