101
|
Diaz M, Parikh V, Ismail S, Maxamed R, Tye E, Austin C, Dew T, Graf BA, Vanhees L, Degens H, Azzawi M. Differential effects of resveratrol on the dilator responses of femoral arteries, ex vivo. Nitric Oxide 2019; 92:1-10. [DOI: 10.1016/j.niox.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
|
102
|
Mazzone G. On the Inhibition of Hydroxyl Radical Formation by Hydroxycinnamic Acids: The Case of Caffeic Acid as a Promising Chelating Ligand of a Ferrous Ion. J Phys Chem A 2019; 123:9560-9566. [PMID: 31603328 DOI: 10.1021/acs.jpca.9b08384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Density functional theory has been employed here to explore the ability of caffeic acid (CA) to trap Fe(II) to prevent the Fenton reaction thus limiting the hydroxyl radical formation. Electronic and structural features of complexes for metal-to-ligand different ratios were fully elucidated. Results confirm that the anionic forms of CA are able to form very stable complexes and show that all the possible coordination modes lead to formation of complexes that are thermochemically accessible. In addition, the change in free energies for the oxidation reaction, according to which hydrogen peroxide directly interacts with the metal center to produce the hydroxyl radical, confirms that Fe(II) complexed by CA is less active toward H2O2 than the purely solvated one. Even the energy required for the ligand exchange (H2O2 in place of water), supposed to be the first step involved in the Fenton reaction in a physiological environment, supports the propensity of CA to deactivate the hydroxyl radical formation by sequestering the ferrous ion. The rationalization of absorption spectra for various Fe(II)-CA complexes shows neutral and monoanionic species as conceivable ligands of the ferrous ion and the carboxylic group as the most probable site of coordination.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Italy
| |
Collapse
|
103
|
Aguilera E, Perdomo C, Espindola A, Corvo I, Faral-Tello P, Robello C, Serna E, Benítez F, Riveros R, Torres S, Vera de Bilbao NI, Yaluff G, Alvarez G. A Nature-Inspired Design Yields a New Class of Steroids Against Trypanosomatids. Molecules 2019; 24:molecules24203800. [PMID: 31652542 PMCID: PMC6832524 DOI: 10.3390/molecules24203800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
Chagas disease and Leishmaniasis are neglected endemic protozoan diseases recognized as public health problems by the World Health Organization. These diseases affect millions of people around the world however, efficient and low-cost treatments are not available. Different steroid molecules with antimicrobial and antiparasitic activity were isolated from diverse organisms (ticks, plants, fungi). These molecules have complex structures that make de novo synthesis extremely difficult. In this work, we designed new and simpler compounds with antiparasitic potential inspired in natural steroids and synthesized a series of nineteen steroidal arylideneketones and thiazolidenehydrazines. We explored their biological activity against Leishmania infantum, Leishmania amazonensis, and Trypanosoma cruzi in vitro and in vivo. We also assayed their genotoxicity and acute toxicity in vitro and in mice. The best compound, a steroidal thiosemicarbazone compound 8 (ID_1260) was active in vitro (IC50 200 nM) and in vivo (60% infection reduction at 50 mg/kg) in Leishmania and T. cruzi. It also has low toxicity in vitro and in vivo (LD50 >2000 mg/kg) and no genotoxic effects, being a promising compound for anti-trypanosomatid drug development.
Collapse
Affiliation(s)
- Elena Aguilera
- Grupo de Química Medicinal-Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo C.P. 11400, Uruguay.
| | - Cintya Perdomo
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Alejandra Espindola
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Ileana Corvo
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| | - Paula Faral-Tello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo C.P. 11400, Uruguay.
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo C.P. 11400, Uruguay.
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay.
| | - Elva Serna
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Fátima Benítez
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Rocío Riveros
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Susana Torres
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Ninfa I Vera de Bilbao
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Gloria Yaluff
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo C.P. 2169., Paraguay.
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, Ruta 3 (km 363), Paysandú C.P. 60000, Uruguay.
| |
Collapse
|
104
|
Di Paolo M, Papi L, Gori F, Turillazzi E. Natural Products in Neurodegenerative Diseases: A Great Promise but an Ethical Challenge. Int J Mol Sci 2019; 20:E5170. [PMID: 31635296 PMCID: PMC6834164 DOI: 10.3390/ijms20205170] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent one of the most important public health problems and concerns, as they are a growing cause of mortality and morbidity worldwide, particularly in the elderly. Despite remarkable breakthroughs in our understanding of NDs, there has been little success in developing effective therapies. The use of natural products may offer great potential opportunities in the prevention and therapy of NDs; however, many clinical concerns have arisen regarding their use, mainly focusing on the lack of scientific support or evidence for their efficacy and patient safety. These clinical uncertainties raise critical questions from a bioethical and legal point of view, as considerations relating to patient decisional autonomy, patient safety, and beneficial or non-beneficial care may need to be addressed. This paper does not intend to advocate for or against the use of natural products, but to analyze the ethical framework of their use, with particular attention paid to the principles of biomedical ethics. In conclusion, the notable message that emerges is that natural products may represent a great promise for the treatment of many NDs, even if many unknown issues regarding the efficacy and safety of many natural products still remain.
Collapse
Affiliation(s)
- Marco Di Paolo
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Luigi Papi
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Federica Gori
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
105
|
Moshawih S, S.M.N. Mydin RB, Kalakotla S, Jarrar QB. Potential application of resveratrol in nanocarriers against cancer: Overview and future trends. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
106
|
Sharma M, Sharma G, Raza K, Singh B, Katare OP. Effect of Metamorphed Keratolytic Agent on the Behavior of Imiquimod Loaded Hybrid Vesicles Containing Gel. J Pharm Sci 2019; 108:3879-3889. [PMID: 31568776 DOI: 10.1016/j.xphs.2019.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022]
Abstract
The cost, side effects, and patient compliance-related issues of topically effective imiquimod have prevented its widespread acceptance. The present work intends to evaluate the feasibility of overcoming the shortcomings of poorly soluble and skin-penetrating immunomodulator by using biocompatible keratolytic agent with drug-loaded hybrid vesicles. Salicylic acid was complexed with phospholipid through simple mixing and incorporated into carbopol 940 gel containing drug-loaded vesicles, prepared by thin-film hydration method. The morphology, physicochemical properties, rheological behavior, release profile, and dermatokinetics of developed gel were compared with control gel (developed gel without keratolytic agent). In ex vivo drug release studies across the rat skin, there was significant increase in the steady-state permeation flux (Jss) and skin retention of drug from developed gel in comparison with control. There was favorable change in almost every evaluated dermatokinetic parameter. The innocuous nature of control gel had not changed on addition of skin structure-altering agent. The developed gel was found to be stable at room temperature and humidity for 1 year.
