101
|
Sookying S, Duangjai A, Saokaew S, Phisalprapa P. Botanical aspects, phytochemicals, and toxicity of Tamarindus indica leaf and a systematic review of antioxidant capacities of T. indica leaf extracts. Front Nutr 2022; 9:977015. [PMID: 36204366 PMCID: PMC9530316 DOI: 10.3389/fnut.2022.977015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress is a condition occurs when there is the imbalance between prooxidants and free radicals. It involves in cellular metabolism, aging, and immune response. Recently oxidative stress has been proved about its beneficial roles in human body. However, long term oxidative stress and high concentration of free radicals can lead to negative effects on organs, systems, and physiological conditions. Prooxidant or antioxidant, therefore, is one of the most important choices for the prevention of these anomaly. Tamarindus indica is a medicinal plant that has been reported as a source of antioxidants. The plants' leaves possess antioxidant effects according to many studies. However, these results have not yet been systematically summarized. The present systematic review summarizes and discusses about the in vitro antioxidant capacities of T. indica leaves. The plants' description and morphology, elements and phytochemical constituents, total phenolic and flavonoids contents and toxicity are also summarized and discussed here.
Collapse
Affiliation(s)
- Sontaya Sookying
- UNIt of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Pharmacy and Technology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Acharaporn Duangjai
- UNIt of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Department of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- UNIt of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- *Correspondence: Surasak Saokaew ;
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Pochamana Phisalprapa ;
| |
Collapse
|
102
|
Zhao X, Liu Z, Liu H, Guo J, Long S. Hybrid molecules based on caffeic acid as potential therapeutics: A focused review. Eur J Med Chem 2022; 243:114745. [PMID: 36152388 DOI: 10.1016/j.ejmech.2022.114745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023]
Abstract
Caffeic acid-based compounds possess a high degree of structural diversity and show a variety of pharmacological properties, providing a useful framework for the discovery of new therapeutic agents. They are well-known analogues of antioxidants found in many natural products and synthetic compounds. The present review surveys the recent developments in structure-activity relationships (SAR) and mechanism of action (MOA) of various caffeic acid-containing compounds that play important roles in the design and synthesis of new bioactive molecules with antioxidant, antidiabetic, antiviral, antibacterial, anticancer, anti-inflammatory, and other properties. This review should provide inspiration to scientists in the research fields of organic synthesis and medicinal chemistry related to the development of new antioxidants with versatile therapeutic potential.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 Optics Valley 1st Rd, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
103
|
Hu Q, Wang W, Yang ZQ, Xiao L, Gong X, Liu L, Han J. An ultrasensitive sensing platform based on fluorescence carbon dots for chlorogenic acid determination in food samples. Food Chem 2022; 404:134395. [DOI: 10.1016/j.foodchem.2022.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
104
|
Schapovalova O, Gorlova A, de Munter J, Sheveleva E, Eropkin M, Gorbunov N, Sicker M, Umriukhin A, Lyubchyk S, Lesch KP, Strekalova T, Schroeter CA. Immunomodulatory effects of new phytotherapy on human macrophages and TLR4- and TLR7/8-mediated viral-like inflammation in mice. Front Med (Lausanne) 2022; 9:952977. [PMID: 36091684 PMCID: PMC9450044 DOI: 10.3389/fmed.2022.952977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background While all efforts have been undertaken to propagate the vaccination and develop remedies against SARS-CoV-2, no satisfactory management of this infection is available yet. Moreover, poor availability of any preventive and treatment measures of SARS-CoV-2 in economically disadvantageous communities aggravates the course of the pandemic. Here, we studied a new immunomodulatory phytotherapy (IP), an extract of blackberry, chamomile, garlic, cloves, and elderberry as a potential low-cost solution for these problems given the reported efficacy of herbal medicine during the previous SARS virus outbreak. Methods The key feature of SARS-CoV-2 infection, excessive inflammation, was studied in in vitro and in vivo assays under the application of the IP. First, changes in tumor-necrosis factor (TNF) and lnteurleukin-1 beta (IL-1β) concentrations were measured in a culture of human macrophages following the lipopolysaccharide (LPS) challenge and treatment with IP or prednisolone. Second, chronically IP-pre-treated CD-1 mice received an agonist of Toll-like receptors (TLR)-7/8 resiquimod and were examined for lung and spleen expression of pro-inflammatory cytokines and blood formula. Finally, chronically IP-pre-treated mice challenged with LPS injection were studied for "sickness" behavior. Additionally, the IP was analyzed using high-potency-liquid chromatography (HPLC)-high-resolution-mass-spectrometry (HRMS). Results LPS-induced in vitro release of TNF and IL-1β was reduced by both treatments. The IP-treated mice displayed blunted over-expression of SAA-2, ACE-2, CXCL1, and CXCL10 and decreased changes in blood formula in response to an injection with resiquimod. The IP-treated mice injected with LPS showed normalized locomotion, anxiety, and exploration behaviors but not abnormal forced swimming. Isoquercitrin, choline, leucine, chlorogenic acid, and other constituents were identified by HPLC-HRMS and likely underlie the IP immunomodulatory effects. Conclusions Herbal IP-therapy decreases inflammation and, partly, "sickness behavior," suggesting its potency to combat SARS-CoV-2 infection first of all via its preventive effects.
