101
|
Pike KA, Tremblay ML. Regulating naïve and memory CD8 T cell homeostasis - a role for protein tyrosine phosphatases. FEBS J 2012; 280:432-44. [DOI: 10.1111/j.1742-4658.2012.08587.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
102
|
Subcellular distribution of Lck during CD4 T-cell maturation in the thymic medulla regulates the T-cell activation threshold. Proc Natl Acad Sci U S A 2012; 109:7415-20. [PMID: 22529380 DOI: 10.1073/pnas.1119272109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.
Collapse
|
103
|
Ballek O, Broučková A, Manning J, Filipp D. A specific type of membrane microdomains is involved in the maintenance and translocation of kinase active Lck to lipid rafts. Immunol Lett 2012; 142:64-74. [PMID: 22281390 DOI: 10.1016/j.imlet.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Lck is the principal signal-generating tyrosine kinase of the T cell activation mechanism. We have previously demonstrated that induced Lck activation outside of lipid rafts (LR) results in the rapid translocation of a fraction of Lck to LR. While this translocation predicates the subsequent production of IL-2, the mechanism underpinning this process is unknown. Here, we describe the main attributes of this translocating pool of Lck. Using fractionation of Brij58 lysates, derived from primary naive non-activated CD4(+) T cells, we show that a significant portion of Lck is associated with high molecular weight complexes representing a special type of detergent-resistant membranes (DRMs) of relatively high density and sensitivity to laurylmaltoside, thus called heavy DRMs. TcR/CD4 coaggregation-mediated activation resulted in the redistribution of more than 50% of heavy DRM-associated Lck to LR in a microtubular network-dependent fashion. Remarkably, in non-activated CD4(+) T-cells, only heavy DRM-associated Lck is phosphorylated on its activatory tyrosine 394 and this pool of Lck is found to be membrane confined with CD45 phosphatase. These data are the first to illustrate a lipid microdomain-based mechanism concentrating the preactivated pool of cellular Lck and supporting its high stoichiometry of colocalization with CD45 in CD4(+) T cells. They also provide a new structural framework to assess the mechanism underpinning the compartmentalization of critical signaling elements and regulation of spatio-temporal delivery of Lck function during the T cell proximal signaling.
Collapse
Affiliation(s)
- Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | | | | | | |
Collapse
|
104
|
Gabaev I, Steinbrück L, Pokoyski C, Pich A, Stanton RJ, Schwinzer R, Schulz TF, Jacobs R, Messerle M, Kay-Fedorov PC. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells. PLoS Pathog 2011; 7:e1002432. [PMID: 22174689 PMCID: PMC3234252 DOI: 10.1371/journal.ppat.1002432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/27/2011] [Indexed: 01/15/2023] Open
Abstract
Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV. The human cytomegalovirus (CMV) belongs to a class of viruses that interferes with the immune response of its host. Accordingly, infection with CMV is a severe risk for immunologically immature newborns and immunocompromised patients such as transplant recipients. The mechanisms by which CMV affects the immune system are not completely understood. Here we show that a CMV protein, pUL11, which is expressed on the surface of cells, binds to leukocytes by interacting with the receptor tyrosine phosphatase CD45. In T cells, CD45 is essential for transmission of activating signals received via the T cell receptor (TCR) to downstream effector molecules that ultimately lead to activation and proliferation of these immune cells. Binding of the CMV pUL11 protein to CD45 on T cells prevents signal transduction via the TCR and restricts T cell proliferation. Interestingly, the mechanism by which the activity of CD45 is regulated is a matter of debate and no specific cellular ligand of CD45 has yet been described. The identification of a first viral ligand for CD45 may provide the means to investigate CD45 regulatory mechanisms and also allow the development of therapies to interfere with CMV-mediated immunomodulation.