Collapse
Affiliation(s)
- Mandeep Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305 817, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
107
|
Marinelli L, Fornasari E, Eusepi P, Ciulla M, Genovese S, Epifano F, Fiorito S, Turkez H, Örtücü S, Mingoia M, Simoni S, Pugnaloni A, Di Stefano A, Cacciatore I. Carvacrol prodrugs as novel antimicrobial agents. Eur J Med Chem 2019; 178:515-529. [DOI: 10.1016/j.ejmech.2019.05.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
|
108
|
Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019; 36:1196-1221. [PMID: 30681109 PMCID: PMC6658353 DOI: 10.1039/c8np00065d] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2018 Dietary supplements, which include botanical (plant-based) natural products, constitute a multi-billion-dollar industry in the US. Regulation and quality control for this industry is an ongoing challenge. While there is general agreement that rigorous scientific studies are needed to evaluate the safety and efficacy of botanical natural products used by consumers, researchers conducting such studies face a unique set of challenges. Botanical natural products are inherently complex mixtures, with composition that differs depending on myriad factors including variability in genetics, cultivation conditions, and processing methods. Unfortunately, many studies of botanical natural products are carried out with poorly characterized study material, such that the results are irreproducible and difficult to interpret. This review provides recommended approaches for addressing the critical questions that researchers must address prior to in vitro or in vivo (including clinical) evaluation of botanical natural products. We describe selection and authentication of botanical material and identification of key biologically active compounds, and compare state-of-the-art methodologies such as untargeted metabolomics with more traditional targeted methods of characterization. The topics are chosen to be of maximal relevance to researchers, and are reviewed critically with commentary as to which approaches are most practical and useful and what common pitfalls should be avoided.
Collapse
Affiliation(s)
- Joshua J. Kellogg
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Jeannine S. McCune
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Nadja B. Cech
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
109
|
Jovanović AA, Balanč BD, Djordjević VB, Ota A, Skrt M, Šavikin KP, Bugarski BM, Nedović VA, Ulrih NP. Effect of gentisic acid on the structural-functional properties of liposomes incorporating β-sitosterol. Colloids Surf B Biointerfaces 2019; 183:110422. [PMID: 31437609 DOI: 10.1016/j.colsurfb.2019.110422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 01/15/2023]
Abstract
Multifunctional liposomes incorporating β-sitosterol were developed for delivery of gentisic acid (GA). The interactions of both compounds with phospholipid bilayer were interpreted viaeffects of different β-sitosterol content (0, 20 and 50 mol %) and different gentisic acid to lipid ratio (nGA/nlip from 10-5 to 1) on membrane fluidity and thermotropic properties. Multilamellar vesicles of phosphatidylcholines (with size range between 1350 and 1900 nm) effectively encapsulated GA (54%) when nGA/nlip was higher than 0.01. Suppression of lipid peroxidation was directly related to concentration of GA. The resistance to diffusion of gentisic acid from liposomes increased for ˜50% in samples incorporating 50 mol % β-sitosterol compared to sterol-free liposomes. Finally, simulated in vitro gastrointestinal conditions showed that the release was mainly affected by low pH of simulated gastric fluid and the presence of cholates in simulated intestinal fluid, rather than by enzymes activity.
Collapse
Affiliation(s)
- Aleksandra A Jovanović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Bojana D Balanč
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Verica B Djordjević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ajda Ota
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Mihaela Skrt
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Katarina P Šavikin
- Institute for Medicinal Plant Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Branko M Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Viktor A Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
110
|
de Oliveira MTP, de Sá Coutinho D, Tenório de Souza É, Stanisçuaski Guterres S, Pohlmann AR, Silva PMR, Martins MA, Bernardi A. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. Int J Nanomedicine 2019; 14:5215-5228. [PMID: 31371957 PMCID: PMC6636190 DOI: 10.2147/ijn.s200666] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Background Resveratrol (RSV) has attracted interest as an alternative drug for the treatment of acute lung injury (ALI) and other pulmonary diseases, but its poor oral bioavailability is a limitation. In this study, we employed drug delivery nanotechnology to improve the stability, lung localization and efficacy of orally administered resveratrol to control lung damage leading to ALI. Methods and materials RSV-loaded lipid-core nanocapsules (RSV-LNCs), prepared by interfacial deposition of biodegradable polymers, were given orally to A/J mice prior to lipopolysaccharide (LPS) intranasal instillation. Inflammatory changes, oxidative stress and lung tissue elastance were assessed 24 h after LPS challenge. Results RSV-LNCs (5 mg/kg), given 1, 4, 6 or 12 h but not 24 h before provocation, inhibited LPS-induced leukocyte accumulation in the bronchoalveolar fluid (BALF), whereas unloaded nanocapsules (ULNCs) or free RSV (5 mg/kg) were ineffective. RSV-LNCs (2.5–10 mg/kg) but not ULNCs or RSV improved lung function and prevented total leukocyte and neutrophil accumulation equally in both BALF and lung tissue when given 4 h before LPS challenge. Similar findings were seen concerning the generation of a range of pro-inflammatory cytokines such as IL-6, KC, MIP-1α, MIP-2, MCP-1 and RANTES in lung tissue. In addition, only RSV-LNCs inhibited MDA levels and SOD activity in parallel with blockade of the ERK and PI3K/Akt pathways following LPS provocation. Conclusion Nanoformulation of RSV in biodegradable oil-core polymers is an effective strategy to improve the anti-ALI activity of RSV, suggesting that the modified-release formulation of this plant polyphenol may be of great value in clinical conditions associated with ALI and respiratory failure.
Collapse
Affiliation(s)
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Éverton Tenório de Souza
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Post-Graduation Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
111
|
Shahiwala A, Shehab NG, Khider M, Khan R. Chitosan Nanoparticles as a Carrier for Indigofera intricata Plant Extract: Preparation, Characterization and Anticancer Activity. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666181008112804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is one of the major causes of the death and affects people of all
ages throughout the world. The drugs that are currently available to treat cancer have many side
effects. Hence, there is considerable scientific interest in the continuing discovery of new
anticancer agents from natural sources. The aim of this study was to prepare and characterize
nanoparticles combining Indigofera intricata crude alcoholic extract and chitosan and to evaluate
the anticancer cell proliferative activity for both extract and nanoparticles.
Methods:
Dried alcoholic extract was prepared and characterized for its phenolic and flavonoid
contents. Chitosan extract nanoparticles was prepared by ionic gelation method and characterized
by thin layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), particle
size and zeta-potential analysis. The anticancer cell proliferative activities of both plant extract
and nanoparticles at different concentrations were evaluated using breast cancer cell line (MCF 7).
Results:
The alcoholic extract showed high contents from both phenolic and flavonoid constituents
(15 % and 22 % respectively). The interaction of polyphenolic compounds of the extract with
chitosan was confirmed by the TLC and FTIR results. The particle size and zeta-potential of
nanoparticles found to be 400.6nm ± 101.8 nm and +42.1 mV ± 9.27 mV respectively. The plant
extract showed the lowest cell viability of 45.21% ± 4.8% at the highest dose (250 mg) tested in
this investigation. Almost 500-fold reduction (from 250 mg to 0.5 mg) in the extract concentration
required to achieve same anticancer cell proliferative activity when formulated as nanoparticles.
Also 2.5 mg extract containing nanoparticles showed similar anticancer cell proliferative activity
as 5 mg 5-FU.
Conclusion:
Our results revealed that traditional medicinal plants could be an excellent source of
natural anticancer agents and the chitosan-extract nanoparticles is a promising formulation strategy
to enhance their clinical effectiveness.