Collapse
Affiliation(s)
- Olesia Schapovalova
- Caparica Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, NOVA Lisbon University, Lisbon, Portugal
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Johannes de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
| | - Elisaveta Sheveleva
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Mikhail Eropkin
- Department of Etiology and Epidemiology, Smorodintsev Research Institute of Influenza, St. Petersburg State University, Saint Petersburg, Russia
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Michail Sicker
- Rehabilitation Research Unit of Clinic of Bad Kreuzbach, Bad Kreuzbach, Germany
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergiy Lyubchyk
- Caparica Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, NOVA Lisbon University, Lisbon, Portugal
- EIGES Center, Universidade Lusofona, Lisboa, Portugal
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University and Neuroplast BV, Maastricht, Netherlands
- Laboratory of Cognitive Dysfunctions, Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
105
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
106
|
Le YJ, He LY, Li S, Xiong CJ, Lu CH, Yang XY. Chlorogenic acid exerts antibacterial effects by affecting lipid metabolism and scavenging ROS in Streptococcus pyogenes. FEMS Microbiol Lett 2022; 369:6633658. [PMID: 35798014 DOI: 10.1093/femsle/fnac061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, exhibits many biological properties, including antibacterial properties. Numerous studies have investigated the antibacterial effects of CGA, however, the molecular mechanisms governing its effects against Streptococcus pyogenes have not been fully elucidated. Streptococcus pyogenes is a Gram-positive pathogen that causes a wide range of human infections and postinfectious immune-mediated disorders. In this study, we used an isobaric tagging for relative and absolute quantitation (iTRAQ)-based proteomic technique to investigate the underlying mode of action of CGA against S. pyogenes. KEGG and GO analyses indicated that CGA affected the expression of protein alterations involved in multiple pathways, downregulating the expression of ribosomal proteins, and upregulating the expression of proteins associated with fatty acid metabolism, pyruvate metabolism, and propanoate metabolism, while activating the expression of oxidation-reduction-related proteins. Moreover, further cell-based experiments verified that CGA scavenges intracellular ROS in S. pyogenes. These results suggest that CGA may exert its antibacterial action through several actions, such as downregulating ribosomal subunits, affecting lipid metabolism, and scavenging intracellular ROS. The results of this study may help to elucidate the molecular mechanisms by which CGA combats pathogens.
Collapse
Affiliation(s)
- Yao-Jin Le
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Li-Yuan He
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Chun-Jiang Xiong
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| | - Chun-Hua Lu
- Medical College of Guangxi University, Nanning 530004, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong 519041, China
| |
Collapse
|
107
|
Chawech R, Pesnel S, Ben Haddada M, Gauvin-Bialecki A, Morel AL. Polyphenol characterization of the aqueous extract from Hubertia ambavilla L. (Asteraceae) by HPLC-DAD-ESI-MSn and assessment of its antioxidant activity. Chem Biodivers 2022; 19:e202200217. [PMID: 35924460 DOI: 10.1002/cbdv.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
In this work, phytochemical components and the antioxidant property of an aqueous extract obtained from a medicinal plant Hubertia ambavilla , endemic to Reunion Island, were investigated. A total of 37 compounds were detected and identified by high-performance liquid chromatography (UHPLC) using a photodiode-array detector (DAD) coupled with electrospray ionization/mass spectrometry (ESI/MS n ). From calibration curves, the quantity of secondary metabolites in the aqueous extract was calculated. The mean amounts of phenols, flavonoids, and condensed tannins found were respectively 158.38 ± 1.20 mg GAE/g DE, 60.41 ± 1.65 mg AE/g DE and 23.77 ± 1.36 mg CE/g DE. The in vitro antioxidant properties of Hubertia ambavilla plant were measured using three methods: DPPH and ABTS scavenging and ferric reducing antioxidant power. The results showed that crude aqueous extract of H. ambavilla had effective radical scavenging and reducing power in comparison with standard antioxidant compounds. In conclusion, the crude extract herein presented offers a natural alternative biosource of antioxidants with potential applications in food and health industries.
Collapse
Affiliation(s)
- Rachid Chawech
- Torskal nanoscience, Cyroi, 02 Rue Maxime Rivière, 97490, Sainte Clotilde, REUNION
| | - Sabrina Pesnel
- SAS, Cyroi, 02 Rue Maxime Rivière, 97490, Sainte Clotilde, REUNION
| | | | - Anne Gauvin-Bialecki
- Universite de la Reunion, Sciences technologiques, 15 avenue René Cassin, CS 92003, 97744, Saint Denis, REUNION
| | - Anne-Laure Morel
- SAS, Cyroi, 02 Rue Maxime Rivière, 97490, Sainte Clotilde, REUNION
| |
Collapse
|
108
|
Ameixa OMCC, Rebelo J, Silva H, Pinto DCGA. Gall midge Baldratia salicorniae Kieffer (Diptera: Cecidomyiidae) infestation on Salicornia europaea L. induces the production of specialized metabolites with biotechnological potential. PHYTOCHEMISTRY 2022; 200:113207. [PMID: 35460711 DOI: 10.1016/j.phytochem.2022.113207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Saltmarsh plants have several defense mechanisms against threatening abiotic conditions, such as salinity, inundation, or exposure to intense radiation, less is known regarding response to insect pests attack. Salicornia europaea L. plant stands are produced as cash crops in Portuguese coastal areas. In 2017, these crops suffered significant attacks from a gall midge fly (Baldratia salicorniae Kieffer), reducing its economic value. To understand how this attack influenced S. europaea chemical composition, infested and non-infested branches were collected, and their extracts were analysed by GS-MS and UHPLC-MS. Results revealed that different degrees of infestations displayed different chemical composition. Several compounds were for the first time identified in S. europaea, such as, arachidic acid, alpha-tocopherol, henicos-1-ene, and squalene. Most evident results were the reduced amount of alkanes in the infested conditions, which seems to be a direct consequence of insect infestation. Several compounds identified in the infested branches are known to have negative effects on insect larvae by reducing larval growth (linoleic acid) or increasing insect mortality (oleic acid). Halophyte plants production is increasing and it is accompanied by the urge to develop early control strategies against potential pests. These strategies may include ecological friendly solutions such as endogenous production of specialized metabolites to retrieve plant self-defences. Further, our results showed that B. salicorniae herbivory also induced the production of higher number of specialized metabolites with important known biological activities. In years in which high infestations reduce organoleptic qualities for fresh consumption plants can be used in biorefinery industries for metabolite extraction.
