101
|
Kitamoto S, Kamada N. Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms. Periodontol 2000 2022; 89:142-153. [PMID: 35244953 PMCID: PMC9018512 DOI: 10.1111/prd.12424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humans have coevolved with the trillions of resident microbes that populate every nook and cranny of the body. At each site, the resident microbiota creates a unique ecosystem specialized to its environment, benefiting the development and maintenance of human physiology through harmonious symbiotic relationships with the host. However, when the resident microbiota is perturbed, significant complications may arise with disastrous consequences that affect the local and distant ecosystems. In this context, periodontal disease results in inflammation beyond the oral cavity, such as in the gastrointestinal tract. Accumulating evidence indicates that potentially harmful oral resident bacteria (referred to as pathobionts) and pathogenic immune cells in the oral mucosa can migrate to the lower gastrointestinal tract and contribute to intestinal inflammation. We will review the most recent advances concerning the periodontal connection with intestinal inflammation from microbiological and immunological perspectives. Potential therapeutic approaches that target the connection between the mouth and the gut to treat gastrointestinal diseases, such as inflammatory bowel disease, will be examined. Deciphering the complex interplay between microbes and immunity along the mouth-gut axis will provide a better understanding of the pathogenesis of both oral and gut pathologies and present therapeutic opportunities.
Collapse
Affiliation(s)
- Sho Kitamoto
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nobuhiko Kamada
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
102
|
Wang X, Mi Q, Yang J, Guan Y, Zeng W, Xiang H, Liu X, Yang W, Yang G, Li X, Cui Y, Gao Q. Effect of electronic cigarette and tobacco smoking on the human saliva microbial community. Braz J Microbiol 2022; 53:991-1000. [PMID: 35229279 PMCID: PMC9151971 DOI: 10.1007/s42770-022-00721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence demonstrated the oral microbial community profile characteristics affected by conventional cigarettes smoking, but few studies focus on oral microbiome in response to electronic cigarettes (E-cigarettes). This study aimed to investigate the effect of E-cigarettes on the oral microbiome and to describe the difference of oral community profiles between E-cigarette smokers and tobacco smokers. 16S rRNA V4 gene sequencing was performed to investigate the oral microbial profiles of 5 E-cigarette smokers, 14 tobacco smokers, 8 quitting tobacco smokers, and 6 nonsmokers. The Chao1, ACE, and Shannon diversity indexes increased significantly in saliva samples collected from E-cigarette smokers and tobacco smokers compared to the non-smokers, and no significant difference was found in alpha diversity between E-cigarette smokers and tobacco smokers. The main phyla Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria and major genera Neisseria, Streptococcus, Prevotellaceae, Fusobacterium, and Porphyromonas dominated in the smoking groups, while Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Fusobacteria became the dominant phyla along with the genera Corynebacterium, Neisseria, Streptococcus, Actinomyces, and Porphyromonas in the nonsmokers. The differences in the phylum Actinobacteria and genus Corynebacterium contributed to various functional differences between smokers and nonsmokers. The difference on oral microbial and composition between E-cigarettes and common tobacco were associated with increased Prevotellaceae and decreased Neisseria. Additionally, smoking cessation could lead to re-establishment of the oral microbiome to that of nonsmokers. Our data demonstrate that E-cigarette smoking had different effects on the structure and composition of the oral microbial community compared to tobacco smoking. However, the short- and long-term impact of E-cigarette smoking on microbiome composition and function needs further exploration.
Collapse
Affiliation(s)
- Xue Wang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
- School of Pharmaceutical Science &Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168 West Chunrong Road, Kunming, 650504, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Ji Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Ying Guan
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Xin Liu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Guangyu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China
| | - Yinshan Cui
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., No. 41 Keyi Road, Kunming, 650106, China.
| |
Collapse
|
103
|
Chen H, Xie H, Shao D, Chen L, Chen S, Wang L, Han X. Oral Microbiota, a Potential Determinant for the Treatment Efficacy of Gastric Helicobacter pylori Eradication in Humans. Pol J Microbiol 2022; 71:227-239. [PMID: 35676833 PMCID: PMC9252142 DOI: 10.33073/pjm-2022-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
The oral cavity serves as another reservoir for gastric Helicobacter pylori and may contribute to the failure of gastric H. pylori eradication therapy. However, changes to the oral microbial composition after gastric H. pylori eradication therapy has not yet been identified. This study aims to dissect whether the oral microbiota is involved and which bacterium mediates the clinic failure in H. pylori eradication. In the present study, the oral microorganisms from patients who had received the gastric H. pylori eradication treatment were analyzed by a high-throughput 16S rRNA deep sequencing. We found that the β diversity and composition of oral microbiota were remarkably changed in the patients who had experienced successful gastric H. pylori eradication treatment (SE group) compared to the failure group (FE group). Significantly enriched families, including Prevotellaceae, Streptococcaceae, Caulobacteraceae, and Lactobacillaceae, were detected in the SE group. In contrast, the bacterial families, such as Weeksellaceae, Neisseriaceae, Peptostreptococcaceae, Spirochaetaceae, and Veillonellaceae, were abundantly expressed in the FE group. Five operational taxonomic units (OTUs) were positively correlated with DOB values, while two OTUs exhibited negative trends. These different enriched OTUs were extensively involved in the 20 metabolic pathways. These results suggest that a balanced environment in the oral microbiota contributes to H. pylori eradication and metabolic homeostasis in humans. Our data demonstrated that the changes in oral microbiota might contribute to the therapeutic effects of antibiotic therapy. Therefore, a different therapy on the detrimental oral microbiota will increase the therapeutic efficacy of antibiotics on H. pylori infection. ![]()
Collapse
Affiliation(s)
- Huixia Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Hui Xie
- Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Dong Shao
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Liju Chen
- Department of Orthodontics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| |
Collapse
|
104
|
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 2022; 8:38. [PMID: 35585074 PMCID: PMC9117221 DOI: 10.1038/s41522-022-00279-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Collapse
|
105
|
Graphene-Based Functional Hybrid Membranes for Antimicrobial Applications: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Graphene-based nanomaterials have shown wide applications in antimicrobial fields due to their accelerated rate of pathogen resistance and good antimicrobial properties. To apply graphene materials in the antimicrobial test, the graphene materials are usually fabricated as two-dimensional (2D) membranes. In addition, to improve the antimicrobial efficiency, graphene membranes are modified with various functional nanomaterials, such as nanoparticles, biomolecules, polymers, etc. In this review, we present recent advances in the fabrication, functional tailoring, and antimicrobial applications of graphene-based membranes. To implement this goal, we first introduce the synthesis of graphene materials and then the fabrication of 2D graphene-based membranes with potential techniques such as chemical vapor deposition, vacuum filtration, spin-coating, casting, and layer-by-layer self-assembly. Then, we present the functional tailoring of graphene membranes by adding metal and metal oxide nanoparticles, polymers, biopolymers, metal–organic frameworks, etc., with graphene. Finally, we focus on the antimicrobial mechanisms of graphene membranes, and demonstrate typical studies on the use of graphene membranes for antibacterial, antiviral, and antifungal applications. It is expected that this work will help readers to understand the antimicrobial mechanism of various graphene-based membranes and, further, to inspire the design and fabrication of functional graphene membranes/films for biomedical applications.
Collapse
|
106
|
No-ozone cold plasma can kill oral pathogenic microbes in H 2O 2-dependent and independent manner. Sci Rep 2022; 12:7597. [PMID: 35534525 PMCID: PMC9085805 DOI: 10.1038/s41598-022-11665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/25/2022] [Indexed: 01/05/2023] Open
Abstract
To apply the sterilisation effect of low-temperature plasma to the oral cavity, the issue of ozone from plasma must be addressed. In this study, a new technology for generating cold plasma with almost no ozone is developed and is named Nozone (no-ozone) Cold Plasma (NCP) technology. The antimicrobial efficacy of the NCP against four oral pathogens is tested, and its specific mechanism is elucidated. The treatment of NCP on oral pathogenic microbes on a solid medium generated a growth inhibition zone. When NCP is applied to oral pathogens in a liquid medium, the growth of microbes decreased by more than 105 colony forming units, and the bactericidal effect of NCP remained after the installation of dental tips. The bactericidal effect of NCP in the liquid medium is due to the increase in hydrogen peroxide levels in the medium. However, the bactericidal effect of NCP in the solid medium depends on the charged elements of the NCP. Furthermore, the surface bactericidal efficiency of the dental-tip-installed NCP is proportional to the pore size of the tips and inversely proportional to the length of the tips. Overall, we expect this NCP device to be widely used in dentistry in the near future.
Collapse
|
107
|
Di Stefano M, Polizzi A, Santonocito S, Romano A, Lombardi T, Isola G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23095142. [PMID: 35563531 PMCID: PMC9103139 DOI: 10.3390/ijms23095142] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The skin, oral cavity, digestive and reproductive tracts of the human body harbor symbiotic and commensal microorganisms living harmoniously with the host. The oral cavity houses one of the most heterogeneous microbial communities found in the human organism, ranking second in terms of species diversity and complexity only to the gastrointestinal microbiota and including bacteria, archaea, fungi, and viruses. The accumulation of microbial plaque in the oral cavity may lead, in susceptible individuals, to a complex host-mediated inflammatory and immune response representing the primary etiological factor of periodontal damage that occurs in periodontitis. Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people worldwide and manifesting clinically through the detection of gingival inflammation, clinical attachment loss (CAL), radiographic assessed resorption of alveolar bone, periodontal pockets, gingival bleeding upon probing, teeth mobility and their potential loss in advanced stages. This review will evaluate the changes characterizing the oral microbiota in healthy periodontal tissues and those affected by periodontal disease through the evidence present in the literature. An important focus will be placed on the immediate and future impact of these changes on the modulation of the dysbiotic oral microbiome and clinical management of periodontal disease.