Collapse
Affiliation(s)
- Aliasgar Shahiwala
- Pharmaceutics Department, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Naglaa G. Shehab
- Pharmaceutical Chemistry and Natural Products Department, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Maryam Khider
- Pharmaceutics Department, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Rawoof Khan
- Pharmacology and Toxicology Department, Dubai Pharmacy College, Dubai, United Arab Emirates
| |
Collapse
|
112
|
Chen KTJ, Gilabert-Oriol R, Bally MB, Leung AWY. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm Res 2019; 36:125. [PMID: 31236772 PMCID: PMC6591181 DOI: 10.1007/s11095-019-2654-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia that is becoming more prevalent particularly in the older (65 years of age or older) population. For decades, "7 + 3" remission induction therapy with cytarabine and an anthracycline, followed by consolidation therapy, has been the standard of care treatment for AML. This stagnancy in AML treatment has resulted in less than ideal treatment outcomes for AML patients, especially for elderly patients and those with unfavourable profiles. Over the past two years, six new therapeutic agents have received regulatory approval, suggesting that a number of obstacles to treating AML have been addressed and the treatment landscape for AML is finally changing. This review outlines the challenges and obstacles in treating AML and highlights the advances in AML treatment made in recent years, including Vyxeos®, midostaurin, gemtuzumab ozogamicin, and venetoclax, with particular emphasis on combination treatment strategies. We also discuss the potential utility of new combination products such as one that we call "EnFlaM", which comprises an encapsulated nanoformulation of flavopiridol and mitoxantrone. Finally, we provide a review on the immunotherapeutic landscape of AML, discussing yet another angle through which novel treatments can be designed to further improve treatment outcomes for AML patients.
Collapse
Affiliation(s)
- Kent T J Chen
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roger Gilabert-Oriol
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ada W Y Leung
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
113
|
Scariot DB, Volpato H, Fernandes NDS, Soares EFP, Ueda-Nakamura T, Dias-Filho BP, Din ZU, Rodrigues-Filho E, Rubira AF, Borges O, Sousa MDC, Nakamura CV. Activity and Cell-Death Pathway in Leishmania infantum Induced by Sugiol: Vectorization Using Yeast Cell Wall Particles Obtained From Saccharomyces cerevisiae. Front Cell Infect Microbiol 2019; 9:208. [PMID: 31259161 PMCID: PMC6587907 DOI: 10.3389/fcimb.2019.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania infantum, is a neglected tropical disease, to which efforts in the innovation of effective and affordable treatments remain limited, despite the rising incidence in several regions of the world. In this work, the antileishmanial effects of sugiol were investigated in vitro. This compound was isolated from the bark of Cupressus lusitanica and showed promising activity against L. infantum. In spite of the positive results, it is known that the compound is a poorly water-soluble diterpene molecule, which hinders further investigation, especially in preclinical animal studies. Thus, in an alternative delivery method, sugiol was entrapped in glucan-rich particles obtained from Saccharomyces cerevisiae yeast cell walls (YCWPs). To evaluate the activity of sugiol, the experiments were divided into two parts: (i) the in vitro investigation of antileishmanial activity of free sugiol against L. infantum promastigotes after 24, 48, and 72 h of treatment and (ii) the evaluation of antileishmanial activity of sugiol entrapped in glucan-rich particles against intracellular L. infantum amastigotes. Free sugiol induced the cell-death process in promastigotes, which was triggered by enhancing cytosolic calcium level and promoting the autophagy up to the first 24 h. Over time, the presence of autophagic vacuoles became rarer, especially after treatment with lower concentrations of sugiol, but other cellular events intensified, like ROS production, cell shrinkage, and phosphatidylserine exposure. Hyperpolarization of mitochondrial membrane potential was found at 72 h, induced by the mitochondria calcium uptake, causing an increase in ROS production and lipid peroxidation as a consequence. These events resulted in the cell death of promastigotes by secondary necrosis. Sugiol entrapped in glucan-rich particles was specifically recognized by dectin-1 receptor on the plasma membrane of macrophages, the main host cell of Leishmania spp. Electron micrographs revealed particles containing sugiol within the infected macrophages and these particles were active against the intracellular L. infantum amastigotes without affecting the host cell. Therefore, the YCWPs act like a Trojan horse to successfully deliver sugiol into the macrophage, presenting an interesting strategy to deliver water-insoluble drugs to parasitized cells.
Collapse
Affiliation(s)
- Débora Botura Scariot
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Hélito Volpato
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Nilma de Souza Fernandes
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | | | - Tânia Ueda-Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Benedito Prado Dias-Filho
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Zia Ud Din
- Chemistry Department, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| |
Collapse
|
114
|
Biswas S, Mukherjee PK, Harwansh RK, Bannerjee S, Bhattacharjee P. Enhanced bioavailability and hepatoprotectivity of optimized ursolic acid-phospholipid complex. Drug Dev Ind Pharm 2019; 45:946-958. [PMID: 30767678 DOI: 10.1080/03639045.2019.1583755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To prepare and characterize an optimized phospholipid complex of Ursolic acid (UA) to overcome the poor pharmacokinetic properties and to investigate the impact of the complex on hepatoprotective activity and bioavailability in animal model. SIGNIFICANCE UA is a potential phytoconstituent obtained from several plant sources, which has been explored for its diverse pharmacological activities including hepatoprotection. Its major limitation is poor absorption, rapid elimination, and hence low bioavailability after administration. METHODS Response surface methodology was adopted to formulate an optimized (UA) complex. The complex was characterized by differential thermal analysis (DTA), Fourier transform-Infrared Spectroscopy, Powder X ray Diffraction, molecular docking, etc. The physico-chemical profile (solubility, oil/water partition coefficient) and in vitro dissolution profile was estimated. The formulation was then used to study hepatoprotective activity and bioavailability in animal models. RESULTS Results showed that the phospholipid complex of UA has enhanced the hepatoprotective potential as compared to pure UA at the same dose level. The complex restored the levels of serum hepatic marker enzymes with respect to untreated group and increased the relative bioavailability of UA in rat plasma by 8.49-fold in comparison with pure compound at the same dose level. It enhanced the elimination half-life (t1/2 el) from 0.69 ± 1.76 to 8.28 ± 1.98 h. CONCLUSION Complexation of UA with phospholipid markedly enhanced the hepatoprotective potential of UA by improving its bioavailability and pharmacokinetic parameters. Novelty statement The present article deals with rational optimization of the formulation parameters for phospholipid complex of ursolic acid by Response Surface Methodology analysis, characterizing the formulation by in silico approach apart from conventional instrumental techniques, and evaluating the in vitro dissolution, pharmacokinetics, and hepatoprotective activity of the complex in animals. Novelty statement The present article deals with rational optimization of the formulation parameters for phospholipid complex of ursolic acid by Response Surface Methodology analysis, characterizing the formulation by in silico approach apart from conventional instrumental techniques, and evaluating the in vitro dissolution, pharmacokinetics, and hepatoprotective activity of the complex in animals.
Collapse
Affiliation(s)
- Sayan Biswas
- a School of Natural Product Studies, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Pulok K Mukherjee
- a School of Natural Product Studies, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Ranjit K Harwansh
- a School of Natural Product Studies, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Subhadip Bannerjee
- a School of Natural Product Studies, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Pritorthi Bhattacharjee
- a School of Natural Product Studies, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| |
Collapse
|
115
|
Song Y, Ye M, Zhou J, Wang ZW, Zhu X. Restoring E-cadherin Expression by Natural Compounds for Anticancer Therapies in Genital and Urinary Cancers. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:130-138. [PMID: 31194121 PMCID: PMC6551504 DOI: 10.1016/j.omto.2019.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
E-cadherin plays a pivotal role in cancer progression, including the epithelial-mesenchymal transition (EMT) process and tumor metastasis. Loss of E-cadherin contributes to enhanced invasion and metastasis in human cancers. Therefore, restoring E-cadherin could be a potential approach for cancer therapy. Multiple natural compounds have been shown to possess anti-tumor activities through the regulation of key molecules in signaling pathways, including E-cadherin. In this review, we describe the numerous compounds that restore the expression of E-cadherin in genital and urinary malignancies. We further discuss the potential anti-tumor molecular mechanisms of these agents as the activators of E-cadherin in genital and urinary cancers. Although these compounds exhibit their potential to inhibit the development and progression of cancers, there are several challenges to developing them as therapeutic drugs for cancer patients. Poor bioavailability in vivo is the main disadvantage of these compounds. Modification of compound structures has produced actual improvements in bioavailability. Nanoparticle-based delivery systems could be useful to deliver the agents to targeted organs. These compounds could be new promising therapeutic agents for the treatment of human genital and urinary cancers. Further investigations are required to determine the safety and side effects of natural compounds using animal models prior to clinical trials.