Collapse
Affiliation(s)
- Olga M C C Ameixa
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.
| | - João Rebelo
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Silva
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
109
|
Bortolomedi BM, Paglarini CS, Brod FCA. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem 2022; 385:132719. [DOI: 10.1016/j.foodchem.2022.132719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|
110
|
Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules 2022; 12:biom12081020. [PMID: 35892330 PMCID: PMC9332591 DOI: 10.3390/biom12081020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Chlorogenic acid (CGA) has been reported to have various biological activities, such as anti-inflammatory, anti-oxidant and anti-apoptosis effects. However, the role of CGA in intracerebral hemorrhage (ICH) and the underlying mechanisms remain undiscovered. The current study aims to investigate the effect of CGA on neuroinflammation and neuronal apoptosis after inhibition of EMMPRIN in a collagenase-induced ICH mouse model. Dose optimization data showed that intraperitoneal administration of CGA (30 mg/kg) significantly attenuated neurological impairments and reduced brain water content at 24 h and 72 h compared with ICH mice given vehicle. Western blot and immunofluorescence analyses revealed that CGA remarkably decreased the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in perihematomal areas at 72 h after ICH. CGA also reduced the expression of matrix metalloproteinases-2/9 (MMP-2/9) at 72 h after ICH. CGA diminished Evans blue dye extravasation and reduced the loss of zonula occludens-1 (ZO-1) and occludin. CGA-treated mice had fewer activated Iba-1-positive microglia and MPO-positive neutrophils. Finally, CGA suppressed cell death around the hematoma and reduced overall brain injury. These outcomes highlight that CGA treatment confers neuroprotection in ICH likely by inhibiting expression of EMMPRIN and MMP-2/9, and alleviating neuroinflammation, blood–brain barrier (BBB) disruption, cell death and brain injury.
Collapse
|
111
|
Untargeted LC-MS/MS-Based Multi-Informative Molecular Networking for Targeting the Antiproliferative Ingredients in Tetradium ruticarpum Fruit. Molecules 2022; 27:molecules27144462. [PMID: 35889335 PMCID: PMC9316527 DOI: 10.3390/molecules27144462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.
Collapse
|
112
|
Reactivities of Hydroxycinnamic Acid Derivatives Involving Caffeic Acid toward Electrogenerated Superoxide in N,N-Dimethylformamide. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactivity of (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid (caffeic acid), classified as a hydroxycinnamic acid (HCA) derivative, toward electrogenerated superoxide radical anion (O2•−) was investigated through cyclic voltammetry, in situ electrolytic electron spin resonance spectrometry, and in situ electrolytic ultraviolet–visible spectrometry in N,N-dimethylformamide (DMF), aided by density functional theory (DFT) calculations. The quasi-reversible redox of dioxygen/O2•− is modified in the presence of caffeic acid, suggesting that O2•− is scavenged by caffeic acid through proton-coupled electron transfer. The reactivities of caffeic acid toward O2•− are mediated by the ortho-diphenol (catechol) moiety rather than by the acryloyl group, as experimentally confirmed in comparative analyses with other HCAs. The electrochemical and DFT results in DMF suggested that a concerted two-proton-coupled electron transfer mechanism proceeds via the catechol moiety. This mechanism embodies the superior kinetics of O2•− scavenging by caffeic acid.
Collapse
|
113
|
Padilla P, Estévez M, Andrade MJ, Peña FJ, Delgado J. Proteomics reveal the protective effects of chlorogenic acid on Enterococcus faecium Q233 in a simulated pro-oxidant colonic environment. Food Res Int 2022; 157:111464. [PMID: 35761697 DOI: 10.1016/j.foodres.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Certain phytochemicals have been found to promote the beneficial effects of probiotic bacteria although the molecular mechanisms of such interactions are poorly understood. The objective of the present study was to evaluate the impact of the exposure to 0.5 mM chlorogenic acid (CA) on the redox status and proteome of Enterococcus faecium isolated from cheese and challenged with 2.5 mM hydrogen peroxide (H2O2). The bacterium was incubated in anaerobic conditions for 48 h at 37 °C. CA exposure led to a more intense oxidative stress and accretion of bacterial protein carbonyls than those induced by H2O2. The oxidative damage to bacterial proteins was even more severe in the bacterium treated with both CA and H2O2, yet, such combination led to a strengthening of the antioxidant defenses, namely, a catalase-like activity. The proteomic study indicated that H2O2 caused a decrease in energy supply and the bacterium responded by reinforcing the membrane and wall structures and counteracting the redox and pH imbalance. CA stimulated the accretion of proteins related to translation and transcription regulators, and hydrolases. This phytochemical was able to counteract certain proteomic changes induced by H2O2 (i.e. increase of ATP binding cassete (ABC) transporter complex) and cause the increase of Rex, a redox-sensitive protein implicated in controlling metabolism and responses to oxidative stress. Although this protection should be confirmed under in vivo conditions, such effects point to benefits in animals or humans affected by disorders in which oxidative stress plays a major role.
Collapse
Affiliation(s)
- P Padilla
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain; Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - M Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain.
| | - M J Andrade
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, University of Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| |
Collapse
|
114
|
Shah MA, Haris M, Faheem HI, Hamid A, Yousaf R, Rasul A, Shah GM, Khalil AAK, Wahab A, Khan H, Alhasani RH, Althobaiti NA. Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity. Curr Pharm Des 2022; 28:1523-1542. [PMID: 35762558 DOI: 10.2174/1381612828666220628123224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
: Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword "diabesity". These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.
Collapse
Affiliation(s)
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.,Department of Botany, Hazara University, Mansehra, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| | - Nora A Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| |
Collapse
|
115
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
116
|
Hong J, Mu T, Sun H, Blecker C, Richel A. Photoprotective effects of sweet potato leaf polyphenols and caffeic acid against UV-induced skin-damage in BALB/C nude mice. Food Funct 2022; 13:7075-7087. [PMID: 35695741 DOI: 10.1039/d2fo00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed at clarifying the mechanism by which sweet potato leaf polyphenols (SPLPs) ameliorate ultraviolet (UV) radiation damage, using the BALB/c hairless female mouse model. The moisture and hydroxyproline (HYP) contents of the model mouse skin and the thickness of the epidermis and dermis were determined by staining and histological examination. Anti-oxidative enzyme activities, malondialdehyde (MDA) content, and protein carbonyl content in skin tissue and serum were investigated. Expression of inflammatory markers and mitogen-activated protein kinase signaling pathways were evaluated. Topical caffeic acid at 30 mg kg-1 most strongly inhibited the decrease in skin moisture, HYP content, and the thickening of the epidermis. Topical SPLP at 100 mg kg-1 most significantly inhibited the dermal thickening, increased the activities of the superoxide dismutase, catalase as well as glutathione peroxidase, and decreased the content of serum MDA and protein carbonyls markedly. Furthermore, the topical SPLP suppressed the UV-induced rise in the inflammatory markers MMP-1, TNF-α, and NF-κB, and alleviated phosphorylation levels of the stress-signaling proteins JNK and p38. Thus, topical SPLP provided the best overall protection for mouse skin from UV-induced damage.