Collapse
Affiliation(s)
- Mattia Di Stefano
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
- Correspondence: (A.P.); (S.S.); Tel.: +39-095-3782638 (A.P. & S.S.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
- Correspondence: (A.P.); (S.S.); Tel.: +39-095-3782638 (A.P. & S.S.)
| | - Alessandra Romano
- Department of General Surgery and Surgical-Medical Specialties, Unit of Hematology, University of Catania, 95124 Catania, Italy;
| | - Teresa Lombardi
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (M.D.S.); (G.I.)
| |
Collapse
|
108
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
109
|
Seidel CL, Gerlach RG, Weider M, Wölfel T, Schwarz V, Ströbel A, Schmetzer H, Bogdan C, Gölz L. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB Trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial. BMC Oral Health 2022; 22:148. [PMID: 35477563 PMCID: PMC9044659 DOI: 10.1186/s12903-022-02180-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Orthodontic treatment with fixed appliances is often necessary to correct malocclusions in adolescence or adulthood. However, oral hygiene is complicated by appliances, and prior studies indicate that they may trigger oral inflammation and dysbiosis of the oral microbiota, especially during the first 3 months after insertion, and, thus, may present a risk for inflammatory oral diseases. In recent periodontal therapeutic studies, probiotics have been applied to improve clinical parameters and reduce local inflammation. However, limited knowledge exists concerning the effects of probiotics in orthodontics. Therefore, the aim of our study is to evaluate the impact of probiotics during orthodontic treatment. METHODS This study is a monocentric, randomized, double blind, controlled clinical study to investigate the effectiveness of daily adjuvant use of Limosilactobacillus reuteri (Prodentis®-lozenges, DSM 17938, ATCC PTA 5289) versus control lozenges during the first three months of orthodontic treatment with fixed appliances. Following power analysis, a total of 34 adolescent patients (age 12-17) and 34 adult patients (18 years and older) undergoing orthodontic treatment at the University Hospital Erlangen will be assigned into 2 parallel groups using a randomization plan for each age group. The primary outcome measure is the change of the gingival index after 4 weeks. Secondary outcomes include the probing pocket depth, the modified plaque index, the composition of the oral microbiota, the local cytokine expression and-only for adults-serum cytokine levels and the frequencies of cells of the innate and adaptive immune system in peripheral blood. DISCUSSION Preventive strategies in everyday orthodontic practice include oral hygiene instructions and regular dental cleaning. Innovative methods, like adjuvant use of oral probiotics, are missing. The aim of this study is to analyse, whether probiotics can improve clinical parameters, reduce inflammation and prevent dysbiosis of the oral microbiota during orthodontic treatment. If successful, this study will provide the basis for a new strategy of prophylaxis of oral dysbiosis-related diseases during treatment with fixed appliances. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov in two parts under the number NCT04598633 (Adolescents, registration date 10/22/2020), and NCT04606186 (Adults, registration date 10/28/2020).
Collapse
Affiliation(s)
- Corinna L Seidel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany.
| | - Roman G Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Matthias Weider
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Theresa Wölfel
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Vincent Schwarz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| | - Armin Ströbel
- Center for Clinical Studies (CCS), Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Helga Schmetzer
- Med III, University Hospital of Munich, Workgroup: Immune Modulation, Marchioninistraße 15, 81377, Munich, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Glückstr. 11, 91054, Erlangen, Germany
| |
Collapse
|
110
|
Liu J, Zong X, Vogtmann E, Cao C, James AS, Chan AT, Rimm EB, Hayes RB, Colditz GA, Michaud DS, Joshipura KJ, Abnet CC, Cao Y. Tooth count, untreated caries and mortality in US adults: a population-based cohort study. Int J Epidemiol 2022; 51:1291-1303. [PMID: 35388877 PMCID: PMC9365626 DOI: 10.1093/ije/dyac072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The link between oral diseases and mortality remains under-explored. We aimed to evaluate the associations between tooth count, untreated caries and risk of all-cause and cause-specific mortality. METHODS Data on 24 029 adults from the National Health and Nutrition Examination Survey 1988-94/1999-2010, with mortality linkage to the National Death Index to 31 December 2015, were analysed. Baseline total number of permanent teeth and any untreated caries were assessed by trained dental professionals. RESULTS During up to 27 years of follow-up, 5270 deaths occurred. Fewer permanent teeth were associated with higher all-cause mortality, including heart disease and cancer mortality (all P <0.05 for trend) but not cerebrovascular disease mortality. For every 10 teeth missing, the multivariable-adjusted hazard ratios (HRs) were 1.13 (95% CI: 1.08 to 1.18) for all-cause, 1.16 (95% CI: 1.05, 1.29) for heart disease and 1.19 (95% CI: 1.09, 1.29) for cancer mortality. Untreated caries was associated with increased all-cause (HR: 1.26, 95% CI: 1.15, 1.39) and heart disease mortality (HR: 1.48, 95% CI: 1.17, 1.88) but not cerebrovascular disease/cancer mortality, after adjusting for tooth count, periodontitis and sociodemographic/lifestyle factors. Compared with those without untreated caries and with 25-28 teeth, individuals with untreated caries and 1-16 teeth had a 53% increased risk of all-cause mortality (HR: 1.53, 95% CI: 1.27, 1.85) and 96 % increased risk of heart disease mortality (HR: 1.96, 95% CI: 1.28, 3.01). CONCLUSIONS In nationally representative cohorts, fewer permanent teeth and untreated caries were associated with all-cause and heart disease mortality. Fewer teeth were also associated with higher cancer mortality.
Collapse
Affiliation(s)
- Jie Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyu Zong
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chao Cao
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Aimee S James
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, USA
| | - Richard B Hayes
- Division of Epidemiology, New York University School of Medicine, New York, NY, USA
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Kaumudi J Joshipura
- Center for Clinical Research and Health Promotion, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.,Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
111
|
Park SH, Shin NR, Yang M, Bose S, Kwon O, Nam DH, Lee JH, Song EJ, Nam YD, Kim H. A Clinical Study on the Relationship Among Insomnia, Tongue Diagnosis, and Oral Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:773-797. [PMID: 35380093 DOI: 10.1142/s0192415x2250032x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Currently, there is a lack of adequate methods to assess insomnia objectively. This study addresses the usefulness of tongue features and oral microbial profile as a potential diagnostic biomarker of insomnia. One hundred insomniac patients and 20 healthy control subjects were selected. Their demographic and clinical characteristics, as well as the tongue diagnostic indices and oral microbial profile, were examined. Compared to the control group, insomniac patients showed a higher abnormal low-frequency/high-frequency (LF/HF) ratio. In tongue diagnosis, the indices related to lightness of tongue body and tongue coating were higher in the insomniac group vs. the control group. Furthermore, linear discriminant analysis (LDA) of oral microbial population revealed that the relative abundances of Clostridia, Veillonella, Bacillus and Lachnospiraceae were significantly higher in the insomniac patients than the control group. Additionally, the tongue features of the insomniac group exhibited that the non-coating group had a poor sleep condition compared to the thick-coating group, although the difference was insignificant. On the other hand, the oral microbial communities of the insomniac patients revealed greater alpha and beta diversities in the non-coating group vs. the thick-coating group. The alpha and beta diversities were higher in orotype1 than orotype2. Collectively, this study highlighted that the lightness of tongue body and tongue coating as well as oral microbial profiles of SR1, Actinobacteria, Clostridia and Lachnospiraceae_unclassified could be considered potential biomarkers of insomnia.
Collapse
Affiliation(s)
- Seo-Hyun Park
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Goyang, Republic of Korea
| | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Goyang, Republic of Korea
| | - Meng Yang
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Goyang, Republic of Korea
| | - Shambhunath Bose
- Department of Life Science, Sri Sathya Sai University for Human Excellence Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka 585313, India
| | - Ojin Kwon
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Republic of Korea
| | - Dong-Hyun Nam
- Department of Biofunctional Medicine and Diagnosis, College of Korean Medicine Sangji University, Wonju 26382, Republic of Korea
| | - Jun-Hwan Lee
- Division of Clinical Medicine, Korea Institute of Oriental Medicine, Republic of Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Goyang, Republic of Korea
| |
Collapse
|
112
|
Liu Z, Zhang T, Wu K, Li Z, Chen X, Jiang S, Du L, Lu S, Lin C, Wu J, Wang X. Metagenomic Analysis Reveals A Possible Association Between Respiratory Infection and Periodontitis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:260-273. [PMID: 34252627 PMCID: PMC9684085 DOI: 10.1016/j.gpb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Periodontitis is an inflammatory disease that is characterized by progressive destruction of the periodontium and causes tooth loss in adults. Periodontitis is known to be associated with dysbiosis of the oral microflora, which is often linked to various diseases. However, the complexity of plaque microbial communities of periodontitis, antibiotic resistance, and enhanced virulence make this disease difficult to treat. In this study, using metagenomic shotgun sequencing, we investigated the etiology, antibiotic resistance genes (ARGs), and virulence genes (VirGs) of periodontitis. We revealed a significant shift in the composition of oral microbiota as well as several functional pathways that were represented significantly more abundantly in periodontitis patients than in controls. In addition, we observed several positively selected ARGs and VirGs with the Ka/Ks ratio > 1 by analyzing our data and a previous periodontitis dataset, indicating that ARGs and VirGs in oral microbiota may be subjected to positive selection. Moreover, 5 of 12 positively selected ARGs and VirGs in periodontitis patients were found in the genomes of respiratory tract pathogens. Of note, 91.8% of the background VirGs with at least one non-synonymous single-nucleotide polymorphism for natural selection were also from respiratory tract pathogens. These observations suggest a potential association between periodontitis and respiratory infection at the gene level. Our study enriches the knowledge of pathogens and functional pathways as well as the positive selection of antibiotic resistance and pathogen virulence in periodontitis patients, and provides evidence at the gene level for an association between periodontitis and respiratory infection.
Collapse
Affiliation(s)
- Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Keke Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China
| | - Chongxiang Lin
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China,Corresponding authors.
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China,Corresponding authors.
| |
Collapse
|
113
|
Kaan AM, Brandt BW, Buijs MJ, Crielaard W, Keijser BJ, Zaura E. Comparability of microbiota of swabbed and spit saliva. Eur J Oral Sci 2022; 130:e12858. [PMID: 35218587 PMCID: PMC9305955 DOI: 10.1111/eos.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
In general, saliva is used for microbiota analysis in longitudinal studies, and several collection methods are being used. Using a robust sample collection procedure is important, as it may influence salivary composition. This study explored the comparability of the microbiota of swabbed and spit saliva. Twenty‐two females participated in this cross‐sectional study. The bacterial composition of the three saliva samples (swab collected by the participant (SW‐P), swab collected by the researcher (SW‐R), and spit (SP) was assessed by 16S rRNA gene amplicon sequencing. The bacterial composition of the swabbed and the spit saliva was significantly different irrespective of the operator, and Shannon diversity was significantly higher in spit saliva than in SW‐P and SW‐R. The salivary microbiota of spit and swabbed adult saliva differs significantly. Research on microbial composition therefore requires collection of similar saliva sample types in all study participants.
Collapse
Affiliation(s)
- Amke Marije Kaan
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Mark J Buijs
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Wim Crielaard
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| | - Bart Jf Keijser
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands.,Netherlands Organisation for applied scientific research (TNO), Microbiology and Systems Biology Zeist, The Netherlands
| | - Egija Zaura
- Academic Centre for Dentistry Amsterdam, Preventive Dentistry, Amsterdam, The Netherlands
| |
Collapse
|
114
|
Shin SJ, Moon SH, Kim HJ, Oh SH, Bae JM. Oral Microbiome Using Colocasia antiquorum var. esculenta Extract Varnish in a Mouse Model with Oral Gavage of P. gingivalis ATCC 53978. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040506. [PMID: 35454345 PMCID: PMC9029942 DOI: 10.3390/medicina58040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective: There is increasing interest in preventing periodontitis using natural products. The purpose of this study was to investigate the effect of Colocasia antiquorum var. esculenta (CA) varnish on the oral microbiome and alveolar bone loss in a mouse periodontitis model. Materials and Methods: Antibacterial activity against Porphyromonas gingivalis (P. gingivalis) ATCC 53978 and cell cytotoxicity using CCK-8 on L929 cells were measured. Balb/c mice were assigned into five groups (negative control, positive control, CA in drinking water, varnish, and CA varnish). P. gingivalis was administered to the mice by oral gavage three times. After sacrifice, the oral microbiome and the levels of the inflammatory cytokine IL-1β and matrix metalloproteinase-9 were analyzed. Alveolar bone loss was measured using micro-computed tomography. Results: CA extract showed an antibacterial effect against P. gingivalis (p < 0.05) and showed no cytotoxicity at that concentration (p > 0.05). Although alpha diversity of the oral microbiome did not statistically differ between the groups (p > 0.05), the relative abundance of dominant bacteria tended to be different between the groups. The inflammatory cytokine IL-1β was reduced in the CA varnish group (p < 0.05), and no difference was observed in MMP-9 expression and alveolar bone loss (p > 0.05). Conclusions: CA varnish did not affect the overall microflora and exhibited an anti-inflammatory effect, suggesting that it is possibility a suitable candidate for improving periodontitis.