Collapse
Affiliation(s)
- Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junhan Zhou
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
116
|
Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019; 11:pharmaceutics11050234. [PMID: 31091818 PMCID: PMC6572595 DOI: 10.3390/pharmaceutics11050234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
In view of the increasing interest in natural antimicrobial molecules, this study screened the ability of Thymus capitatus (TC) essential oil and Citrus limon var. pompia (CLP) extract as raw extracts or incorporated in vesicular nanocarriers against Streptococcus mutans and Candida albicans. After fingerprint, TC or CLP were mixed with lecithin and water to produce liposomes, or different ratios of water/glycerol or water/propylene glycol (PG) to produce glycerosomes and penetration enhancer vesicles (PEVs), respectively. Neither the raw extracts nor the nanovesicles showed cytotoxicity against human gingival fibroblasts at all the concentrations tested (1, 10, 100 μg/mL). The disc diffusion method, MIC-MBC/MFC, time-kill assay, and transmission electron microscopy (TEM) demonstrated the highest antimicrobial potential of TC against S. mutans and C. albicans. The very high presence of the phenol, carvacrol, in TC (90.1%) could explain the lethal effect against the yeast, killing up to 70% of Candida and not just arresting its growth. CLP, rich in polyphenols, acted in a similar way to TC in reducing S. mutans, while the data showed a fungistatic rather than a fungicidal activity. The phospholipid vesicles behaved similarly, suggesting that the transported extract was not the only factor to be considered in the outcomes, but also their components had an important role. Even if other investigations are necessary, TC and CLP incorporated in nanocarriers could be a promising and safe antimicrobial in caries prevention.
Collapse
|
117
|
Ruginǎ D, Ghiman R, Focșan M, Tăbăran F, Copaciu F, Suciu M, Pintea A, Aștilean S. Resveratrol-delivery vehicle with anti-VEGF activity carried to human retinal pigmented epithelial cells exposed to high-glucose induced conditions. Colloids Surf B Biointerfaces 2019; 181:66-75. [PMID: 31125919 DOI: 10.1016/j.colsurfb.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
Abstract
As an integrated approach to defeat diabetic retinopathy, a common complication of diabetes leading to vision loss, a delivery vehicle able to transport resveratrol (Rv) directly into retina pigmented epithelial D407 cells was designed. Rv, a molecule with known therapeutic potential, was successfully inserted into a microcapsule based on porous CaCO3 templates revealing an encapsulation efficiency of 96.8 ± 4.0%. Four alternative layers of polyelectrolytes were deposited via electrostatic-driven layer-by-layer assembly approach on the template and covered by rhodamine 6G (Rh6G). The as-designed PMs-Rv-Rh6G microcapsules were internalized into D407 cells grown in normal and high glucose-induced inflammation conditions, being able to cross the cellular membrane and localize near the nucleus after 24 h treatment. The metabolic activity of D407 cells was not diminished by PMs-Rv-Rh6G even after 24 h treatment, meaning that the microcapsules do not exert any toxicity toward the cells, based on WST-1 and lactate dehydrogenase assays. Notably, the PMs-Rv-Rh6G treatment is able to inhibit the vascular endothelial growth factor (VEGF) protein, as was proved by the ELISA assay. Therefore, the proposed PMs-Rv-Rh6G microcapsules could be implemented as a potential self-reporting intraocular Rv-delivery vehicle with anti-VEGF activity in the management of diabetic retinopathy.
Collapse
Affiliation(s)
- Dumitrita Ruginǎ
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Raluca Ghiman
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania
| | - Monica Focșan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania
| | - Flaviu Tăbăran
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Florina Copaciu
- Biochemistry Department, Faculty of Animal Sciences and Biotechnologies, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath No. 67-103, Cluj-Napoca 400293, Romania; Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, Clinicilor, No. 5-7, Cluj-Napoca 400006, Romania
| | - Adela Pintea
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania.
| | - Simion Aștilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania.
| |
Collapse
|
118
|
Charoensit P, Pompimon W, Khorana N, Sungthongjeen S. Effect of amide linkage of PEG-lipid conjugates on the stability and cytotoxic activity of goniodiol loaded in PEGylated liposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
119
|
Wu Y, Luo Y, Zhou B, Mei L, Wang Q, Zhang B. Porous metal-organic framework (MOF) Carrier for incorporation of volatile antimicrobial essential oil. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
120
|
Hammoud Z, Gharib R, Fourmentin S, Elaissari A, Greige-Gerges H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int J Pharm 2019; 561:161-170. [PMID: 30836153 DOI: 10.1016/j.ijpharm.2019.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022]
Abstract
The encapsulation of essential oil components into liposomes was demonstrated to improve their solubility and chemical stability. In this study, we investigated the effect of chemical structure, Henry's law constant (Hc), and aqueous solubility of essential oil components on their liposomal encapsulation. Estragole, eucalyptol, isoeugenol, pulegone, terpineol, and thymol were encapsulated in lipoid S100-liposomes using the ethanol injection method. The Hc values were determined. The incorporation in liposomes was more efficient (encapsulation efficiency > 90%) for the essential oil components exhibiting low aqueous solubility (estragole, isoeugenol, and pulegone). Moreover, efficient entrapment into vesicles (loading rate > 18%) was obtained for isoeugenol, terpineol, and thymol. This result suggests that the presence of a hydroxyl group in the structure and a low Hc value enhance the entrapment of essential oil components into liposomes. Furthermore, drug release rate from liposomes was controlled by the loading rate of essential oil components into liposomes, the size of particles, the location of essential oil components within the lipid bilayer, and the cholesterol incorporation rate of liposomes. Finally, considerable concentrations of isoeugenol, pulegone, terpineol, and thymol were retained in liposomes after 10 months with respect to the initial concentration.
Collapse
Affiliation(s)
- Zahraa Hammoud
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon; University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F-69622 Lyon, France
| | - Riham Gharib
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), SFR Condorcet FR CNRS 3417, ULCO, F-59140 Dunkerque, France
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, Lebanon.