Collapse
Affiliation(s)
- Jingyang Hong
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China. .,University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium.,University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Aurore Richel
- University of Liège, Gembloux Agro-Bio Tech, Biological and Industrial Chemistry Unit, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
117
|
Węglarz Z, Kosakowska O, Pióro-Jabrucka E, Przybył JL, Gniewosz M, Kraśniewska K, Szyndel MS, Costa R, Bączek KB. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals (Basel) 2022; 15:ph15060735. [PMID: 35745654 PMCID: PMC9227552 DOI: 10.3390/ph15060735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/01/2023] Open
Abstract
Helichrysum italicum (Roth) G. Don. is one of the most important cosmetic and medicinal plants originating from the Mediterranean region of Europe. The aim of this study was to assess the chemical profile as well as antioxidant and antibacterial potential of the species cultivated in the temperate climate of Central Europe. The analyses were carried out using herbs and inflorescences. The content of essential oil ranged from 0.25 g × 100 g−1 in the herb to 0.31 g × 100 g−1 in the inflorescences. Neryl acetate, accompanied by α-pinene in the herb (10.42%), and nerol in inflorescences (15.73%) were the dominants here. Rutoside, as well as rosmarinic, chlorogenic, neochlorogenic, isochlorogenic b and cichoric acids, were detected in both raw materials using HPLC-DAD. Within this group, cichoric acid was the dominant (2647.90 mg × 100 g−1 in the herb, 1381.06 mg × 100 g−1 in the inflorescences). The herb appeared to be more abundant in phenolics in comparison with the inflorescences. When given antioxidant activity (determined using DPPH and ABTS assays), both methanolic extract and essential oil obtained from the herb indicated higher potential than those originating from the inflorescences (74.72, 61.38 and 63.81, 58.59% in the case of DPPH, respectively). In turn, regarding antimicrobial activity, the essential oil from inflorescences was distinguished by stronger bacteriostatic power than the herb essential oil. Gram-positive bacteria were more sensitive to both essential oils in comparison with Gram-negative ones, with S. aureus ATCC 25923 as the most susceptible (MIC 1; MBC 16 mg × mL−1) among tested strains.
Collapse
Affiliation(s)
- Zenon Węglarz
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Olga Kosakowska
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Ewelina Pióro-Jabrucka
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Jarosław L Przybył
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Małgorzata Gniewosz
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Karolina Kraśniewska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Marek S Szyndel
- Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Rosaria Costa
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Annunziata Street, 98168 Messina, Italy
| | - Katarzyna Barbara Bączek
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
118
|
Pan Y, Li H, Zhang B, Deng Z, Shahidi F. Antioxidant interactions among hydrophilic and lipophilic dietary phytochemicals based on inhibition of low-density lipoprotein and DNA damage. J Food Biochem 2022; 46:e14267. [PMID: 35674209 DOI: 10.1111/jfbc.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Antioxidant interaction among hydrophilic phytochemicals (caffeic acid, p-coumaric acid) and lipophilic phytochemicals (β-carotene, lycopene) in different mole ratios (n/n, 1:9, 3:7, 5:5, 7:3, 9:1) was evaluated. Assays performed were based on the scavenging activity of hydrogen peroxide (H2 O2 ), the inhibition of low-density lipoprotein oxidation (ox-LDL) and DNA damage in vitro, using isobological analysis, synergistic rate (SR), and combination index (CI). Results showed that groups containing higher ratios of hydrophilic phytochemicals exhibited synergism while those containing higher ratios of lipophilic phytochemicals showed antagonism. Meanwhile, groups containing caffeic acid (e.g., caffeic acid:β-carotene, 9:1) with more hydroxyl groups showed higher synergism (SR = 0.76 ± 0.02, CI = 0.77 ± 0.03) than groups containing p-coumaric acid (e.g., p-coumaric acid:β-carotene, 9:1, SR = 0.88 ± 0.04, CI = 0.82 ± 0.05) on the scavenging activity of H2 O2 . Groups that contained lycopene (caffeic acid: lycopene, 9:1) with a higher ability of regeneration by phenolic acids showed more significant synergism (SR = 0.70 ± 0.02, CI = 0.79 ± 0.03) than groups containing β-carotene (e.g., caffeic acid:β-carotene, 9:1, SR = 1.00 ± 0.03, CI = 0.98 ± 0.04) on the inhibition of DNA damage. This study provided a basis for antioxidant interactions among phytochemicals against ox-LDL and DNA damage in vivo. In addition, the choice of appropriate ratios and structures of hydrophilic and lipophilic phytochemicals should be considered in the diet and formulation of functional foods.
Collapse
Affiliation(s)
- Yao Pan
- School of Public Health, University of Nanchang, Nanchang, China.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, China.,Institute for Advanced Study, University of Nanchang, Nanchang, China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
119
|
Li M, Bao X, Zhang X, Ren H, Cai S, Hu X, Yi J. Exploring the phytochemicals and inhibitory effects against α-glucosidase and dipeptidyl peptidase-IV in Chinese pickled chili pepper: Insights into mechanisms by molecular docking analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
120
|
Morais MG, Saldanha AA, Azevedo LS, Mendes IC, Rodrigues JPC, Amado PA, Farias KDS, Zanuncio VSS, Cassemiro NS, Silva DBD, Soares AC, Lima LARDS. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae) and putative identification of bioactive compounds by GC–MS and LC-DAD-MS. Food Res Int 2022; 156:111145. [DOI: 10.1016/j.foodres.2022.111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
121
|
Kazaz IO, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Yilmaz Dogan S, Bostan S, Mentese A. Chlorogenic acid ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stress. J Pediatr Urol 2022; 18:289.e1-289.e7. [PMID: 35279357 DOI: 10.1016/j.jpurol.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
BACKROUND Testicular torsion (TT) is an urological emergency situation especially in adolescents and young men. The main pathophysiology of testicular torsion/detorsion (T/D) is ischemia-reperfusion (I/R) injury. I/R induces the production of reactive oxygen species (ROS) thought to play a critical role in tissue injury. Increasing evidence suggests that ER stress may play an important role in I/R-induced cell death. During ischemia, oxygen and glucose deprivation also causes abnormalities in protein folding processes. Antioxidants suppress oxidative stress directly as well as ER stress and thus gain importance in the treatment of pathologies associated with oxidative stress and ER stress, such as I/R damage. Chlorogenic acid (CGA) which is formed by the esterification of caffeic and quinic acids and is one of the most abundant phenolic acids in nature. There is also a growing body of studies reporting protective effects of CGA against I/R injury in different tissues, including intestinal, heart and brain. OBJECTIVE To investigate the effects of CGA on oxidative stress and ER stress in an experimental testicular I/R injury model. DESIGN Rats were divided into three groups: control, T/D, and T/D + CGA. In the T/D + CGA group, 100 mg/kg CGA was given intraperitoneally 30 min before detorsion. While tissue malondialdehyde (MDA) levels were determined manually using a colorimetric method, tissue superoxide dismutase (SOD), 78-kDa glucose regulatory protein (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP) levels were determined enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. RESULTS In T/D group, tissue MDA, GRP78, ATF6 and CHOP levels were significantly higher than control group (p < 0.05). These increases were significantly reversed with CGA pre-treatment (p < 0.05). The histopathological Johnsen score was significantly lower in the T/D group compared to the control group, but the level of histopathological Johnsen score was significantly restored by CGA pre-treatment (p < 0.05). DISCUSSION The relationship between I/R injury and ER stress has been emphasized frequently in recent years. This study in which the effects of CGA on TT were examined for the first time, showed that CGA can inhibit I/R-induced testicular damage. CONCLUSION These results may provide a new insight into CGA and may form the first clinical theoretical basis for the possible use of CGA in the treatment of TT in the future. However, the real function of CGA in TT patients needs further investigation.