Collapse
Affiliation(s)
- Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
| | - Seong-Hee Moon
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Department of Oral Anatomy, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Seung-Han Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|
115
|
Schweikl H, Weissenberger S, Gallorini M, Bolay C, Waha C, Hiller KA, Buchalla W. Influence of HEMA on LPS- and LTA-stimulated IL-6 release from human dental pulp cells. Dent Mater 2022; 38:886-897. [PMID: 35341601 DOI: 10.1016/j.dental.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Dental pulp cells interact with immunogenic components such as LPS (lipopolysaccharide) or LTA (lipoteichoic acid) released from microorganisms in carious lesions. In the present investigation, the formation of the pro-inflammatory cytokines TNFα and IL-6 in LPS- or LTA-stimulated cells from the dental pulp interface and pulp fibroblasts was analyzed in the presence of the resin monomer 2-hydroxyethyl methacrylate (HEMA) under varying cellular redox conditions. METHOD Human pulp fibroblasts (HPC) or cells from the dental pulp interface expressing an odontoblast phenotype (hOD-1) were exposed to LTA, LPS or HEMA for 1 h or 24 h. Redox homeostasis was modified by the prooxidant BSO (L-buthionine sulfoximine) or the antioxidant NAC (N-acetyl cysteine). Formation of TNFα or IL-6 was analyzed by ELISA, and cell survival was determined by a crystal violet assay. Statistical analyses were performed using the Mann-Whitney-U-test. RESULTS Secretion of TNFα was not detected in LPS- or LTA-stimulated HPC or hOD-1, and IL-6 was not found after a short exposure (1 h). After a 24 h exposure, LPS induced a 3-fold increase in IL-6 formation in HPC, while LTA stimulated IL-6 release about 20-fold. Likewise, LTA was more effective than LPS in hOD-1 stimulating IL-6 levels about 50-fold. HEMA inhibited the LPS- and LTA-induced IL-6 release, and this effect was enhanced by BSO but counteracted by NAC in both cell types. IL-6 release was independent of cell survival rates. CONCLUSIONS The protective immune response in odontoblasts and pulp fibroblasts is impaired by monomers such as HEMA through the disturbance of the redox homeostasis.
Collapse
Affiliation(s)
- Helmut Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany.
| | - Sarah Weissenberger
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Marialucia Gallorini
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany; Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Carola Bolay
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Claudia Waha
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, D-93042 Regensburg, Germany
| |
Collapse
|
116
|
Sengupta A, Uppoor A, Joshi MB. Metabolomics: Paving the path for personalized periodontics - A literature review. J Indian Soc Periodontol 2022; 26:98-103. [PMID: 35321302 PMCID: PMC8936015 DOI: 10.4103/jisp.jisp_267_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
The pathogenesis of periodontal disease is governed by a multitude of factors ranging from the macroscopic to the microscopic scale. Among the factors that constitute the etiological agents of the disease, a major element is the role played by the body's metabolome-i.e., the complete collection of microscopic molecules and metabolic products of cells and tissues in the body. Being of a regulatory nature, the interplay of these molecules exerts a considerable effect on the development as well as the progression of disease, which differs in each individual based on their phenotype. Exploring this connection and application into the field of diagnostic as well as prediction of risk for periodontitis will ultimately result in a personalized standard of care for patients in the future.
Collapse
Affiliation(s)
- Antarleena Sengupta
- Department of Periodontology, Manipal College of Dental Sciences, Mangalore, Karnataka, India
| | - Ashita Uppoor
- Department of Periodontology, Manipal College of Dental Sciences, Mangalore, Karnataka, India
| | - Manjunath Bandu Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
117
|
Fakhruddin KS, Samaranayake LP, Hamoudi RA, Ngo HC, Egusa H. Diversity of site-specific microbes of occlusal and proximal lesions in severe- early childhood caries (S-ECC). J Oral Microbiol 2022; 14:2037832. [PMID: 35173909 PMCID: PMC8843124 DOI: 10.1080/20002297.2022.2037832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe-early childhood caries (S-ECC) a global problem of significant concern, commonly manifest on the occlusal, and proximal surfaces of affected teeth. Despite the major ecological differences between these two niches the compositional differences, if any, in the microbiota of such lesions is unknown. METHODS Deep-dentine caries samples from asymptomatic primary molars of children with S-ECC (n 19) belonging to caries-code 5/6, (ICDAS classification) were evaluated. Employing two primer pools, we amplified and compared the bacterial 16S rRNA gene sequences of the seven hypervariable regions (V2-V4 and V6-V9) using NGS-based assay. RESULTS Bray-Curtisevaluation indicated that occlusal lesions (OL) had a more homogeneous community than the proximal lesions (PL) with significant compositional differences at the species level (p = 0.01; R- 0.513). Together, the occlusal and proximal niches harbored 263 species, of which 202 (76.8%) species were common to both , while 49 (18.6%) and 12 (4.6%) disparate species were exclusively isolated from the proximal and occlusal niches, respectively. The most commonl genera at both niches included Streptococcus, Prevotella, and Lactobacillus. S. mutans was predominant in PL (p ≤ 0.05), and Atopobium parvulum (p = 0.01) was predominant in OL. CONCLUSIONS Distinct differences exist between the caries microbiota of occlusal and proximal caries in S-ECC.
Collapse
Affiliation(s)
- Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| | | | - Rifat Akram Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hien Chi Ngo
- Uwa Dental School, The University of Western Australia, Perth, Australia
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| |
Collapse
|
118
|
Kortekangas E, Fan YM, Chaima D, Lehto KM, Malamba-Banda C, Matchado A, Chingwanda C, Liu Z, Ashorn U, Cheung YB, Dewey KG, Maleta K, Ashorn P. Associations between Gut Microbiota and Intestinal Inflammation, Permeability and Damage in Young Malawian Children. J Trop Pediatr 2022; 68:6527323. [PMID: 35149871 PMCID: PMC8846364 DOI: 10.1093/tropej/fmac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is common in low- and middle-income countries and associated with childhood undernutrition. The composition of gut microbiota has been implicated in the pathogenesis of EED. Our aim was to assess the associations between gut microbiota and EED biomarkers in rural Malawian children. We hypothesized that there would be an inverse association between microbiota maturity and diversity and fecal concentrations of EED biomarkers. METHODS We used data from fecal samples collected at 6, 18 and 30 months from 611 children who were followed up during a nutrition intervention trial. The primary time point for analysis was 18 months. Microbiota data were obtained through 16S rRNA sequencing and variables included microbiota maturity and diversity, phylogenetic dissimilarity and relative abundances of individual taxa. EED biomarkers included calprotectin (marker of inflammation), alpha-1 antitrypsin (intestinal permeability) and REG1B (intestinal damage). RESULTS There was an inverse association between microbiota maturity and diversity and fecal concentrations of all 3 EED biomarkers at 18 months (p≤0.001). The results were similar at 30 months, while at 6 months inverse associations were found only with calprotectin and alpha-1 antitrypsin concentrations. At 18 months, EED biomarkers were not associated with phylogenetic dissimilarity, but at 6 and 30 months several associations were observed. Individual taxa predicting EED biomarker concentrations at 18 months included several Bifidobacterium and Enterobacteriaceae taxa as well as potentially displaced oral taxa. CONCLUSIONS Our findings support the hypothesis of an inverse association between microbiota maturity and diversity and EED in rural Malawian children.
Collapse
Affiliation(s)
- Emma Kortekangas
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland,Correspondence: Emma Kortekangas, Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Global Health, Tampere University, Arvo Ylpön katu 34, Arvo building, Tampere 33014, Finland. Tel: +358-3-355-111. Fax +358-3-213-4473. E-mail <>
| | - Yue-Mei Fan
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - David Chaima
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kirsi-Maarit Lehto
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Chikondi Malamba-Banda
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Andrew Matchado
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi,Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Chilungamo Chingwanda
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Zhifei Liu
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Ulla Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yin Bun Cheung
- Program in Health Services & Systems Research and Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kathryn G Dewey
- Department of Nutrition and Institute for Global Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Kenneth Maleta
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Per Ashorn
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland,Department of Pediatrics, Tampere University Hospital, Tampere 33520, Finland
| |
Collapse
|
119
|
In Vitro Evaluation of Biological Activities of Canes and Pomace Extracts from Several Varieties of Vitis vinifera L. for Inclusion in Freeze-Drying Mouthwashes. Antioxidants (Basel) 2022; 11:antiox11020218. [PMID: 35204101 PMCID: PMC8868111 DOI: 10.3390/antiox11020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, the biological activities of four extracts from Vitis vinifera by-products: two pomace extracts, white (WPE) and red (RPE), a canes extract (CE), and their combination (CoE), were evaluated, to be included in freeze-drying mouthwashes formulations. The cytocompatibility and anticancerous potential of the four extracts were tested on three cancerous cell lines, as well as the cytoprotective activity against nicotine-induced cytotoxicity and the antioxidant potential determined on a human gingival fibroblasts (HGF) cell line. Additionally, the anti-inflammatory activity and the antimicrobial activity against several microorganisms from the oral microbiome were tested. Freeze-dried mouthwashes with CoE were prepared and characterized, both as lyophilizates and after reconstitution. The four tested extracts showed the highest cytotoxicity on MDA-kb2 cell line. The antioxidant potential was demonstrated for WPE, RPE, CE, and CoE, both in non-stimulated and H2O2 stimulated conditions. The four extracts reduced the levels of proinflammatory cytokines (IL-6, IL-8, and IL-1β) in a dose-dependent manner, confirming their anti-inflammatory activity. The antimicrobial activity of tested extracts was shown against pathogenic bacteria from the oral microbiome. Mouthwashes of CoE with poloxamer-407, xylitol, and different ratios of mannitol were prepared by freeze-drying leading to porous formulations with interesting mechanical properties and reconstitution times.