| |
Collapse
|
121
|
Saw PE, Lee S, Jon S. Naturally Occurring Bioactive Compound‐Derived Nanoparticles for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University Guangzhou 510120 P. R. China
| | - Soyoung Lee
- KAIST Institute for the BioCentury, Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro Daejeon 34141 Republic of Korea
| |
Collapse
|
122
|
Khan A, Wang C, Sun X, Killpartrick A, Guo M. Physicochemical and Microstructural Properties of Polymerized Whey Protein Encapsulated 3,3'-Diindolylmethane Nanoparticles. Molecules 2019; 24:molecules24040702. [PMID: 30781356 PMCID: PMC6412796 DOI: 10.3390/molecules24040702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 01/15/2023] Open
Abstract
The fat-soluble antioxidant 3,3′-diindolylmethane (DIM), is a natural phytochemical found in Brassica vegetables, such as cabbage, broccoli, and Brussels sprouts. The stability of this compound is a major challenge for its applications. Polymerized whey protein (PWP)-based DIM nanoparticles were prepared at different mass ratios of protein and DIM by mixing PWP and DIM followed by ultrasound treatment for 4 min. All the nanoparticles were studied for particle size, zeta potential, rheological and microstructural properties, and storage stability. The mean particle size of the PWP-based nanoparticles was significantly increased (p < 0.05) by the addition of DIM at different mass ratios, ranging from 241.33 ± 14.82 to 270.57 ± 15.28 nm. Zeta potential values of all nanoparticles were highly negative (greater than ±30 mV), suggesting a stable solution due its electrostatic repulsive forces. All samples exhibited shear thinning behavior (n < 1), fitted with Sisko model (R2 > 0.997). Fourier Transform Infrared (FTIR)spectra revealed that the secondary structure was changed and the absorption intensity for hydrogen bonding got stronger by further incorporating DIM into PWP. Transmission electronic microscopy (TEM) images showed spherical and smooth surface shape of the PWP-based nanoparticles. DIM encapsulated by PWP showed enhanced stability at 4, 37 and 55 °C for 15 days evidenced by changes in mean particle size and color (a*-value and b*-value) compared with control (DIM only). In conclusion, the polymerized whey protein based 3,3′-diindolylmethane nanoparticles are stable and the encapsulation may protect the core material from oxidation.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xiaomeng Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Mingruo Guo
- College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT 05405, USA.
- Department of Food Science, Northeast Agriculture University, Harbin 150030, China.
| |
Collapse
|
123
|
Sathe P, Saka R, Kommineni N, Raza K, Khan W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev Ind Pharm 2019; 45:826-838. [PMID: 30764674 DOI: 10.1080/03639045.2019.1576722] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to formulate nanostructured lipid carriers (NLCs) of dithranol-loaded in gel for ease of application and to evaluate its anti-psoriatic efficacy vis-a-vis conventional ointment formulation. SIGNIFICANCE This study will provide an insight about the use of nanocarriers, esp. NLCs loaded with dithranol for the effective treatment of psoriasis. METHODS Dithranol-loaded NLCs were prepared by hot melt homogenization method and characterized for particle size and percentage entrapment efficiency. The optimized NLCs were loaded into gel and evaluated for drug release, spreadability, rheological behavior, and staining. Anti-psoriatic efficacy of the NLC gel was evaluated in imiquimod (IMQ) induced psoriatic plaque model in comparison with prepared conventional ointment formulation (1.15% w/w dithranol). RESULTS NLCs were prepared with particle size below 300 nm, polydispersity index (PDI) below 0.3 and percentage entrapment efficiency of ∼100%. The prepared NLC gel was then compared with the ointment for drug release, staining property, and efficacy. Topical application of dithranol-loaded NLC gel on IMQ-induced psoriatic plaque model reduced the symptoms of psoriasis assessed by both Psoriasis area severity index (PASI) scoring and enzyme-linked immunosorbent assay. There was a significant reduction in disease severity and cytokines like Interleukins-17, 22, 23 and Tumor necrosis factor-α by the developed system in comparison to the negative control. CONCLUSIONS To conclude dithranol-loaded NLCs in gel base was efficacious in management of psoriasis at the same drug concentration and also offer less cloth staining to that of the ointment product.
Collapse
Affiliation(s)
- Priyadarshini Sathe
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Hyderabad , India
| | - Raju Saka
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Hyderabad , India
| | - Nagavendra Kommineni
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Hyderabad , India
| | - Kaisar Raza
- b Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan , Ajmer , India
| | - Wahid Khan
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Hyderabad , India
| |
Collapse
|
124
|
Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sci 2019; 218:292-299. [DOI: 10.1016/j.lfs.2018.12.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 11/22/2022]
|
125
|
Localized Therapy of Vaginal Infections and Inflammation: Liposomes-In-Hydrogel Delivery System for Polyphenols. Pharmaceutics 2019; 11:pharmaceutics11020053. [PMID: 30691199 PMCID: PMC6410284 DOI: 10.3390/pharmaceutics11020053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023] Open
Abstract
Natural polyphenols, such as resveratrol (RES) or epicatechin (EPI), are attractive for treatments of various diseases, including vaginal infections and inflammation, because of their strong anti-oxidative and anti-inflammatory properties. However, their low solubility and consequent poor bioavailability limit their therapeutic uses. To overcome these limitations, a vaginal delivery system comprising either RES or EPI liposomes-in-hydrogel was developed. This system permits therapeutic action of both liposomal polyphenol (RES or EPI) and chitosan-based hydrogel. Liposomes of around 200 nm and entrapment efficiency of 81% and 77% for RES and EPI, respectively, were incorporated into chitosan hydrogel, respectively. Medium molecular weight chitosan (2.5%, w/w) was found to have optimal texture properties and mucoadhesiveness in ex vivo conditions. The in vitro release studies confirmed the sustained release of polyphenols from the system. Both liposomal polyphenols and polyphenols-in-liposomes-in-hydrogel exhibited only minor effects on cell toxicity. EPI showed superior radical scavenging activity at lower concentrations compared to antioxidants vitamin C and E. Anti-inflammatory activity expressed as the inhibitory activity of formulations on the NO production in the LPS-induced macrophages (RAW 264.7) confirmed the superiority of EPI liposomes-in-hydrogel. The plain liposomes-in-hydrogel also exhibited potent anti-inflammatory activity, suggesting that chitosan hydrogel acts in synergy regarding anti-inflammatory effect of formulation.
Collapse
|
126
|
Di Sotto A, Paolicelli P, Nardoni M, Abete L, Garzoli S, Di Giacomo S, Mazzanti G, Casadei MA, Petralito S. SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural Sesquiterpene β-Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery Design. Pharmaceutics 2018; 10:pharmaceutics10040274. [PMID: 30551617 PMCID: PMC6321237 DOI: 10.3390/pharmaceutics10040274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
The natural sesquiterpene β-caryophyllene (CRY) has been highlighted to possess interesting pharmacological potentials, particularly due to its chemopreventive and analgesic properties. However, the poor solubility of this sesquiterpene in aqueous fluids can hinder its uptake into cells, resulting in inconstant responses of biological systems, thus limiting its application. Therefore, identifying a suitable pharmaceutical form for increasing CRY bioavailability represents an important requirement for exploiting its pharmacological potential. In the present study, the ability of soybean phosphatidylcholine (SPC) liposomes to improve bioavailability and absorption of CRY in cancer cells has been evaluated. Liposomal formulations of CRY, differing for lamellarity (i.e., unilamellar and multilamellar vesicles or ULV and MLV) and for the drug loading (i.e., 1:0.1, 1:0.3 and 1:0.5 mol/mol between SPC and CRY) were designed with the aim of maximizing CRY amount in the liposome bilayer, while avoiding its leakage during storage. The low-loaded formulations significantly potentiated the antiproliferative activity of CRY in both HepG2 and MDA-MB-468 cells, reaching a maximum IC50 lowering (from two to five folds) with 1:0.3 and 1:0.1 SPC/CRY MLV. Conversely, increasing liposome drug-loading reduced the ability for CRY release, likely due to a possible interaction between SPC and CRY that affects the membrane properties, as confirmed by physical measures.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Patrizia Paolicelli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Martina Nardoni
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lorena Abete
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Antonietta Casadei
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Stefania Petralito
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
127
|
Abamor ES, Tosyali OA, Bagirova M, Allahverdiyev A. Nigella sativa oil entrapped polycaprolactone nanoparticles for leishmaniasis treatment. IET Nanobiotechnol 2018; 12:1018-1026. [PMID: 30964007 PMCID: PMC8676622 DOI: 10.1049/iet-nbt.2018.5115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 09/28/2023] Open
Abstract
This study is the first to investigate the antileishmanial activities of Nigella sativa oil (NSO) entrapped poly-ɛ-caprolactone (PCL) nanoparticles on Leishmania infantum promastigotes and amastigotes in vitro. NSO molecules with variable initial doses of 50, 100, 150, and 200 mg were successfully encapsulated into PCL nanoparticles identified as formulations NSO1, NSO2, NSO3, and NSO4, respectively. This process was characterised by scanning electron microscope, dynamic light scattering, Fourier transform infrared, encapsulation efficiency measurements, and release profile evaluations. The resulting synthetised nanoparticles had sizes ranging between 200 and 390 nm. PCL nanoparticles encapsulated 98% to 80% of initial doses of NSO and after incubation released approximately 85% of entrapped oil molecules after 288 h. All investigated formulations demonstrated strong antileishmanial effects on L. infantum promastigotes by inhibiting up to 90% of parasites after 192 h. The tested formulations decreased infection indexes of macrophages in a range between 2.4- and 4.1-fold in contrast to control, thus indicating the strong anti-amastigote activities of NSO encapsulated PCL nanoparticles. Furthermore, NSO-loaded PCL nanoparticles showed immunomodulatory effects by increasing produced nitric oxide amounts within macrophages by 2-3.5-fold in contrast to use of free oil. The obtained data showed significant antileishmanial effects of NSO encapsulated PCL nanoparticles on L. infantum promastigotes and amastigotes.