Collapse
Affiliation(s)
- Ilke Onur Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Fatih Colak
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Instute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Sedanur Yilmaz Dogan
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Serdar Bostan
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
122
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
123
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
124
|
Li Z, Ma R, Wang L, Wang Y, Qin Q, Chen L, Dang X, Zhou Z. Starvation stress affects iron metabolism in honeybee Apis mellifera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
125
|
Krzemińska B, Dybowski MP, Klimek K, Typek R, Miazga-Karska M, Ginalska G, Dos Santos Szewczyk K. Can Extracts from the Leaves and Fruits of the Cotoneaster Species Be Considered Promising Anti-Acne Agents? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092907. [PMID: 35566257 PMCID: PMC9105355 DOI: 10.3390/molecules27092907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the phenolic profile and biological activity of the extracts from the leaves and fruits of Cotoneaster nebrodensis and Cotoneaster roseus. Considering that miscellaneous species of Cotoneaster are thought to be healing in traditional Asian medicine, we assumed that this uninvestigated species may reveal significant therapeutic properties. Here, we report the simultaneous assessment of chemical composition as well as biological activities (antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties) of tested species. Complementary LC-MS analysis revealed that polyphenols (especially flavonoids and proanthocyanidins) are the overriding phytochemicals with the greatest significance in tested biological activities. In vitro chemical tests considering biological activities revealed that obtained results showed different values depending on concentration, extraction solvent as well as phenolic content. Biological assays demonstrated that the investigated extracts possessed antibacterial properties and were not cytotoxic toward normal skin fibroblasts. Given the obtained results, we concluded that knowledge of the chemical composition and biological activities of investigated species are important to achieve a better understanding of the utilization of these plants in traditional medicine and be useful for further research in their application to treat various diseases, such as skin disorders.
Collapse
Affiliation(s)
- Barbara Krzemińska
- Department of Pharmaceutical Botany, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Michał P. Dybowski
- Department of Chromatography, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University in Lublin, 20-031 Lublin, Poland; (M.P.D.); (R.T.)
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (K.K.); (M.M.-K.); (G.G.)
| | - Rafał Typek
- Department of Chromatography, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University in Lublin, 20-031 Lublin, Poland; (M.P.D.); (R.T.)
| | - Małgorzata Miazga-Karska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (K.K.); (M.M.-K.); (G.G.)
| | - Grażyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-093 Lublin, Poland; (K.K.); (M.M.-K.); (G.G.)
| | - Katarzyna Dos Santos Szewczyk
- Department of Pharmaceutical Botany, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-814-487-064
| |
Collapse
|
126
|
Liu R, Xu Y, Zhang T, Gong M, Liu R, Chang M, Wang X. Interactions between liposoluble antioxidants: A critical review. Food Res Int 2022; 155:111104. [DOI: 10.1016/j.foodres.2022.111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
|
127
|
Dassamiour S, Meguellati S, Lamraoui H, Bensaad MS, Sami R, Alshehry G, Althubaiti EH, Al-Meshal AS. HPLC-DAD phenolic screening and in vitro assessment of antimicrobial, antioxidant and anti-inflammatory activities of Tanteboucht dates. RSC Adv 2022; 12:13330-13338. [PMID: 35520118 PMCID: PMC9066423 DOI: 10.1039/d2ra01630c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 01/16/2023] Open
Abstract
The date palm (Phoenix dactylifera L.) is one of the most important crops in arid and semi-arid zones. Date fruit occupies a good place in traditional medicine among the Saharan residents, due to its therapeutic virtues; although there may be several therapeutic virtues yet to be discovered. The aim of this study was to investigate the phytochemical and pharmacological properties of the hexanic (EHx), chloroformic (ECh), ethyl acetate (EAc) and aqueous (EAq) extracts of Tanteboucht pulp. The phytochemical characterization and estimation of phenolic compounds were done based on an HPLC-DAD approach. The antioxidant activity was evaluated by a DPPH scavenging effect test. The sensitivity of 7 bacterial strains and Candida albicans to Tanteboucht extracts was tested using the diffusion disc on agar medium method. The membrane stabilization test was used to determine the in vitro anti-inflammatory effect of the fruit extracts. Fourteen phenolic compounds were detected in organic extracts and EAc was the richest followed by ECh and finally EHx which was very poor in these molecules. All extracts showed antioxidant, anti-inflammatory and antimicrobial properties which differ in rate. Indeed, ECh had the greatest scavenging effect on DPPH, followed by EAc and then EAq. EAc was the most potent inhibitor of microbial strains. EAc and ECh were more efficient at membrane stabilization followed by EAq and the three extracts had more anti-inflammatory capacity than the positive control acetyl salicylic acid. The obtained considerable activities were significantly correlated with flavonoid and tannin contents in the extracts.