Collapse
|
120
|
Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. FRONTIERS IN ORAL HEALTH 2022; 2:774115. [PMID: 35048073 PMCID: PMC8757872 DOI: 10.3389/froh.2021.774115] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
The genus Veillonella comprises 16 characterized species, among which eight are commonly found in the human oral cavity. The high abundance of Veillonella species in the microbiome of both supra- and sub-gingival biofilms, and their interdependent relationship with a multitude of other bacterial species, suggest veillonellae to play an important role in oral biofilm ecology. Development of oral biofilms relies on an incremental coaggregation process between early, bridging and later bacterial colonizers, ultimately forming multispecies communities. As early colonizer and bridging species, veillonellae are critical in guiding the development of multispecies communities in the human oral microenvironment. Their ability to establish mutualistic relationships with other members of the oral microbiome has emerged as a crucial factor that may contribute to health equilibrium. Here, we review the general characteristics, taxonomy, physiology, genomic and genetics of veillonellae, as well as their bridging role in the development of oral biofilms. We further discuss the role of Veillonella spp. as potential “accessory pathogens” in the human oral cavity, capable of supporting colonization by other, more pathogenic species. The relationship between Veillonella spp. and dental caries, periodontitis, and peri-implantitis is also recapitulated in this review. We finally highlight areas of future research required to better understand the intergeneric signaling employed by veillonellae during their bridging activities and interspecies mutualism. With the recent discoveries of large species and strain-specific variation within the genus in biological and virulence characteristics, the study of Veillonella as an example of highly adaptive microorganisms that indirectly participates in dysbiosis holds great promise for broadening our understanding of polymicrobial disease pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios A Kotsakis
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
121
|
Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:672887. [PMID: 35048015 PMCID: PMC8757850 DOI: 10.3389/froh.2021.672887] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is the habitat of several hundreds of microbial taxa that have evolved to coexist in multispecies communities in this unique ecosystem. By contrast, the internal tissue of the tooth, i.e., the dental pulp, is a physiologically sterile connective tissue in which any microbial invasion is a pathological sign. It results in inflammation of the pulp tissue and eventually to pulp death and spread of inflammation/infection to the periradicular tissues. Over the past few decades, substantial emphasis has been placed on understanding the pathobiology of root canal infections, including the microbial composition, biofilm biology and host responses to infections. To develop clinically effective treatment regimens as well as preventive therapies, such extensive understanding is necessary. Rather surprisingly, despite the definitive realization that root canal infections are biofilm mediated, clinical strategies have been focused more on preparing canals to radiographically impeccable levels, while much is left desired on the debridement of these complex root canal systems. Hence, solely focusing on "canal shaping" largely misses the point of endodontic treatment as the current understanding of the microbial aetiopathogenesis of apical periodontitis calls for the emphasis to be placed on "canal cleaning" and chemo-mechanical disinfection. In this review, we dissect in great detail, the current knowledge on the root canal microbiome, both in terms of its composition and functional characteristics. We also describe the challenges in root canal disinfection and the novel strategies that attempt to address this challenge. Finally, we provide some critical pointers for areas of future research, which will serve as an important area for consideration in Frontiers in Oral Health.
Collapse
Affiliation(s)
- Jasmine Wong
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Peggy Näsman
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Prasanna Neelakantan
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
122
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
123
|
Isolation and identification of the oral bacteria and their characterization for bacteriocin production in the oral cavity. Saudi J Biol Sci 2022; 29:318-323. [PMID: 35002424 PMCID: PMC8716906 DOI: 10.1016/j.sjbs.2021.08.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is a diverse ecosystem which harbors immense diversity of microorganisms like fungi, virus and bacteria. Some of these microorganisms are involved in causing multiple infections. Oral flora is continuously changing due to connection with the external environment and produce bacteriocin against each other to compete for nutrient in this mini ecosystem. Current study was aimed to explore and compare the bacterial fauna of both healthy and non-healthy dental samples, by isolation and identification with biochemical tests to characterize the bacteriocin production. During study 120 swabs were taken from both healthy and unhealthy subjects. Samples were collected from the dental clinics of Makkah City, in sterile eppendorfs containing 1 ml nutrient broth, and were incubated overnight using shaking incubator. Bacteria were isolated following identification through Gram staining, microscopy and biochemical test. Total 15 strains of bacteria were isolated during the study amongst which 8 strains were gram positive and 7 strains were gram negative. The most dominant species of the gram positive strains was Streptococcus pneumoniae (n = 26). On the other hand, Escherichia coli (n = 26) was the prominent specie amongst the gram negative strains. Overall, the dominated family was Enterobacteriaceae (19.36%) followed by Streptococcaceae with 13.83% abundance. One of the most cariogenic strain Klebsiella pneumoniae (n = 14) was also isolated. The bacterial strain diversity between these two type of ecosystem was approximately the same, with slight variation in Shannon (HS:2.627187, NHS:2.653594) and Simpson diversity (HS:0.923461, NHS: 0.92684) index. The current research revealed that bacteriocin production in the Enterobacter species was prominent against Escherichia coli and Klebsiella pneumoniae. Apart from this other strains like Klebsiella pneumoniae and Exiguobacterium spp were also able to produce bacteriocin against Enterobacter species and Bacillus cereus respectively.
Collapse
|
124
|
Vishnu RA, Alamelu S, Arun KV, Sujitha P, Ganesh PR. Comparative evaluation of subgingival microbiome in healthy periodontium and gingivitis using next-generation sequencing technology: A case–control study. J Indian Soc Periodontol 2022; 26:224-229. [PMID: 35602532 PMCID: PMC9118943 DOI: 10.4103/jisp.jisp_837_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 11/11/2022] Open
Abstract
Background: Human dental plaque is a complex microbial community containing millions of species. Gingivitis is a dysregulated immune-inflammatory response induced by dysbiotic plaque biofilm that interrupts symbiosis. The emergence of next-generation sequencing with 16S rRNA gene has greatly contributed in understanding the complexity of microbiota. However, studies focusing on microbiome in gingivitis are limited. The whole bacterial community is important in causing periodontal disease than a small number of periodontal pathogens. In this study, we attempted to profile the subgingival microbiome from individuals with healthy gingiva and in patients with gingivitis using next-generation sequencing technology. Materials and Methods: Subgingival plaque samples from 15 healthy periodontium (Group I) and 15 gingivitis (Group II) were collected and 16s rRNA sequencing was done in Illumina Solexa Sequencer. Data analysis using 16s metagenomics tool from BaseSpace onsite operational taxonomic units was assigned to each sequence using HOMD database. Individual variation in the microbiome of the subgingival samples between the two groups was also evaluated. Results: The comparison of top 20 species between Group I and Group II revealed no significant species group between them. Synergistetes was absent in Group I samples but found in Group II. At the genus level, HACEK group species were found in both the groups, while Dialister and Aneroglobus were found abundantly in the Group II. Conclusion: The presence of unique genera and species seen in Group II samples could point toward a dysbiotic shift that could be taking place in the subgingival environment leading to gingivitis.
Collapse
|
125
|
Discrimination of Bacterial Community Structures among Healthy, Gingivitis, and Periodontitis Statuses through Integrated Metatranscriptomic and Network Analyses. mSystems 2021; 6:e0088621. [PMID: 34698525 PMCID: PMC8547322 DOI: 10.1128/msystems.00886-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontal disease is an inflammatory condition caused by polymicrobial infection. The inflammation is initiated at the gingiva (gingivitis) and then extends to the alveolar bone, leading to tooth loss (periodontitis). Previous studies have shown differences in bacterial composition between periodontal healthy and diseased sites. However, bacterial metabolic activities during the health-to-periodontitis microbiome shift are still inadequately understood. This study was performed to investigate the bacterial characteristics of healthy, gingivitis, and periodontitis statuses through metatranscriptomic analysis. Subgingival plaque samples of healthy, gingivitis, and periodontitis sites in the same oral cavity were collected from 21 patients. Bacterial compositions were then determined based on 16S rRNA reads; taxonomic and functional profiles derived from genes based on mRNA reads were estimated. The results showed clear differences in bacterial compositions and functional profiles between healthy and periodontitis sites. Co-occurrence networks were constructed for each group by connecting two bacterial species if their mRNA abundances were positively correlated. The clustering coefficient values were 0.536 for healthy, 0.600 for gingivitis, and 0.371 for periodontitis sites; thus, network complexity increased during gingivitis development, whereas it decreased during progression to periodontitis. Taxa, including Eubacterium nodatum, Eubacterium saphenum, Filifactor alocis, and Fretibacterium fastidiosum, showed greater transcriptional activities than those of red complex bacteria, in conjunction with disease progression. These taxa were associated with periodontal disease progression, and the health-to-periodontitis microbiome shift was accompanied by alterations in bacterial network structure and complexity. IMPORTANCE The characteristics of the periodontal microbiome influence clinical periodontal status. Gingivitis involves reversible gingival inflammation without alveolar bone resorption. In contrast, periodontitis is an irreversible disease characterized by inflammatory destruction in both soft and hard tissues. An imbalance of the microbiome is present in both gingivitis and periodontitis. However, differences in microbiomes and their functional activities in the healthy, gingivitis, and periodontitis statuses are still inadequately understood. Furthermore, some inflamed gingival statuses do not consistently cause attachment loss. In this study, metatranscriptomic analyses were used to investigate the specific bacterial composition and gene expression patterns of the microbiomes of the healthy, gingivitis, and periodontitis statuses. In addition, co-occurrence network analysis revealed that the gingivitis site included features of networks observed in both the healthy and periodontitis sites. These results provide transcriptomic evidence to support gingivitis as an intermediate state between the healthy and periodontitis statuses.
Collapse
|
126
|
Barb JJ, Maki KA, Kazmi N, Meeks BK, Krumlauf M, Tuason RT, Brooks AT, Ames NJ, Goldman D, Wallen GR. The oral microbiome in alcohol use disorder: a longitudinal analysis during inpatient treatment. J Oral Microbiol 2021; 14:2004790. [PMID: 34880965 PMCID: PMC8648028 DOI: 10.1080/20002297.2021.2004790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Alcohol use disorder (AUD)-induced disruption of oral microbiota can lead to poor oral health; there have been no studies published examining the longitudinal effects of alcohol use cessation on the oral microbiome. Aim To investigate the oral microbiome during alcohol cessation during inpatient treatment for AUD. Methods Up to 10 oral tongue brushings were collected from 22 AUD patients during inpatient treatment at the National Institutes of Health. Alcohol use history, smoking, and periodontal disease status were measured. Oral microbiome samples were sequenced using 16S rRNA gene sequencing. Results Alpha diversity decreased linearly during treatment across the entire cohort (P = 0.002). Alcohol preference was associated with changes in both alpha and beta diversity measures. Characteristic tongue dorsum genera from the Human Microbiome Project such as Streptococcus, Prevotella, Veillonella and Haemophilus were highly correlated in AUD. Oral health-associated genera that changed longitudinally during abstinence included Actinomyces, Capnocytophaga, Fusobacterium, Neisseria and Prevotella. Conclusion The oral microbiome in AUD is affected by alcohol preference. Patients with AUD often have poor oral health but abstinence and attention to oral care improve dysbiosis, decreasing microbiome diversity and periodontal disease-associated genera while improving acute oral health.