Collapse
Affiliation(s)
- Emrah Sefik Abamor
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - Ozlem Ayse Tosyali
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Melahat Bagirova
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Adil Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
128
|
Lee SG, Shin DJ, Lee ES, Goo YT, Kim CH, Yoon HY, Lee MW, Bang H, Seo SJ, Choi YW. Enhanced Chemical Stability of Hirsutenone Incorporated into a Nanostructured Lipid Carrier Formulation Containing Antioxidants. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sang Gon Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Dong Jun Shin
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Eun Seok Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Ho Yub Yoon
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Min Won Lee
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Hyoweon Bang
- College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Seong Jun Seo
- College of Medicine; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Young Wook Choi
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| |
Collapse
|
129
|
Qiu C, Wang J, Zhang H, Qin Y, Xu X, Jin Z. Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal-Organic Frameworks Based on Short-Chain Starch Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9785-9793. [PMID: 30153014 DOI: 10.1021/acs.jafc.8b03144] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, the nano- and microsized cyclodextrin-based metal-organic frameworks (CD-MOFs) were successfully conducted using short-chain starch nanoparticles as seeds through the seed-mediated method. The morphology, size, crystal structure, thermal, and N2 adsorption properties of CD-MOFs prepared at different time intervals were investigated. The scanning electron microscopy results showed that the size variation from nanometer to millimeter could be controlled by crystal growth time. The CD-MOFs based on short-chain starch nanoparticle had higher crystallinity and N2 uptake, thus indicating that the method of seed-mediated was more facile and efficient than the previous approach. Resveratrol (Res) is a natural polyphenol compound that has anticancer and antimicrobial activities against several pathogens. However, this compound suffers from poor stability. trans-Res rapidly isomerizes when exposed under ultraviolet or visible light. The results showed that the stability of Res was substantially enhanced by its encapsulation in CD-MOF crystals.
Collapse
Affiliation(s)
- Chao Qiu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 214122 , P. R. China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 214122 , P. R. China
| | - Huang Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Engineering , Henan University of Animal Husbandry and Economy , Zhengzhou , Henan 450046 , P. R. China
| | - Yang Qin
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 214122 , P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , P. R. China
- Synergetic Innovation Center of Food Safety and Nutrition , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|
130
|
Popescu M, Bogdan C, Pintea A, Rugină D, Ionescu C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1985-1996. [PMID: 30013318 PMCID: PMC6037275 DOI: 10.2147/dddt.s156941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) affects >350 million people worldwide. With many complications that can reduce the patient’s quality of life, vision loss is one of the most debilitating disorders it can cause. Active research in the field of diabetes includes microvascular complications in diabetic retinopathy (DR). Disturbances in the balance of pro-angiogenesis and anti-angiogenesis factors can lead to the progression of DR. The retinal pigment epithelium (RPE) is the outermost layer of the retina, and it is essential in maintaining the visual function. The RPE produces and secretes growth factors as well as protective agents which maintain structural integrity of the retina. Small natural molecules, such as resveratrol, may influence neurotrophic factors of the retina. The pigment epithelium-derived factor (PEDF) and thrombospondin-1 (TSP-1) are secreted by RPE cells. These two proteins inhibit angiogenesis and inflammation in RPE cells. An alteration of their production contributes to various eye diseases. There is a critical balance between two important factors secreted on opposite sides of the RPE: at the basal side, vascular endothelial growth factor (VEGF; acts on the choroidal endothelium) and, on the apical side, PEDF (acts on neurons and photoreceptors). Resveratrol inhibits VEGF expression in human adult RPE cells and limits the development of proliferative vitreoretinopathy, by attenuating transforming growth factor-β2-induced wound closure and cell migration. Possible new mechanisms could include PEDF and TSP-1 expression alterations under physiological and pathological conditions. Resveratrol is currently of interest due to its capacity to influence the cell’s secretory activity. Some limitations arise from its low bioavailability. Several drug delivery systems are currently tested, promising to improve tissue concentrations. This article reviews biological pathways involved in the pathogenesis of DR that could be influenced by resveratrol. A study of these pathways could identify new potential targets for the reduction of diabetic complications.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania,
| | - Adela Pintea
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dumitriţa Rugină
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Corina Ionescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
131
|
Arasoğlu T, Derman S. Assessment of the Antigenotoxic Activity of Poly(d,l-lactic- co-glycolic acid) Nanoparticles Loaded with Caffeic Acid Phenethyl Ester Using the Ames Salmonella/Microsome Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6196-6204. [PMID: 29799193 DOI: 10.1021/acs.jafc.8b01622] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, the antigenotoxic activity of poly(d,l-lactic- co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with caffeic acid phenethyl ester (CAPE) was investigated in comparison to free CAPE using the Ames Salmonella/microsome assay. Additionally, to elucidate the impacts of the type of solvent effect on antigenotoxic activity, the following systems were tested: CAPE in water (poor solvent), ethyl alcohol (good solvent), and PLGA NPs (unknown). The effect of the NP system on solubility was investigated for the first time by assessing the antigenotoxic potential. In this study, the CAPE/PLGA NPs were synthesized using an oil-in-water (o/w) single-emulsion solvent evaporation method with an average size of 206.2 ± 1.2 nm, ζ potential of -19.8 ± 2.5 mV, encapsulation efficiency of 87.2 ± 2.5%, and drug loading of 53.3 ± 1.8%. According to the results of the antigenotoxic activity, the highest antimutagenic activity in both applied strains was found for CAPE in ethanol, and the lowest activity was detected for CAPE in water. Our study has shown that NP systems exhibit high antigenotoxic activity, which is similar to the results of CAPE dissolved in ethanol. These results have shown that NP systems increase biological activity of hydrophobic substances by increasing their solubility and that the use of PLGA instead of organic solvents in drug production may provide an increase in their medical utility.