Collapse
Affiliation(s)
- Saliha Dassamiour
- Laboratory of Biotechnology of Bioactive Molecules and Cellular Physiopathology (LBMBPC), Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
| | - Selsabil Meguellati
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
| | - Hdouda Lamraoui
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
| | - Mohamed Sabri Bensaad
- Laboratory of Biotechnology of Bioactive Molecules and Cellular Physiopathology (LBMBPC), Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules (LPTPCMB), Faculty of Natural and Life Sciences, University Batna 2 Fesdis Batna 05078 Algeria
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University P.O. 11099 Taif 21944 Saudi Arabia
| | - Garsa Alshehry
- Department of Food Science and Nutrition, College of Sciences, Taif University P.O. 11099 Taif 21944 Saudi Arabia
| | - Eman Hillal Althubaiti
- Department of Biotechnology, Faculty of Science, Taif University P.O. 11099 Taif 21944 Saudi Arabia
| | - Areej Suliman Al-Meshal
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
128
|
Analysis of Apple Fruit (Malus × domestica Borkh.) Quality Attributes Obtained from Organic and Integrated Production Systems. SUSTAINABILITY 2022. [DOI: 10.3390/su14095300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare total phenolic content (TPC), radical-scavenging activity (RSA), total anthocyanin content (TAC), sugar and polyphenolic profiles of two apple cultivars (‘Discovery’ and ‘Red Aroma Orelind’) from organic and integrated production systems in climatic conditions of Western Norway. Sixteen sugars and four sugar alcohols and 19 polyphenols were found in the peel, but less polyphenols were detected in the pulp. The peel of both apples and in both production systems had significantly higher TPC and RSA than the pulp. The peel from integrated apples had higher TPC than the peel from organic apples, while organic apples had higher TAC than the integrated. Sucrose and glucose levels were higher in organic apples; fructose was cultivar dependent while minor sugars were higher in integrated fruits. The most abundant polyphenolic compound in the peel of the tested cultivars was quercetin 3-O-galactoside, while chlorogenic acid was most abundant in the pulp. Regarding polyphenols, phloretin, phloridzin, protocatechuic acid, baicalein and naringenin were higher in organic apple, while quercetin 3-O-galactoside, kaempferol 3-O-glucoside, chlorogenic acid and syringic acid was higher in integrated fruits. In conclusion, organic ‘Discovery’ and integrated ‘Red Aroma Orelind’ had higher bioavailability of health related compounds from the peel and the pulp.
Collapse
|
129
|
Zhao Y, Wang C, Yang T, Wang H, Zhao S, Sun N, Chen Y, Zhang H, Fan H. Chlorogenic Acid Alleviates Chronic Stress-Induced Duodenal Ferroptosis via the Inhibition of the IL-6/JAK2/STAT3 Signaling Pathway in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4353-4361. [PMID: 35380825 DOI: 10.1021/acs.jafc.2c01196] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chronic stress causes duodenal damage, in which iron death is likely to play an important role. Chlorogenic acid (CGA), one of the most widely consumed dietary polyphenols, has been shown to protect the intestine. However, it is unclear whether CGA exerts a duodenoprotective effect in chronic stress by inhibiting ferroptosis. In this work, rats were daily exposed to restraint stress for 6 h over 21 consecutive days, with/without CGA (100 mg/kg, gavage). CGA reduced blood hepcidin, iron, reactive oxygen species (ROS), and ferroportin 1 (FPN1) levels and upregulated the levels of ferroptosis-related biomarkers (GPX4, GSH, NADPH, etc.). These results confirmed that CGA inhibited ferroptosis in the duodenum. Furthermore, the use of S3I-201 (STAT3 inhibitor) helped to further clarify the mechanism of action of CGA. Overall, CGA could reduce hepcidin production by inhibiting the IL-6/JAK2/STAT3 pathway in the liver to increase the expression of FPN1 in the duodenum, which restored iron homeostasis and inhibited ferroptosis, alleviating chronic stress-induced duodenal injury.
Collapse
Affiliation(s)
- Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
130
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
131
|
Yildirim S, Demir E, Gok I, Tokusoglu O. Use of electrochemical techniques for determining the effect of brewing techniques (Espresso, Turkish and Filter coffee) and roasting levels on total antioxidant capacity of coffee beverage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sevinc Yildirim
- Department of Gastronomy, Faculty of Applied Sciences İstanbul Okan University Istanbul, 34959 Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy Afyonkarahisar Health Sciences University Afyonkarahisar, 03200 Turkey
| | - Ilkay Gok
- Department of Gastronomy, Faculty of Applied Sciences İstanbul Okan University Istanbul, 34959 Turkey
| | - Ozlem Tokusoglu
- Department of Food Engineering Celal Bayar University Manisa Turkey
| |
Collapse
|
132
|
Ziemlewska A, Nizioł-Łukaszewska Z, Zagórska-Dziok M, Bujak T, Wójciak M, Sowa I. Evaluation of Cosmetic and Dermatological Properties of Kombucha-Fermented Berry Leaf Extracts Considered to Be By-Products. Molecules 2022; 27:2345. [PMID: 35408743 PMCID: PMC9000515 DOI: 10.3390/molecules27072345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Leaves of Rubus fruticosus L., Vaccinum myrtillus L., Ribes nigrum L. and Fragaria vesca L. are considered agro-waste of the berry industry, but they can be a rich source of valuable bioactive compounds used in cosmetic industry. In this study, kombucha-fermented and non-fermented extracts were compared in terms of chemical composition and biological activity. Polyphenol compounds were identified by HPLC/DAD/ESI-MS. The antioxidant potential was analyzed by evaluating the scavenging of intracellular free radicals contained in keratinocytes and fibroblasts and by DPPH and ABTS assay, obtaining a higher radical scavenging capacity for the ferments, especially for R. fruticosus and V. myrtillus ferments. Assessment of the cytotoxicity on skin cell lines showed their positive effect on the viability of fibroblasts and keratinocytes (especially for the ferments after 10 days of fermentation). The potential anti-ageing properties were determined by their ability to inhibit the activity of metalloproteinases, obtaining almost 30% inhibition of collagenase and elastase in the case of fermented V. myrtillus. Moreover, when the samples were applied to the skin, the positive effect of ferments on skin hydration and pH was demonstrated, which indicates that kombucha berry leaf extracts may be an innovative cosmetic ingredient.