Collapse
Affiliation(s)
- J J Barb
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - K A Maki
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - N Kazmi
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - B K Meeks
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - M Krumlauf
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - R T Tuason
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - A T Brooks
- Center for Scientific Review, National Institutes of Health, Bethesda, Md, USA
| | - N J Ames
- National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - D Goldman
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Md, USA
| | - G R Wallen
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| |
Collapse
|
127
|
Gou Y, Jin W, He Y, Luo Y, Si R, He Y, Wang Z, Li J, Liu B. Effect of Cavity Cleanser With Long-Term Antibacterial and Anti-Proteolytic Activities on Resin-Dentin Bond Stability. Front Cell Infect Microbiol 2021; 11:784153. [PMID: 34869081 PMCID: PMC8641795 DOI: 10.3389/fcimb.2021.784153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Secondary caries caused by oral microbiome dysbiosis and hybrid layer degradation are two important contributors to the poor resin-dentin bond durability. Cavity cleansers with long-term antimicrobial and anti-proteolytic activities are in demand for eliminating bacteria-induced secondary caries and preventing hybrid layers from degradation. The objectives of the present study were to examine the long-term antimicrobial effect and anti-proteolytic potential of poly(amidoamine) dendrimers with amino terminal groups (PAMAM-NH2) cavity cleanser. Methods Adsorption tests by attenuated total reflectance-infrared (ATR-IR) spectroscopy and confocal laser scanning microscopy (CLSM) were first performed to evaluate whether the PAMAM-NH2 cavity cleanser had binding capacity to dentin surface to fulfill its relatively long-term antimicrobial and anti-proteolytic effects. For antibacterial testing, Streptococcus mutans, Actinomyces naeslundii, and Enterococcus faecalis were grown on dentin surfaces, prior to the application of cavity cleanser. Colony-forming unit (CFU) counts and live/dead bacterial staining were performed to assess antibacterial effects. Gelatinolytic activity within the hybrid layers was directly detected by in situ zymography. Adhesive permeability of bonded interface and microtensile bond strength were employed to assess whether the PAMAM-NH2 cavity cleanser adversely affected resin-dentin bonding. Finally, the cytotoxicity of PAMAM-NH2 was evaluated by the Cell Counting Kit-8 (CCK-8) assay. Results Adsorption tests demonstrated that the binding capacity of PAMAM-NH2 on dentin surface was much stronger than that of 2% chlorhexidine (CHX) because its binding was strong enough to resist phosphate-buffered saline (PBS) washing. Antibacterial testing indicated that PAMAM-NH2 significantly inhibited bacteria grown on the dentin discs as compared with the control group (p < 0.05), which was comparable with the antibacterial activity of 2% CHX (p > 0.05). Hybrid layers conditioned with PAMAM-NH2 showed significant decrease in gelatin activity as compared with the control group. Furthermore, PAMAM-NH2 pretreatment did not adversely affect resin-dentin bonding because it did not decrease adhesive permeability and microtensile strength. CCK-8 assay showed that PAMAM-NH2 had low cytotoxicity on human dental pulp cells (HDPCs) and L929. Conclusions PAMAM-NH2 cavity cleanser developed in this study could provide simultaneous long-term antimicrobial and anti-proteolytic activities for eliminating secondary caries that result from a dysbiosis in the oral microbiome and for preventing hybrid layers from degradation due to its good binding capacity to dentin collagen matrix, which are crucial for the maintenance of resin-dentin bond durability.
Collapse
Affiliation(s)
- Yaping Gou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Wei Jin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yanning He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yu Luo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Ruirui Si
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yuan He
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhongchi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
128
|
Abdelhafiz Y, Fernandes JMO, Stefani E, Albanese D, Donati C, Kiron V. Power Play of Commensal Bacteria in the Buccal Cavity of Female Nile Tilapia. Front Microbiol 2021; 12:773351. [PMID: 34867911 PMCID: PMC8636895 DOI: 10.3389/fmicb.2021.773351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 01/29/2023] Open
Abstract
Fish are widely exposed to higher microbial loads compared to land and air animals. It is known that the microbiome plays an essential role in the health and development of the host. The oral microbiome is vital in females of different organisms, including the maternal mouthbrooding species such as Nile tilapia (Oreochromis niloticus). The present study reports for the first time the microbial composition in the buccal cavity of female and male Nile tilapia reared in a recirculating aquaculture system. Mucus samples were collected from the buccal cavity of 58 adult fish (∼1 kg), and 16S rRNA gene amplicon sequencing was used to profile the microbial communities in females and males. The analysis revealed that opportunistic pathogens such as Streptococcus sp. were less abundant in the female buccal cavity. The power play of certain bacteria such as Acinetobacter, Acidobacteria (GP4 and GP6), and Saccharibacteria that have known metabolic advantages was evident in females compared to males. Association networks inferred from relative abundances showed few microbe–microbe interactions of opportunistic pathogens in female fish. The findings of opportunistic bacteria and their interactions with other microbes will be valuable for improving Nile tilapia rearing practices. The presence of bacteria with specific functions in the buccal cavity of female fish points to their ability to create a protective microbial ecosystem for the offspring.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Erika Stefani
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
129
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
130
|
Ulitovskiy SB, Kalinina OV, Shevcov AV, Soloveva ES, Fok NK. Evaluation of the preventive care effectiveness in the adults with odontogenic infection given social and hygienic risk factors. Pediatr Dent 2021. [DOI: 10.33925/1683-3031-2021-21-3-175-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Relevance. Odontogenic infection is one of the most important problems of dental science. The variety of anti-inflammatory oral hygiene products determines the need for targeted selection of preventive toothpastes and rinses, balms, foams, elixirs, as well as monitoring and training the algorithm of hygienic measures for a patient with an odontogenic infection. The aim of the study was to study the hygienic status of the adult population for the selection of individual oral hygiene products for odontogenic infection, taking into account social and hygienic factors.Materials and methods. The study examined the prevalence of odontogenic infection in the adult population to determine the need for professional care and dental education. The study involved 198 people without somatic pathology, who were allocated into four groups according to the performed oral care and taking into account the dental status and the intensity of oral microbiota formation in the adult population. The patients were followed-up every week for one month. The study examined the simplified oral hygiene index by GreenVermillion (OHI-S), PMA index and Mühlemann and Son sulcus bleeding index, which allowed calculating the effectiveness of oral care products.Results. The preventive care effectiveness evaluation showed an increase in the cleansing effect in the adult population over the entire study period. The anti-inflammatory effectiveness analysis demonstrated positive changes: by the end of the study, the PMA index was 51.52 ± 3.40% in group 1; it increased by a factor of 3 and amounted to 44.17 ± 2.77% in group 2; 56.51 ± 4.61% – in group 3, 48.95 ± 3.60% – in group 4. The Mühlemann and Son sulcus bleeding index demonstrated the changes in the periodontal tissue condition and amounted to 52.78 ± 3.62% in group 1, 44.11 ± 3.54% in group 2, 54.97 ± 3.98% in group 3, 47.78 ± 2.73% in group 4.Conclusions. The development of oral health promotion measures determines the significance of oral care products for the prevention of odontogenic infection in the adult population, which plays a crucial role in the individual program planning for the main dental disease prevention.
Collapse
Affiliation(s)
| | | | - A. V. Shevcov
- Pavlov First Saint Petersburg State Medical University
| | | | - N. K. Fok
- Pavlov First Saint Petersburg State Medical University
| |
Collapse
|
131
|
Hosseinpour-Moghadam R, Mehryab F, Torshabi M, Haeri A. Applications of Novel and Nanostructured Drug Delivery Systems for the Treatment of Oral Cavity Diseases. Clin Ther 2021; 43:e377-e402. [PMID: 34844769 DOI: 10.1016/j.clinthera.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed. METHODS Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken. FINDINGS Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential. IMPLICATIONS Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
132
|
Widyarman AS, Theodorea CF, Udawatte NS, Drestia AM, Bachtiar EW, Astoeti TE, Bachtiar BM. Diversity of Oral Microbiome of Women From Urban and Rural Areas of Indonesia: A Pilot Study. FRONTIERS IN ORAL HEALTH 2021; 2:738306. [PMID: 35048055 PMCID: PMC8757682 DOI: 10.3389/froh.2021.738306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: The studies on the influence of geographical and socio-economic factors on the oral microbiome remain underrepresented. The Indonesia basic health research (RISKESDAS) 2018, showed an increasing trend in non-communicable diseases compared with the previous report in 2013. The prevalence of diabetes, heart disease, hypertension, and obesity are reported to be higher in urban areas than in rural areas. Interestingly, non-communicable diseases were found to be more prevalent in women than men. This pilot study aimed to examine the oral health and oral microbiome derived from tongue samples of healthy Indonesian women from urban and rural areas. Methods: Twenty women aged 21-47 years old from West Jakarta, residents of DKI Jakarta (n = 10) as representative of the urban area, and residents of Ende, Nangapanda, East Nusa Tenggara (n = 10) as representative of the rural area were recruited for this pilot study. The participants were evaluated by the Simplified Oral Hygiene Index (OHI-S) according to the criteria of Greene and Vermillion and divided into three groups. High-throughput DNA sequencing was performed on an Illumina iSeq 100 platform. Results: The principal component analysis displayed a marked difference in the bacterial community profiles between the urban and rural localities. The presence of manifest was associated with increased diversity and an altered oral bacterial community profile in the urban women. Two bacterial taxa were present at significantly higher levels (adjusted p < 0.01) in the urban oral microflora (Genus Prevotella and Leptotricia) could account for this difference irrespective of the individual oral hygiene status. The linear discriminant analysis effect size (LEfSe) analysis revealed several distinct urban biomarkers. At the species level, Leptotrichia wadei, Prevotella melaninogenica, Prevotella jejuni, and P. histicola, show an excellent discriminatory potential for distinguishing the oral microflora in women between urban and rural areas. Further, using SparCC co-occurrence network analysis, the co-occurrence pattern in the dominant core oral microbiome assembly was observed to be specific to its ecological niche between two populations. Conclusions: This is the first pilot study demonstrating the characterization of the oral microbiome in Indonesian women in urban and rural areas. We found that the oral microbiome in women displays distinct patterns consistent with geographic locality. The specific characterization of the microbiota of Indonesian women is likely linked to geographical specific dietary habits, cultural habits, and socio-economic status or the population studied.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department Head of Microbiology, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | | | - Nadeeka S. Udawatte
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore (NDRIS) National Dental Centre Singapore, Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | | | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| | - Tri Erri Astoeti
- Department Preventive and Public Health Dentistry, Faculty of Dentistry, Trisakti University, West Jakarta, Indonesia
| | - Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
133
|
Nath S, Zilm P, Jamieson L, Kapellas K, Goswami N, Ketagoda K, Weyrich LS. Development and characterization of an oral microbiome transplant among Australians for the treatment of dental caries and periodontal disease: A study protocol. PLoS One 2021; 16:e0260433. [PMID: 34843568 PMCID: PMC8629173 DOI: 10.1371/journal.pone.0260433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral microbiome transplantation (OMT) is a novel concept of introducing health-associated oral microbiota into the oral cavity of a diseased patient. The premise is to reverse the state of oral dysbiosis, and restore the ecological balance to maintain a stable homeostasis with the host immune system. This study will assess the effectiveness, feasibility, and safety of OMT using an interdisciplinary approach. METHODS/DESIGN To find donors suitable for microbial transplantation, supragingival plaque samples will be collected from 600 healthy participants. Each sample (200μL) will subsequently be examined in two ways: 1) 100μL of the sample will undergo high-throughput 16S rRNA gene amplicon sequencing and shotgun sequencing to identify the composition and characterisation of a healthy supragingival microbiome, 2) the remaining 100μL of the plaque sample will be mixed with 25% artificial saliva medium and inoculated into a specialised in-vitro flow cell model containing a hydroxyapatite disk. To obtain sufficient donor plaque, the samples would be grown for 14 days and further analysed microscopically and sequenced to examine and confirm the growth and survival of the microbiota. Samples with the healthiest microbiota would then be incorporated in a hydrogel delivery vehicle to enable transplantation of the donor oral microbiota. The third step would be to test the effectiveness of OMT in caries and periodontitis animal models for efficacy and safety for the treatment of oral diseases. DISCUSSION If OMTs are found to be successful, it can form a new treatment method for common oral diseases such as dental caries and periodontitis. OMTs may have the potential to modulate the oral microbiota and shift the ecological imbalances to a healthier state.