Collapse
|
132
|
Lorenzo JM, Mousavi Khaneghah A, Gavahian M, Marszałek K, Eş I, Munekata PES, Ferreira ICFR, Barba FJ. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit Rev Food Sci Nutr 2018; 59:2879-2895. [DOI: 10.1080/10408398.2018.1477730] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland
| | - Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo E. S. Munekata
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Jardim Elite, Pirassununga, São Paulo, Brazil
| | - Isabel C. F. R. Ferreira
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolonia, Bragança, Portugal
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda.Vicent Andrés Estellés, Burjassot, València, Spain
| |
Collapse
|
133
|
Guldiken B, Gibis M, Boyacioglu D, Capanoglu E, Weiss J. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Res Int 2018; 108:491-497. [DOI: 10.1016/j.foodres.2018.03.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022]
|
134
|
Abstract
Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.
Collapse
Affiliation(s)
- Bolanle C Akinwumi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Kimberly-Ann M Bordun
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
| | - Hope D Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
135
|
Wijaya CH, Napitupulu FI, Karnady V, Indariani S. A review of the bioactivity and flavor properties of the exotic spice “andaliman” (Zanthoxylum acanthopodiumDC.). FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1438470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Christofora Hanny Wijaya
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
- Biopharmaca Research Center, Bogor Agricultural University, Bogor, Indonesia
| | | | - Vanessa Karnady
- Department of Food Science and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Susi Indariani
- Biopharmaca Research Center, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
136
|
Wang Y, Zhang X, Zhang W, Dong H, Zhang W, Mao J, Dai Y. Combination of Oxaliplatin and Vit.E-TPGS in Lipid Nanosystem for Enhanced Therapeutic Efficacy in Colon Cancers. Pharm Res 2018; 35:27. [PMID: 29368145 DOI: 10.1007/s11095-017-2297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/01/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE The main aim of present study was to prepare the oxaliplatin (OXL)-loaded D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS)-based lipid nanoparticles to enhance the anticancer effect in colon cancer cells. METHODS The nanoparticles were nanosized and spherical shaped and exhibited controlled release kinetics. Flow cytometer and confocal laser scanning microscopy (CLSM) showed a remarkable uptake of nanoparticles in cancer cells in a time-dependent manner. RESULTS The presence of TPGS remarkably increased the anticancer effect of OXL in HT-29 colon cancer cells. The IC50 value of free OXL was 4.25 μg/ml whereas IC50 value of OXL-loaded TPGS-based lipid nanoparticles (OXL/TLNP) was 1.12 μg/ml. The 3-fold lower IC50 value of OXL/TLNP indicates the superior anticancer effect of nanoparticle-based OXL. Consistently, OXL/TLNP induced a remarkable apoptosis of cancer cells. Approximately, ~52% of cells were in early apoptosis phase and ~13% of cells were in late apoptosis phase indicating the potent anticancer effect of the formulations. The findings from this study provide novel insights into the use of TPGS and lipid nanoparticle together for the better antitumor effect in colon cancers. Future studies will involve the detailed in vitro and in vivo studies on clinically relevant animals.
Collapse
Affiliation(s)
- Yanlei Wang
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Xiang Zhang
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Wenqiang Zhang
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Hao Dong
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Wenjie Zhang
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Jiajia Mao
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China
| | - Yong Dai
- Department of Colorectal and Anal Surgery, Qilu Hospital of Shandong University, Shandong, 250012, China.
| |
Collapse
|
137
|
Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm 2017; 538:40-47. [PMID: 29294324 DOI: 10.1016/j.ijpharm.2017.12.047] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 11/23/2022]
Abstract
The present investigation reports the development of PEG-modified liposomes for the delivery of naturally occurring resveratrol. PEG-modified liposomes were prepared by direct sonication of the phospholipid aqueous dispersion, in the presence of two PEG-surfactants. Small, spherical, unilamellar vesicles were produced, as demonstrated by light scattering, cryo-TEM, and SAXS. The aging of the vesicles was assessed by using the Turbiscan® technology, and their physical stability was evaluated in vitro in simulated body fluids, results showing that the key features of the liposomes were preserved. The biocompatibility of the formulations was demonstrated in an ex vivo model of hemolysis in human erythrocytes. Further, the incorporation of resveratrol in PEG-modified liposomes did not affect its intrinsic antioxidant activity, as DPPH radical was almost completely inhibited, and the vesicles were also able to ensure an optimal protection against oxidative stress in an ex vivo human erythrocytes-based model. Therefore, the proposed PEG-modified liposomes, which were prepared by a simple and reliable method, represent an interesting approach to safely deliver resveratrol, ensuring the preservation of the carrier structural integrity in the biological fluids, and the antioxidant efficacy of the polyphenol to be exploited against oxidative stress associated with cancer.
Collapse
|
138
|
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
139
|
Kumar R, Kaur K, Uppal S, Mehta SK. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. ULTRASONICS SONOCHEMISTRY 2017; 37:478-489. [PMID: 28427660 DOI: 10.1016/j.ultsonch.2017.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 05/28/2023]
Abstract
Resveratrol is a naturally occurring therapeutic molecule used for treatment of diseases caused by oxidative stress. This investigation elucidates the advantages of fabrication of size controlled resveratrol inclusion complex. This has been done by encapsulating resveratrol-cyclodextrin inclusion complex in a phospholipid stabilized nanoemulsion formulated by ultrasonication emulsification method. The prepared nanoemulsion has been compared with resveratrol encapsulated nanoemulsion system. The morphology of the resveratrol nanoemulsion and inclusion complex nanoemulsion have been observed using transmission electron microscopy with average size 20.41±3.41 and 24.48±5.70nm respectively. The nanoemulsion showed good loading and release efficiency. The radical diminishing potential of resveratrol and its inclusion complex has been compared in nanoemulsion. The effect of UV irradiation (365nm) on resveratrol in different solvent systems (ethanol, water and nanoemulsion) indicated that nanoemulsion prevents degradation of resveratrol. Efforts have also been made to explore the interactions between bovine serum albumin and resveratrol in nanoemulsion.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
140
|
Liu G, Lin Q, Huang Y, Guan G, Jiang Y. Tailoring the particle microstructures of gefitinib by supercritical CO 2 anti-solvent process. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
141
|
Encinas-Basurto D, Ibarra J, Juarez J, Burboa MG, Barbosa S, Taboada P, Troncoso-Rojas R, Valdez MA. Poly(lactic-co-glycolic acid) nanoparticles for sustained release of allyl isothiocyanate: characterization,in vitrorelease and biological activity. J Microencapsul 2017; 34:231-242. [DOI: 10.1080/02652048.2017.1323037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David Encinas-Basurto
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - Jaime Ibarra
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - Josué Juarez
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| | - María G. Burboa
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Rosales y transversal, Hermosillo, Sonora, México
| | - Silvia Barbosa
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela, España
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela, España
| | - Rosalba Troncoso-Rojas
- Coordinación de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, AC), La Victoria, Hermosillo, Sonora, México
| | - Miguel A. Valdez
- Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Rosales y Transversal, Hermosillo, Sonora, México
| |
Collapse
|
142
|
Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol 2017; 252:18-23. [PMID: 28436830 DOI: 10.1016/j.ijfoodmicro.2017.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 04/13/2017] [Indexed: 01/23/2023]
Abstract
Antimicrobial activity of thymol, carvacrol and thymol/carvacrol liposomes (TCL) was evaluated against two bacterial pools, each one consisting of four strains of Staphylococcus aureus or Salmonella enterica. TCL were prepared using thin-film hydration, showing 270.20nm average diameter (polydispersity index of 0.33) and zeta potential of +39.99mV. Minimum inhibitory concentration (MIC) of thymol, carvacrol and TCL against S. aureus pool was 0.662mg/ml, while MIC for Salmonella pool was 0.331mg/ml for thymol and carvacrol, and for TCL was 0.662mg/ml. Bacterial pools (8.0logCFU/ml), allowed in contact on stainless steel AISI 304 coupons in UHT skim milk for 15min, resulted in adhered populations of 5.6-6.1logCFU/cm2. Adhered S. aureus (±6.1logCFU/cm2) were inhibited after 1-min and 10-min treatments using thymol or carvacrol at MIC and 2.0 MIC. Reductions of 1.47-1.76logCFU/cm2 and 1.87-2.04logCFU/cm2 were obtained using 0.5 MIC of thymol and carvacrol, respectively. A 10-min contact with free (MIC and 2.0 MIC) and encapsulated (MIC) antimicrobials inhibited attached Salmonella (±6.0logCFU/cm2); however, after 1-min of contact, 2.0 MIC of thymol and carvacrol were not able to inactivate adhered Salmonella MIC of TCL inactivated S. aureus and Salmonella after 10min; however, after 1-min contact, adhered S. aureus and Salmonella populations were decreased in 1.62logCFU/cm2 and 2.01logCFU/cm2, respectively. Considering antimicrobial concentrations and contact times, thymol, carvacrol, and TCL could be employed in food-contact surfaces to prevent biofilm formation at early stages of bacterial attachment. Further investigations should be performed considering long-term antibacterial effects of TCL.