Collapse
Affiliation(s)
- Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (Z.N.-Ł.); (M.Z.-D.); (T.B.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (Z.N.-Ł.); (M.Z.-D.); (T.B.)
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (Z.N.-Ł.); (M.Z.-D.); (T.B.)
| | - Tomasz Bujak
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (Z.N.-Ł.); (M.Z.-D.); (T.B.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland; (M.W.); (I.S.)
| |
Collapse
|
133
|
Mok HW, Ko MJ, Choi HJ, Chung MS. Extraction of chlorogenic acids from hibiscus (Hibiscus syriacus L.) by subcritical-water. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
134
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022; 13:845871. [PMID: 35355732 PMCID: PMC8959753 DOI: 10.3389/fphar.2022.845871] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kayenat Sheikh
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar Mohali, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia.,Centre for International Collaboration and Research, Reva University, Bangalore, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
135
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
136
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
137
|
Synergistic Effects of Licorice Root and Walnut Leaf Extracts on Gastrointestinal Candidiasis, Inflammation and Gut Microbiota Composition in Mice. Microbiol Spectr 2022; 10:e0235521. [PMID: 35262409 PMCID: PMC9045305 DOI: 10.1128/spectrum.02355-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes gastrointestinal (GI) candidiasis closely associated with intestinal inflammation and dysbiosis. Drug resistance, side effects of available antifungal agents, and the high recurrence of candidiasis highlight the need for new treatments. We investigated the effects of hydroethanolic extracts of licorice root (LRE) and walnut leaf (WLE) on GI colonization by C. albicans, colon inflammation, and gut microbiota composition in C57BL/6 female mice. Oral administration of LRE and WLE alone or in combination once daily for 12 days before C. albicans infection and then for 5 days after infection significantly reduced the level of C. albicans in the feces of gastrointestinal infected mice as well as colonization of the GI tract, both extracts showing robust antifungal activity. Although total bacterial content was unaffected by the extracts (individually or combined), the abundance of protective bacteria, such as Bifidobacterium spp. and Faecalibacterium prausnitzii, increased with the combination, in contrast to that of certain pathobiont bacteria, which decreased. Interestingly, the combination induced a more robust decrease in the expression of proinflammatory genes than either extract alone. The anti-inflammatory activity of the combination was further supported by the reciprocal increase in the expression of anti-inflammatory cytokines and the significant decrease in enzymes involved in the synthesis of proinflammatory eicosanoids and oxidative stress. These findings suggest that LRE and WLE have synergistic effects and that the LRE/WLE combination could be a good candidate for limiting GI candidiasis and associated inflammation, likely by modulating the composition of the gut microbiota. IMPORTANCE The adverse effects and emergence of resistance of currently available antifungals and the high recurrence of candidiasis prompt the need for alternative and complementary strategies. We demonstrated that oral administration of hydroethanolic extracts of licorice root (LRE) and walnut leaf (WLE) separately or in combination significantly reduced the colonization of the gastrointestinal (GI) tract by C. albicans, highlighting a robust antifungal activity of these plant extracts. Interestingly, our data indicate a correlation between LRE and WLE consumption, in particular the combination, and a shift within the gut microbiome toward a protective profile, a decrease in colonic inflammation and prooxidant enzymes, suggesting a synergistic effect. This study highlights the significant prebiotic potential of the LRE/WLE combination and suggests that the health benefits are due, at least in part, to their ability to modulate the gut microbiota, reduce inflammation and oxidative stress, and protect against opportunistic infection.
Collapse
|
138
|
Alam M, Ashraf GM, Sheikh K, Khan A, Ali S, Ansari MM, Adnan M, Pasupuleti VR, Hassan MI. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front Pharmacol 2022. [DOI: 10.3389/fphar.2022.845871
expr 835330423 + 878857932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis onin vitro and in vivostudies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review.
Collapse
|
139
|
Khalifa AA. WHAT PHYSICIANS SHOULD KNOW ABOUT COFFEE. TURKISH MEDICAL STUDENT JOURNAL 2022; 9:8-13. [DOI: 10.4274/tmsj.galenos.2022.09.01.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
140
|
Wang XH, Zhao C, Lu XY, Zong H, Zhuge B. Production of Caffeic Acid with Co-fermentation of Xylose and Glucose by Multi-modular Engineering in Candida glycerinogenes. ACS Synth Biol 2022; 11:900-908. [PMID: 35138824 DOI: 10.1021/acssynbio.1c00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caffeic acid (CA), a natural phenolic compound, has important medicinal value and market potential. In this study, we report a metabolic engineering strategy for the biosynthesis of CA in Candida glycerinogenes using xylose and glucose. The availability of precursors was increased by optimization of the shikimate (SA) pathway and the aromatic amino acid pathway. Subsequently, the carbon flux into the SA pathway was maximized by introducing a xylose metabolic pathway and optimizing the xylose assimilation pathway. Eventually, a high yielding strain CG19 was obtained, which reached a yield of 4.61 mg/g CA from mixed sugar, which was 1.2-fold higher than that of glucose. The CA titer in the 5 L bioreactor reached 431.45 mg/L with a yield of 8.63 mg/g of mixed sugar. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of CA. This is the first report to produce CA in C. glycerinogenes with xylose and glucose as carbon sources, which developed a promising strategy for the efficient production of high-value aromatic compounds.