Collapse
Affiliation(s)
- Sonia Nath
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Peter Zilm
- Oral Microbiology Laboratory, Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Lisa Jamieson
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health, Adelaide Dental School, The University of Adelaide, SA, Australia
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, India
| | - Kevin Ketagoda
- Oral Microbiology Laboratory, Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - Laura S. Weyrich
- Department of Anthropology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
- Australian Centre for Ancient DNA, School of Biological Sciences and the Environment Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
134
|
Wang X, Luo N, Mi Q, Kong W, Zhang W, Li X, Gao Q. Influence of cigarette smoking on oral microbiota in patients with recurrent aphthous stomatitis. J Investig Med 2021; 70:805-813. [PMID: 34824153 DOI: 10.1136/jim-2021-002119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/11/2023]
Abstract
Recurrent aphthous stomatitis (RAS) is a common recurrent ulcerative disease of the oral mucosa which is closely related to oral microbial composition. However, the specific effect and the mechanism of smoking in RAS are unclear. In this study, 16S rRNA sequencing technology was used to compare the differences in saliva microbial community between 28 non-smoking healthy controls (NSctrl), 31 non-smoking RAS patients (NSras), and 19 smoking RAS patients (Sras). The results showed that the bacterial community diversity in patients with RAS (NSras and Sras) was lower than that of NSctrl. The microbial community in smoking-associated RAS is less diverse and distinct from that of non-smokers. The RAS groups have higher abundance of Veillonella, Rothia, and Sneathia and lower abundance of Bacteroidales, Bacteroides, Wolinella, Moryella, Pyramidobacter, and Christensenellaceae at the genera level. A significantly different abundance of Anaerovorax, Candidatus Endomicrobium, Lactococcus, Sneathia, Veillonella, and Cloacibacterium was observed between the Sras and the NSras group. Notably, there was a significant difference in many species from the genus Prevotella and Treponema between the NSras and the Sras group. Further, the relative abundance of several taxa is correlated with smoking age or frequency, including Megasphaera, Haemophilus, Leptotrichia, and Rothia at the genera level, and Prevotella melaninogenica, Prevotella salivae, Megasphaera micronuciformis, Haemophilus parainfluenzae, Alloprevotella tannerae, Actinomyces naeslundii, Lautropia mirabilis, and Capnocytophaga sputigena at the species level. Among patients with RAS, smoking aggravated the pathways of respiration and human pathogens. Our results suggest that smoking is closely related to changes in the oral microbiota, which may contribute an opposite effect to the pathogenesis of RAS. This study provides new insight and theoretical basis for the cause and pathogenesis of RAS and better prevention and treatment.
Collapse
Affiliation(s)
- Xue Wang
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China.,School of Pharmacy and Yunnan Key Laboratory of Natural Medicine Pharmacology, Kunming Medical University, Kunming, China
| | - Na Luo
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China.,School of Pharmacy and Yunnan Key Laboratory of Natural Medicine Pharmacology, Kunming Medical University, Kunming, China
| | - Qili Mi
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Weisong Kong
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Xuemei Li
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| | - Qian Gao
- Department of Technology Center, China Tobacco Yunnan Industrial Corporation, Kunming, Yunnan, China
| |
Collapse
|
135
|
Gheorghe DN, Popescu DM, Salan A, Boldeanu MV, Ionele CM, Pitru A, Turcu-Stiolica A, Camen A, Florescu C, Rogoveanu I, Surlin P. Non-Surgical Periodontal Therapy Could Improve the Periodontal Inflammatory Status in Patients with Periodontitis and Chronic Hepatitis C. J Clin Med 2021; 10:jcm10225275. [PMID: 34830557 PMCID: PMC8619210 DOI: 10.3390/jcm10225275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Non-surgical periodontal therapy (NSPT) is the first essential step for the management of any periodontitis patient. This study aims to evaluate the impact of NSPT on pro-inflammatory mediators’ regulation and on clinical parameters in periodontitis patients who suffer from chronic hepatitis C. At baseline, selected patients were clinically evaluated for their periodontal status. A subsequent quantitative assessment of C-reactive protein and pentraxin-3 in samples of gingival fluid was performed by Enzyme-Linked Immunosorbent Assay (ELISA). Afterwards, NSPT was performed. Three months after NSPT, the clinical and ELISA assessments were repeated. The results show an improvement of the clinical parameters in periodontitis patients at the three-month recall. In chronic hepatitis C patients with periodontitis, the gingival fluid levels of pro-inflammatory markers reduced significantly. The targeted markers also expressed significant correlations with the clinical parameters used for the assessment of periodontitis’ severity. The results suggest that, while chronic hepatitis C patients exhibited a more negative periodontal status at baseline as compared to non-hepatitis ones, NSPT is effective in decreasing the local periodontal inflammatory reaction and in proving the periodontal status of this type of patients. Given the limitation of the study, periodontal screening and NSPT should be included in the integrated therapeutical approach of chronic hepatitis C patients, for its impact on the local inflammatory response.
Collapse
Affiliation(s)
- Dorin Nicolae Gheorghe
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
| | - Dora Maria Popescu
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
- Correspondence: (D.M.P.); (M.V.B.)
| | - Alex Salan
- Department of Oral Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.S.); (A.C.)
| | - Mihail Virgil Boldeanu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (D.M.P.); (M.V.B.)
| | - Claudiu Marinel Ionele
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.I.); (I.R.)
| | - Allma Pitru
- Department of Oral Pathology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics and Statistical Analysis, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Adrian Camen
- Department of Oral Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.S.); (A.C.)
| | - Cristina Florescu
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ion Rogoveanu
- Department of Gastroenterology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.I.); (I.R.)
| | - Petra Surlin
- Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (D.N.G.); (P.S.)
| |
Collapse
|
136
|
Duran-Pinedo A, Solbiati J, Teles F, Teles R, Zang Y, Frias-Lopez J. Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biol 2021; 19:240. [PMID: 34742306 PMCID: PMC8572441 DOI: 10.1186/s12915-021-01169-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral microbiome dysbiosis is linked to overt inflammation of tooth-supporting tissues, leading to periodontitis, an oral condition that can cause tooth and bone loss. Microbiome dysbiosis has been described as a disruption in the symbiotic microbiota composition's stability that could adversely affect the host's health status. However, the precise microbiome dynamics that lead to dysbiosis and the progression of the disease are largely unknown. The objective of our study was to investigate the long-term dynamics of periodontitis progression and its connection to dysbiosis. RESULTS We studied three different teeth groups: sites that showed disease progression, sites that remained stable during the study, and sites that exhibited a cyclic deepening followed by spontaneous recovery. Time-series analysis revealed that communities followed a characteristic succession of bacteria clusters. Stable and fluctuating sites showed high asynchrony in the communities (i.e., different species responding dissimilarly through time) and a reordering of the communities where directional changes dominated (i.e., sample distance increases over time) in the stable sites but not in the fluctuating sites. Progressing sites exhibited low asynchrony and convergence (i.e., samples distance decreases over time). Moreover, new species were more likely to be recruited in stable samples if a close relative was not recruited previously. In contrast, progressing and fluctuating sites followed a neutral recruitment model, indicating that competition between closely related species is a significant component of species-species interactions in stable samples. Finally, periodontal treatment did not select similar communities but stabilized α-diversity, centered the abundance of different clusters to the mean, and increased community rearrangement. CONCLUSIONS Here, we show that ecological principles can define dysbiosis and explain the evolution and outcomes of specific microbial communities of the oral microbiome in periodontitis progression. All sites showed an ecological succession in community composition. Stable sites were characterized by high asynchrony, a reordering of the communities where directional changes dominated, and new species were more likely to be recruited if a close relative was not recruited previously. Progressing sites were characterized by low asynchrony, community convergence, and a neutral model of recruitment. Finally, fluctuating sites were characterized by high asynchrony, community convergence, and a neutral recruitment model.
Collapse
Affiliation(s)
- Ana Duran-Pinedo
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610-0424, USA
| | - Jose Solbiati
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610-0424, USA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | - Ricardo Teles
- Department of Periodontics, University of Pennsylvania, School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104-6030, USA
| | - Yanping Zang
- Gene Expression & Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, 178 B CGRC, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida, College of Dentistry, 1395 Center Drive, Gainesville, FL, 32610-0424, USA.
| |
Collapse
|
137
|
Luong A, Tawfik AN, Islamoglu H, Gobriel HS, Ali N, Ansari P, Shah R, Hung T, Patel T, Henson B, Thankam F, Lewis J, Mintline M, Boehm T, Tumur Z, Seleem D. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J Oral Biosci 2021; 63:360-369. [PMID: 34728373 DOI: 10.1016/j.job.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis are two biologically linked diseases that often coexist in complex interaction. While periodontitis may lead to insulin receptor desensitization, diabetes may increase the expression of inflammatory cytokines, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin 6 (IL-6), in the gingival crevicular fluid and activate osteoclasts via Receptor activator of nuclear factor kappa-Β ligand (RANK-L) production, leading to bone resorption. However, the association between the two diseases processes, where one may exacerbate the progression of the other, is unclear. In addition, both diseases have similar mechanistic themes, such as chronic inflammation and oxidative stress. This review aimed to investigate the pathophysiological and molecular mechanisms underlying T2DM and periodontitis. HIGHLIGHT Uncontrolled diabetes is often associated with severe periodontitis, measured by clinical attachment loss. Alteration in the oral microbiome composition, which may activate the host inflammatory response and lead to irreversible oxidative stress, is a common finding in both diseases. An understanding of the molecular crosstalk between the two disease processes is crucial for developing therapeutic targets that inhibit bone resorption and halt the progression of periodontitis in patients with diabetes. CONCLUSION The Oral microbiome composition in T2DM and periodontitis shifts toward dysbiosis, favoring bacterial pathogens, such as Fusobacteria and Porphyromonas species. Both conditions are marked by pro-inflammatory immune activity via the activation of Interleukin 17 (IL-17), Interleukin 1 (IL-1), TNF-α, and Nuclear Factor Kappa Beta (NF-κB). Common molecular crosstalk signaling appears to involve advanced glycation end products (AGEs) and oxidative stress. Thus, future drug targets are multifactorial, ranging from modulatory of host inflammatory response to preventing the accumulation of AGEs and oxidative free radicals.