Collapse
|
143
|
Xia H, Cheng Z, Cheng Y, Xu Y. Investigating the passage of tetramethylpyrazine-loaded liposomes across blood-brain barrier models in vitro and ex vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1010-7. [DOI: 10.1016/j.msec.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/03/2023]
|
144
|
Malekar SA, Sarode AL, Bach AC, Worthen DR. The Localization of Phenolic Compounds in Liposomal Bilayers and Their Effects on Surface Characteristics and Colloidal Stability. AAPS PharmSciTech 2016; 17:1468-1476. [PMID: 26842800 DOI: 10.1208/s12249-016-0483-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023] Open
Abstract
The interactions with and effects of five chemically distinct, bioactive phenolic compounds on the lipid bilayers of model dipalmitoylphosphatidylcholine (DPPC) liposomes were investigated. Complementary analytical techniques, including differential scanning calorimetry (DSC) and phosphorus and proton nuclear magnetic resonance spectroscopy (NMR), were employed in order to determine the location of the compounds within the bilayer and to correlate location with their effects on bilayer characteristics and liposomal stability. As compared to the phenolic compounds localized in the glycerol region of the DPPC head group within the bilayer, which enhanced the colloidal stability of the liposomes, compounds located closer to the center of the bilayer reduced vesicle stability as a function of time. Molecules present in the upper region of liposomal DPPC acyl chains (C1-C10) inhibited liposomal aggregation and size increase, perhaps due to tighter packing of adjoining DPPC molecules and increased surface exposure of DPPC phosphate head groups. These data may be useful for designing liposomal systems containing hydrophobic phenols and other small molecules, selecting appropriate analytical methods for determining their location within liposomal bilayers, and predicting their effects on liposome characteristics early in the liposome formulation development process.
Collapse
|
145
|
Jeong H, Samdani KJ, Yoo DH, Lee DW, Kim NH, Yoo IS, Lee JH. Resveratrol cross-linked chitosan loaded with phospholipid for controlled release and antioxidant activity. Int J Biol Macromol 2016; 93:757-766. [DOI: 10.1016/j.ijbiomac.2016.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022]
|
146
|
Pujara N, Jambhrunkar S, Wong KY, McGuckin M, Popat A. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate. J Colloid Interface Sci 2016; 488:303-308. [PMID: 27838554 DOI: 10.1016/j.jcis.2016.11.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Abstract
The polyphenolic compound resveratrol has received significant attention due to its many pharmacological actions such as anti-cancer, anti-inflammatory, antioxidant and antimicrobial activities. However, poor solubility and stability are major impediments for resveratrol's clinical effectiveness. In this work we have encapsulated resveratrol into soy protein isolate nanoparticles using a simple rotary evaporation technique. Resveratrol-loaded nanoparticles were around 100nm in diameter and negatively charged. Nano-encapsulated resveratrol was found to be in amorphous form and showed more than two times higher solubility with significantly increased dissolution when compared to free resveratrol. Finally, an in-vitro NF-κB inhibition assay revealed that encapsulated resveratrol was stable and retained bioactivity. This new formulation of resveratrol has the potential to boost the clinical effectiveness of this drug and could be utilised for other poorly soluble hydrophobic drugs.
Collapse
Affiliation(s)
- Naisarg Pujara
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Siddharth Jambhrunkar
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Michael McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Amirali Popat
- The School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
147
|
Summerlin N, Qu Z, Pujara N, Sheng Y, Jambhrunkar S, McGuckin M, Popat A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces 2016; 144:1-7. [DOI: 10.1016/j.colsurfb.2016.03.076] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/16/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
148
|
Sun JEP, Stewart B, Litan A, Lee SJ, Schneider JP, Langhans SA, Pochan DJ. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel. Biomater Sci 2016; 4:839-48. [PMID: 26906463 PMCID: PMC7802599 DOI: 10.1039/c5bm00538h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MAX8 β-hairpin peptide hydrogel is a solid, preformed gel that can be syringe injected due to shear-thinning properties and can recover solid gel properties immediately after injection. This behavior makes the hydrogel an excellent candidate as a local drug delivery vehicle. In this study, vincristine, a hydrophobic and commonly used chemotherapeutic, is encapsulated within MAX8 hydrogel and shown to release constantly over the course of one month. Vincristine was observed to be cytotoxic in vitro at picomolar to nanomolar concentrations. The amounts of drug released from the hydrogels over the entire time-course were in this concentration range. After encapsulation, release of vincristine from the hydrogel was observed for four weeks. Further characterization showed the vincristine released during the 28 days remained biologically active, well beyond its half-life in bulk aqueous solution. This study shows that vincristine-loaded MAX8 hydrogels are excellent candidates as drug delivery vehicles, through sustained, low, local and effective release of vincristine to a specific target. Oscillatory rheology was employed to show that the shear-thinning and re-healing, injectable-solid properties that make MAX8 a desirable drug delivery vehicle are unaffected by vincristine encapsulation. Rheology measurements also were used to monitor hydrogel nanostructure before and after drug encapsulation.
Collapse
Affiliation(s)
- Jessie E P Sun
- Department of Materials Science & Engineering, University of Delaware, Newark, DE 19176, USA.
| | | | | | | | | | | | | |
Collapse
|
149
|
Preparation and characterization of Ganoderma lucidum spores-loaded alginate microspheres by electrospraying. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:835-42. [DOI: 10.1016/j.msec.2016.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
|
150
|
Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 2016; 210:402-14. [PMID: 27211664 DOI: 10.1016/j.foodchem.2016.04.111] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/27/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Thymol (2-isopropyl-5-methylphenol) is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family (Thymus, Ocimum, Origanum, and Monarda genera), and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae, and Apiaceae families. These essential oils are used in the food industry for their flavouring and preservative properties, in commercial mosquito repellent formulations for their natural repellent effect, in aromatherapy, and in traditional medicine for the treatment of headaches, coughs, and diarrhea. Many different activities of thymol such as antioxidant, anti-inflammatory, local anaesthetic, antinociceptive, cicatrizing, antiseptic, and especially antibacterial and antifungal properties have been shown. This review aims to critically evaluate the available literature regarding the antibacterial and antifungal effects of thymol.
Collapse
Affiliation(s)
- Anna Marchese
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Ramona Barbieri
- Microbiology Unit, IRCCS-San Martino-IST and DISC, University of Genoa, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|