Collapse
Affiliation(s)
- Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
141
|
Deveci E. LC‐ESI‐MS/MS based phytochemicals and cytotoxic, antioxidant and enzyme inhibitory activities of
Scorzonera mollis
subsp.
szowitzii
: A new reserve of bioactive compounds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ebru Deveci
- Chemistry and Chemical Processing Technology Department Technical Sciences Vocational School Konya Technical University 42250 Konya Turkey
| |
Collapse
|
142
|
Chen J, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Luo J, Huang Z, Yan H, He J. Chlorogenic Acid Attenuates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs. Front Vet Sci 2022; 9:806253. [PMID: 35237678 PMCID: PMC8884245 DOI: 10.3389/fvets.2022.806253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol that possesses potent antioxidant activity. However, little is known about its exact role in regulating the intestinal health under oxidative stress. This study was conducted to explore the effect of dietary CGA supplementation on intestinal barrier functions in weaned pigs upon oxidative stress. Twenty-four weaned pigs were allocated to three treatments and were given a basal diet (control) or basal diet containing CGA (1,000 mg/kg) for 21 days. Pigs were challenged by sterile saline (control) or diquat [10 mg/kg body weight (BW)] on the 15th day. Results showed that CGA attenuated the BW reduction, reduced the serum concentrations of diamine oxidase and D-lactate, and elevated serum antioxidant enzymes activities in diquat-challenged weaned pigs (P < 0.05). Moreover, diquat challenge decreased villus height and activities of sucrase and alkaline phosphatase in jejunum and ileum (P < 0.05), but CGA elevated the villus height and enzyme activities in the intestinal mucosa (P < 0.05). In addition, CGA not only decreased the expression levels of Bax, caspase-3, and caspase-9 (P < 0.05) but also elevated the expression levels of sodium glucose transport protein-1, glucose transporter-2, occludin, claudin-1, zonula occludens-1, and antioxidant genes such as nuclear factor erythroid-derived 2-related factor 2 and heme oxygenase-1 in intestinal mucosa of weaned pigs upon oxidative stress (P < 0.05). These findings suggested that CGA can attenuate oxidative stress-induced growth retardation and intestinal mucosa disruption, which was linked to elevated antioxidative capacity and enhanced intestinal barrier integrity.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, China
- *Correspondence: Jun He
| |
Collapse
|
143
|
Shahabadi N, Akbari A, Karampour F, Falsafi M, Zendehcheshm S. In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on γ-Fe 2O 3@SiO 2 as new nanoparticles. J Biomol Struct Dyn 2022; 41:2300-2320. [PMID: 35120416 DOI: 10.1080/07391102.2022.2030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, nanoparticles with both anticancer and antibacterial features were synthesized through loading chlorogenic acid (CGA) of essential oils on magnetic nanoparticles (MNPs). Characterization of γ-Fe2O3@SiO2-CGA MNPs was performed using Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) that show effective coating of the MNPs with SiO2 and CGA ligand and spherical shape of the nanoparticles with a mean diameter of 16 nm, respectively. The cytotoxicity study demonstrated that γ-Fe2O3@SiO2-CGA MNPs had fewer toxic effects on normal cells (Huvec) than on cancerous cells (U-87 MG, A-2780 and A-549), and could be a new potential candidate for use in biological and pharmaceutical applications. The interaction of calf thymus deoxyribonucleic acid (ct-DNA) with γ-Fe2O3@SiO2-CGA MNPs indicated that the anticancer activity might be associated with the DNA binding properties of γ-Fe2O3@SiO2-CGA MNPs. Moreover, the interaction of γ-Fe2O3@SiO2-CGA MNPs with human serum albumin (HSA) suggests that the native conformation of HSA was preserved at the level of secondary structure, indicating that the γ-Fe2O3@SiO2-CGA MNPs do not show any cytotoxicity effect when they are injected into the blood. Antibacterial tests were performed and represented γ-Fe2O3@SiO2-CGA MNPs attained better antibacterial function than CGA as free.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Akbari
- Chemistry Department, Payame Noor University, Tehran, Iran
| | | | | | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
144
|
Hinokidani K, Aoki R, Inoue T, Irie M, Nakanishi Y. Usability of mangrove plant leaves as tea materials: A comparison study on phenolic content and antioxidant capacities with commercial teas. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
145
|
Technological strategies applied for rosmarinic acid delivery through different routes – A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
146
|
Ofosu FK, Elahi F, Daliri EBM, Han SI, Oh DH. Impact of thermal treatment and fermentation by lactic acid bacteria on sorghum metabolite changes, their antioxidant and antidiabetic activities. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
147
|
Arcopilus eremanthusum sp. nov. as sources of antibacterial and antioxidant metabolites. Arch Microbiol 2022; 204:156. [DOI: 10.1007/s00203-022-02764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
|
148
|
Ma X, Okyere SK, Hu L, Wen J, Ren Z, Deng J, Hu Y. Anti-Inflammatory Activity and Mechanism of Cryptochlorogenic Acid from Ageratina adenophora. Nutrients 2022; 14:439. [PMID: 35276797 PMCID: PMC8839916 DOI: 10.3390/nu14030439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/21/2023] Open
Abstract
Ageratina adenophora is an invasive plant known for its toxicity to livestock. Current research on this plant has shifted from toxicity prevention to the beneficial utilization of plant resources. This study was performed to investigate the effects and mechanisms of cryptochlorogenic acid (CCGA) isolated from Ageratina adenophora on the inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 cells. RAW264.7 cells were pretreated with CCGA (200, 100, and 50 μg/mL) and subsequently stimulated with LPS (1 μg/mL) for 16 h. The cytotoxicity of CCGA was tested using the Cell Counting Kit (CCK8). The mechanism of action of CCGA in attenuating inflammation was also identified using enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription-polymerase chain reaction, and Western blot. The results showed that CCGA had a maximal safe concentration of 200 mg/mL. Moreover, CCGA reduced the level of nitric oxide (NO) and iNOS in LPS-induced RAW264.7 cells (p < 0.01). In addition, CCGA reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) and cyclooxygenase-2 (COX-2) in LPS-induced RAW264.7 cells at both the mRNA and protein levels (p < 0.01). CCGA prevented the activation of nuclear factor-kappa B (NF-kB) in LPS-induced RAW264.7 cells via the inhibition of IKK and IκB phosphorylation and the degradation of IκB proteins (p < 0.01). This finding indicated that CCGA isolated from A. adenophora may be a potential candidate for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liwen Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (S.K.O.); (L.H.); (J.W.); (Z.R.); (J.D.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
149
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
150
|
Wan Y, Wang D, Shen Y, Chen Y, Qian J, Fu G. Effect of Lactobacillus acidophilus fermentation on the composition of chlorogenic acids and anti-hyperuricemia activity of Artemisia selengensis Turcz. Food Funct 2022; 13:11780-11793. [DOI: 10.1039/d2fo01854c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FASTE can relieve hyperuricemia by inhibiting the production of uric acid, alleviating oxidative stress damage and inflammation, promoting uric acid excretion and improving the abundance of intestinal flora.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Dengxiao Wang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuefeng Shen
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jin Qian
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang, 330299, P. R. China
| |
Collapse
|