Collapse
Affiliation(s)
- Anthony Luong
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Andy Nassif Tawfik
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hicret Islamoglu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hanaa Selim Gobriel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nada Ali
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Pouya Ansari
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Ruchita Shah
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tiffany Hung
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tanusha Patel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Bradley Henson
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Finosh Thankam
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jill Lewis
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Mark Mintline
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tobias Boehm
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Zohra Tumur
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Dalia Seleem
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
138
|
Sex Variations in the Oral Microbiomes of Youths with Severe Periodontitis. J Immunol Res 2021; 2021:8124593. [PMID: 34722781 PMCID: PMC8550847 DOI: 10.1155/2021/8124593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Objective Periodontitis is an inflammatory disease of microbial etiology caused primarily by dysbiosis of the oral microbiota. Our aim was to compare variations in the composition of the oral microbiomes of youths with severe periodontitis according to gender. Methods Subgingival plaque samples collected from 17 patients with severe periodontitis (11 males and 6 females) were split for 16S rRNA gene sequencing. The composition, α-diversity, and β-diversity of the patients' oral microbiomes were compared between the males and the females. Linear discriminant analysis effect size (LEfSe) was used to analyze the specific taxa enriched in the two groups. Functional profiles (KEGG pathways) were obtained using PICRUSt based on 16S rRNA gene sequencing data. Results The Chao1 index and phylogenetic diversity whole tree were significantly higher in males than in females. The Simpson and Shannon indices were not significantly different between the two groups. β-Diversity suggested that the samples were reasonably divided into groups. The Kruskal-Wallis test based on the relative abundance of species, combined with the LEfSe analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were Fusobacteriales and Tannerella. KEGG analysis predicted that the variation in the oral microbiome may be related to the immune system in women, whereas immune system diseases were the dominant pathway in men. Conclusion We found sex-specific differences in the oral microbiome in a sample of youths with severe periodontitis. The differences may be related to changes in immune homeostasis and lead to a better understanding of periodontitis.
Collapse
|
139
|
Srivastava A, Mishra S, Verma D. Characterization of Oral Bacterial Composition of Adult Smokeless Tobacco Users from Healthy Indians Using 16S rDNA Analysis. MICROBIAL ECOLOGY 2021; 82:1061-1073. [PMID: 33634334 DOI: 10.1007/s00248-021-01711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
The present investigation is aiming to report the oral bacterial composition of smokeless tobacco (SLT) users and to determine the influence of SLT products on the healthy Indian population. With the aid of the V3 hypervariable region of the 16S rRNA gene, a total of 8,080,889 high-quality reads were clustered into 15 phyla and 180 genera in the oral cavity of the SLT users. Comparative analysis revealed a more diverse microbiome where two phyla and sixteen genera were significantly different among the SLT users as compared to the control group (p-value < 0.05). The prevalence of Fusobacteria-, Porphyromonas-, Desulfobulbus-, Enterococcus-, and Parvimonas-like genera among SLT users indicates altered bacterial communities among SLT users. Besides, the depletion of health-compatible bacteria such as Lactobacillus and Haemophilus also suggests poor oral health. Here, the majority of the altered genera belong to Gram-negative anaerobes that have been reported for assisting biofilm formation that leads in the progression of several oral diseases. The PICRUSt analysis further supports the hypothesis where a significant increase in the count of the genes involved in the metabolism of nitrogen, amino acids, and nicotinate/nicotinamide was observed among tobacco chewers. Moreover, this study has a high significance in Indian prospects where the SLT consumers are prevalent but we are deficient in information on their oral microbiome.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
140
|
Hu X, Shen X, Tian J. The effects of periodontitis associated microbiota on the development of oral squamous cell carcinoma. Biochem Biophys Res Commun 2021; 576:80-85. [PMID: 34482027 DOI: 10.1016/j.bbrc.2021.07.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Epidemiological data have shown that periodontal bacterial infection, periodontitis, and oral squamous cell carcinoma have close relationship on the disease progress and risk. However, the specific role of periodontal microbes and their mechanism in the development of oral squamous cell carcinoma is not yet clear. In our previous work, metagenomic Illumina Mi-seq analysis was used to identify tstructure and abundance of periodontital microbiome. Accoding to the results, we used Porphyromonas.spp. and Fusobacterium.spp. as the periodontitis positive microbiota; Neisseria.spp and Corynebacterium.spp as periodontitis negative microbiota (their average relative abundance were >5%). These representative strains of the above genus were used to infect OSCC cells to explore their effect on tumor cell biology behavior, and detect the expression level of the gene in related to inflammation, migration, invasion and cell cycle. We find that periodontitis positive correlated microbiota had a promoting effect on the development of oral squamous cell carcinoma in vitro by regulating mRNA and protein expression of IL-6, IL-8, MMP-9 and Cyclin-D1. Periodontitis negative correlated microbiota had suppression effect on the development of oral squamous cell carcinoma in vitro analysis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of orthodontics, School of Stomatology, Fourth Military Medical University, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - Jiangxue Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, China.
| |
Collapse
|
141
|
Fleming E, Pabst V, Scholar Z, Xiong R, Voigt AY, Zhou W, Hoyt A, Hardy R, Peterson A, Beach R, Ondouah-Nzutchi Y, Dong J, Bateman L, Vernon SD, Oh J. Cultivation of common bacterial species and strains from human skin, oral, and gut microbiota. BMC Microbiol 2021; 21:278. [PMID: 34649516 PMCID: PMC8515726 DOI: 10.1186/s12866-021-02314-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genomics-driven discoveries of microbial species have provided extraordinary insights into the biodiversity of human microbiota. In addition, a significant portion of genetic variation between microbiota exists at the subspecies, or strain, level. High-resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. High-throughput approaches are needed to acquire and identify the significant species- and strain-level diversity present in the oral, skin, and gut microbiome. Here, we describe and validate a streamlined workflow for cultivating dominant bacterial species and strains from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. RESULTS Of total genera discovered by either metagenomic sequencing or culturomics, our cultivation pipeline recovered between 18.1-44.4% of total genera identified. These represented a high proportion of the community composition reconstructed with metagenomic sequencing, ranging from 66.2-95.8% of the relative abundance of the overall community. Fourier-Transform Infrared spectroscopy (FT-IR) was effective in differentiating genetically distinct strains compared with whole-genome sequencing, but was less effective as a proxy for genetic distance. CONCLUSIONS Use of a streamlined set of conditions selected for cultivation of skin, oral, and gut microbiota facilitates recovery of dominant microbes and their strain variants from a relatively large sample set. FT-IR spectroscopy allows rapid differentiation of strain variants, but these differences are limited in recapitulating genetic distance. Our data highlights the strength of our cultivation and characterization pipeline, which is in throughput, comparisons with high-resolution genomic data, and rapid identification of strain variation.
Collapse
Affiliation(s)
- Elizabeth Fleming
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Victor Pabst
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Zoe Scholar
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Ruoyun Xiong
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Anita Y Voigt
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Wei Zhou
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Amelia Hoyt
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Rachel Hardy
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | - Anna Peterson
- The University of Connecticut Health Center, Farmington, CT, USA
| | - Ryan Beach
- The University of Connecticut Health Center, Farmington, CT, USA
| | | | - Jinhong Dong
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA
| | | | | | - Julia Oh
- The Jackson Laboratory, 10 Discovery Drive, Farmington, CT, 860-837-2014, USA.
| |
Collapse
|
142
|
Chen JW, Wu JH, Chiang WF, Chen YL, Wu WS, Wu LW. Taxonomic and Functional Dysregulation in Salivary Microbiomes During Oral Carcinogenesis. Front Cell Infect Microbiol 2021; 11:663068. [PMID: 34604102 PMCID: PMC8482814 DOI: 10.3389/fcimb.2021.663068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Exploring microbial community compositions in humans with healthy versus diseased states is crucial to understand the microbe-host interplay associated with the disease progression. Although the relationship between oral cancer and microbiome was previously established, it remained controversial, and yet the ecological characteristics and their responses to oral carcinogenesis have not been well studied. Here, using the bacterial 16S rRNA gene amplicon sequencing along with the in silico function analysis by PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2), we systematically characterized the compositions and the ecological drivers of saliva microbiome in the cohorts of orally healthy, non-recurrent oral verrucous hyperplasia (a pre-cancer lesion), and oral verrucous hyperplasia–associated oral cancer at taxonomic and function levels, and compared them with the re-analysis of publicly available datasets. Diversity analyses showed that microbiome dysbiosis in saliva was significantly linked to oral health status. As oral health deteriorated, the number of core species declined, and metabolic pathways predicted by PICRUSt2 were dysregulated. Partitioned beta-diversity revealed an extremely high species turnover but low function turnover. Functional beta-diversity in saliva microbiome shifted from turnover to nestedness during oral carcinogenesis, which was not observed at taxonomic levels. Correspondingly, the quantitative analysis of stochasticity ratios showed that drivers of microbial composition and functional gene content of saliva microbiomes were primarily governed by the stochastic processes, yet the driver of functional gene content shifted toward deterministic processes as oral cancer developed. Re-analysis of publicly accessible datasets supported not only the distinctive family taxa of Veillonellaceae and Actinomycetaceae present in normal cohorts but also that Flavobacteriaceae and Peptostreptococcaceae as well as the dysregulated metabolic pathways of nucleotides, amino acids, fatty acids, and cell structure were related to oral cancer. Using predicted functional profiles to elucidate the correlations to the oral health status shows superior performance than using taxonomic data among different studies. These findings advance our understanding of the oral ecosystem in relation to oral carcinogenesis and provide a new direction to the development of microbiome-based tools to study the interplay of the oral microbiome, metabolites, and host health.
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
143
|
Zhao D, Ning J, Zhao Y, Lu E. Associations of dietary and drinking water habits with number of natural teeth: a longitudinal study in the Chinese elderly population. BMC Geriatr 2021; 21:525. [PMID: 34600489 PMCID: PMC8487487 DOI: 10.1186/s12877-021-02473-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background The relationship between dietary and drinking water habits and oral health are still unclear. We aimed at evaluating the association of dietary and drinking water habits with number of teeth in the elderly adults. Methods We conducted a longitudinal study based on the Chinese Longitudinal Healthy Longevity Survey from 1998 to 2018. The data of dietary and drinking water habits at baseline were collected using a questionnaire. The number of teeth at baseline and follow-up was collected for each subject. We used the linear mixed-effect model to analyze the associations of dietary habits and drinking water sources with tooth number. Results Among 19,896 participants at baseline, the mean age of the participants was 83.87 years, with the average number of natural teeth of 9.37, 8.26, 8.38, 8.68, 4.05, 1.92, 1.12, 2.20 for the first to eighth waves of survey. Compared with subjects drinking tap water, 1.036 (95 % CI: -1.206, -0.865), 0.880 (95 % CI: -1.122, -0.637) and 1.331 (95 % CI: -1.715, -0.947) fewer natural teeth were reported for those drinking well, surface water and spring at baseline survey. Compared with participants with rice intake as the staple food, those with wheat intake (β = -0.684; 95 % CI: -0.865, -0.503) tended to have fewer natural teeth. Compared with participants with fresh fruit intake almost every day, those with quite often intake of fresh fruit tended to have fewer teeth with a significant dose-response trend (Ptrend <0.001). Similar decreased trend for number of teeth was also indicated for increased frequency of vegetable intake (Ptrend <0.001). Fewer number of teeth was found for subjects with less frequency of meat and fish intakes. Conclusions The study suggested that drinking well, surface water, and spring, intakes of wheat as staple food, as well as less frequency of fresh fruit, vegetable, meat and fish intakes were associated with significantly fewer number of teeth in the Chinese elderly population. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02473-7.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jia Ning
- School of Stomatology, Tianjin Medical University, No 22. Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Yifei Zhao
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
144
|
Neelakandan A, Potluri R, Yadalam PK, Chakraborty P, Saravanan AV, Arunraj R. The Varied Proportion of Filifactor alocis in Periodontal Health and Disease in the South Indian Subpopulation. Contemp Clin Dent 2021; 12:433-438. [PMID: 35068845 PMCID: PMC8740782 DOI: 10.4103/ccd.ccd_803_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/29/2020] [Accepted: 10/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM The periodontal microbiome being complex, this study was aimed to detect and quantify the prevalence of Filifactor alocis in various stages of periodontitis and to evaluate its prospect as a diagnostic marker for periodontal disease. SETTINGS AND DESIGN Sixty subjects were selected (20 healthy controls, 20 with chronic periodontitis, and 20 with aggressive periodontitis) for the study. MATERIALS AND METHODS Clinical parameters probing depth and the level of clinical attachment was recorded, subgingival plaque samples were collected. The F. alocis 16srDNA was cloned, sequenced, and used as the standard for real-time quantification of bacterial load using SYBR green chemistry. STATISTICAL ANALYSIS Clinical, microbiological, and quantitative polymerase chain reaction (PCR) data were analyzed using ANOVA and Pearson's coefficient correlation. RESULTS (a) Real-time PCR analysis showed the highest average F. alocis count in chronic periodontitis subjects (32,409.85), which was followed by count in healthy controls (3046.15) and the least count in aggressive periodontitis subjects (939.84). The bacterial count was statistically significant at P = 0.005. (b) An intra-group comparison reveals that there was a statistically significant increase in the bacterial count with age and mean probing pocket depth at P = 0.0005. CONCLUSION F. alocis population in aggressive periodontitis was lower compared to chronic periodontitis and healthy controls. The F. alocis population surge in healthy controls may be due to geographical variations and the ethnicity of the subjects. A higher population of F. alocis in chronic periodontitis proves its high pathogenic potential to invade the host tissues to aid in further periodontal destruction.
Collapse
Affiliation(s)
- Anila Neelakandan
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravishankar Potluri
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pradeep Kumar Yadalam
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priyankar Chakraborty
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - A. V. Saravanan
- Department of Periodontology and Implantology, SRM Dental College, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rex Arunraj
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
145
|
Yuan S, Fang C, Leng WD, Wu L, Li BH, Wang XH, Hu H, Zeng XT. Oral microbiota in the oral-genitourinary axis: identifying periodontitis as a potential risk of genitourinary cancers. Mil Med Res 2021; 8:54. [PMID: 34588004 PMCID: PMC8480014 DOI: 10.1186/s40779-021-00344-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontitis has been proposed as a novel risk factor of genitourinary cancers: although periodontitis and genitourinary cancers are two totally distinct types of disorders, epidemiological and clinical studies, have established associations between them. Dysbiosis of oral microbiota has already been established as a major factor contributing to periodontitis. Recent emerging epidemiological evidence and the detection of oral microbiota in genitourinary organs indicate the presence of an oral-genitourinary axis and oral microbiota may be involved in the pathogenesis of genitourinary cancers. Therefore, oral microbiota provides the bridge between periodontitis and genitourinary cancers. We have carried out this narrative review which summarizes epidemiological studies exploring the association between periodontitis and genitourinary cancers. We have also highlighted the current evidence demonstrating the capacity of oral microbiota to regulate almost all hallmarks of cancer, and proposed the potential mechanisms of oral microbiota in the development of genitourinary cancers.
Collapse
Affiliation(s)
- Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Wei-Dong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Xing-Huan Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710 USA
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| |
Collapse
|
146
|
Ren Q, Wei F, Yuan C, Zhu C, Zhang Q, Quan J, Sun X, Zheng S. The effects of removing dead bacteria by propidium monoazide on the profile of salivary microbiome. BMC Oral Health 2021; 21:460. [PMID: 34551743 PMCID: PMC8456568 DOI: 10.1186/s12903-021-01832-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Oral microbiome played an important role in maintaining healthy state and might exhibit certain changes under circumstances of diseases. However, current microbiological research using sequencing techniques did not regard dead bacteria as a separate part, causing findings based on subsequent analyses on dynamic equilibrium and functional pathways of microbes somewhat questionable. Since treatment by propidium monoazide (PMA) was able to remove dead bacteria effectively, it would be worth studying how the sequencing results after PMA treatment differed from those focusing on the whole microbiota. Methods Unstimulated whole saliva samples were obtained from 18 healthy people from 3 age groups (children, adults, and the elderly). After removal of dead bacteria by propidium monoazide (PMA), changes in the profile of salivary microbiome were detected using 16S rRNA sequencing technology, and differences among age groups were compared subsequently. Results Dead bacteria accounted for nearly a half of the whole bacteria flora in saliva, while freezing had little effect on the proportion of deaths. After treatment with PMA, the numbers of OTUs reduced by 4.4–14.2%, while the Shannon diversity indices decreased significantly (P < 0.01). Only 35.2% of positive and 6.1% of negative correlations were found to be shared by the whole microbiota and that with dead bacteria removed. Differences in significantly changed OTUs and functional pathways among different age groups were also observed between the group of PMA and the control. Conclusions It was necessary to take the influence of living state of bacteria into account in analytic studies of salivary microbiome. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01832-5.
Collapse
Affiliation(s)
- Qidi Ren
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.,Department of Preventive Dentistry, Shanghai Jiao Tong University School of Dentistry, Shanghai Ninth People's Hospital, Shanghai, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Junkang Quan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
147
|
Naqvi AR, Schwartz J, Brandini DA, Schaller S, Hussein H, Valverde A, Naqvi RA, Shukla D. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. Int Rev Immunol 2021; 41:423-437. [PMID: 34525891 DOI: 10.1080/08830185.2021.1967949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a recently identified virus responsible for life-threatening coronavirus disease 19 (COVID-19). The SARS-CoV-2 infected subjects can be asymptomatic or symptomatic; the later may present a wide spectrum of clinical manifestations. However, the impact of SARS-CoV-2 on oral diseases remain poorly studied. Detection of SARS-CoV-2 in saliva indicates existence of virus in the oral cavity. Recent studies demonstrating the expression of ACE-2, a SARS-CoV-2 entry receptor, in oral tissues further strengthens this observation. Cytokine storm in severe COVID-19 patients and copious secretion of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) in multiple symptomatic oral pathologies including periodontitis and periapical periodontitis suggests that inflammatory microenvironment is a hallmark of both COVID-19 and oral diseases. Hyperinflammation may provide conducive microenvironment for the growth of local oral pathogens or opportunistic microbes and exert detrimental impact on the oral tissue integrity. Multiple case reports have indicated uncharacterized oral lesions, symptomatic irreversible pulpitis, higher plaque index, necrotizing/desquamative gingivitis in COVID-19 patients suggesting that SARS-CoV-2 may worsen the manifestations of oral infections. However, the underlying factors and pathways remain elusive. Here we summarize current literature and suggest mechanisms for viral pathogenesis of oral dental pathology derived from oral microbiome and oral mucosa-dental tissue interactions. Longitudinal studies will reveal how the virus impairs disease progression and resolution post-therapy. Some relationships we suggest provide the basis for novel monitoring and treatment of oral viral disease in the era of SARS-CoV-2 pandemic, promoting evidence-based dentistry guidelines to diagnose virus-infected patients to improve oral health.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela Atili Brandini
- Department of Diagnosis and Surgery, Araçatuba Dental School, Universidade Estadual Paulista/UNESP, Araçatuba, São Paulo, Brazil
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Heba Hussein
- Department of Oral Medicine, Oral Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raza Ali Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, Illinois, USA
| |
Collapse
|
148
|
Johnstone KF, Wei Y, Bittner-Eddy PD, Vreeman GW, Stone IA, Clayton JB, Reilly CS, Walbon TB, Wright EN, Hoops SL, Boyle WS, Costalonga M, Herzberg MC. Calprotectin (S100A8/A9) Is an Innate Immune Effector in Experimental Periodontitis. Infect Immun 2021; 89:e0012221. [PMID: 34097505 PMCID: PMC8445179 DOI: 10.1128/iai.00122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.
Collapse
Affiliation(s)
- Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D. Bittner-Eddy
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W. Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A. Stone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan B. Clayton
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Travis B. Walbon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa N. Wright
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan L. Hoops
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - William S. Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
149
|
Metagenomic analysis of the salivary microbiota in patients with caries, periodontitis and comorbid diseases. J Dent Sci 2021; 16:1264-1273. [PMID: 34484595 PMCID: PMC8403802 DOI: 10.1016/j.jds.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background/purpose Previous studies have suggested that there is a mutual antagonism between caries and periodontitis. This research aimed to investigate the ecological connection and bacterial interaction of these two diseases. Materials and methods We profiled and analyzed the salivary microbiota from 124 individuals (including 38 caries patients, 34 periodontitis patients, 15 comorbid diseases patients, and 37 healthy controls) by using 16 S rRNA gene sequencing and bioinformatics approaches, and also quantified their salivary bacteria loads via quantitative real-time PCR. The putative biological functions of the salivary microbiome of the different groups were predicted by PICRUSt. Results We observed that both the total bacteria loads and the overall microbial richness in the saliva of the periodontitis group were higher than that in the healthy group. The principal coordinate analysis (PCoA) showed that the caries, periodontitis and healthy groups were separated from each other, and that the samples from comorbid diseases were located at the overlap of caries and periodontitis groups. Using LEfSe analysis, 20 differentially abundant genera were identified as potential biomarkers. These genera also performed complicated interactions among the four groups. Additionally, the PICRUSt analysis indicated caries-related and periodontitis-related functions (e.g., carbohydrate metabolism and bacteria proliferation) respectively. Conclusion We disclosed the significant differences in the salivary bacterial community under caries, periodontitis and comorbid diseases. The periodontitis group was marked by the increased complexity of the salivary microbiota. The result may have vital clinical significance to the screening and early treatment of caries-active and periodontitis-active individuals.
Collapse
|
150
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|