Collapse
Affiliation(s)
- Ildar Gabaev
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Richard J. Stanton
- Section of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Reinhard Schwinzer
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | | |
Collapse
|
105
|
Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI, Tiganis T. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest 2011; 121:4758-74. [PMID: 22080863 PMCID: PMC3226006 DOI: 10.1172/jci59492] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Many autoimmune diseases exhibit familial aggregation, indicating that they have genetic determinants. Single nucleotide polymorphisms in PTPN2, which encodes T cell protein tyrosine phosphatase (TCPTP), have been linked with the development of several autoimmune diseases, including type 1 diabetes and Crohn's disease. In this study, we have identified TCPTP as a key negative regulator of TCR signaling, which might explain the association of PTPN2 SNPs with autoimmune disease. We found that TCPTP dephosphorylates and inactivates Src family kinases to regulate T cell responses. Using T cell-specific TCPTP-deficient mice, we established that TCPTP attenuates T cell activation and proliferation in vitro and blunts antigen-induced responses in vivo. TCPTP deficiency lowered the in vivo threshold for TCR-dependent CD8(+) T cell proliferation. Consistent with this, T cell-specific TCPTP-deficient mice developed widespread inflammation and autoimmunity that was transferable to wild-type recipient mice by CD8(+) T cells alone. This autoimmunity was associated with increased serum levels of proinflammatory cytokines and anti-nuclear antibodies, T cell infiltrates in non-lymphoid tissues, and liver disease. These data indicate that TCPTP is a critical negative regulator of TCR signaling that sets the threshold for TCR-induced naive T cell responses to prevent autoimmune and inflammatory disorders arising.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Immune Tolerance/immunology
- Inflammation/blood
- Inflammation/genetics
- Inflammation/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/physiology
- Radiation Chimera
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- Thymocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/physiology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Benjamin J. Shields
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sock Hui Chew
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Konstantinos Kyparissoudis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Catherine van Vliet
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sandra Galic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Michel L. Tremblay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah M. Russell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Dale I. Godfrey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
106
|
Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proc Natl Acad Sci U S A 2011; 109:E3-12. [PMID: 22135465 DOI: 10.1073/pnas.1117374108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The receptor-like tyrosine phosphatase CD45 positively regulates antigen receptor signaling by dephosphorylating the inhibitory tyrosine of the src family kinases. CD45-deficient mice fail to fully unmask the role of CD45 in B cells because of the expression of a partially redundant tyrosine phosphatase, CD148. However, mice that are doubly deficient in CD45 and CD148 exhibit a very early block in B-cell development, thereby obscuring later roles for CD45. To overcome these limitations, here we take advantage of an allelic series of mice in which CD45 expression is titrated broadly (0-180%). Although high expression of CD45 inhibits T-cell receptor (TCR) signaling, we show that CD45 plays a purely positive regulatory role during B-cell receptor (BCR) signaling. In concert with exaggerated BCR signaling, increasing CD45 expression drives enhanced receptor editing in the bone marrow and profound loss of follicular and marginal zone B cells in the spleen. In the context of the IgHEL/sHEL model of B-cell tolerance, such high CD45 expression transforms anergy into deletion. Unexpectedly, elimination of the autoantigen sHEL in this model system in order to block clonal deletion fails to rescue survival of mature B cells. Rather, high CD45 expression reduces B-cell activating factor receptor (BAFFR) expression and inhibits B-cell activating factor (BAFF)-induced B-cell survival in a cell-intrinsic manner. Taken together, our findings reveal how CD45 function diverges in T cells and B cells, as well as how autoreactive B cells are censored as they transit development.
Collapse
|
107
|
Vecchiarelli A, Pericolini E, Gabrielli E, Chow SK, Bistoni F, Cenci E, Casadevall A. Cryptococcus neoformans galactoxylomannan is a potent negative immunomodulator, inspiring new approaches in anti-inflammatory immunotherapy. Immunotherapy 2011; 3:997-1005. [DOI: 10.2217/imt.11.86] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen responsible for life-threatening infections in immunocompromised individuals and occasionally in those with no known immune impairment. The fungus is endowed with several virulence factors, including capsular polysaccharides that play a key role in virulence. The capsule is composed of 90–95% glucuronoxylomannan (GXM), 5–8% galactoxylomannan (GalXM) and <1% mannoproteins. Capsular polysaccharides are shed into tissue where they produce many deleterious effects. Since GalXM has a smaller molecular mass, the molar concentration of GalXM in polysaccharide that is shed could exceed that of GXM in C. neoformans exopolysaccharides. Moreover, GalXM exhibits a number of unusual biologic properties both in vitro and in vivo. Here, we summarize the principal immunomodulatory effects of GalXM described during the last 20 years, particularly the mechanisms leading to induction of apoptosis in T lymphocytes, B lymphocytes and macrophages. Since the capacity of GalXM to induce widespread immune suppression is believed to contribute to the virulence of C. neoformans, this property might be exploited therapeutically to dampen the aberrant activation of immune cells during autoimmune disorders.
Collapse
Affiliation(s)
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine & Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine & Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology & Immunology of the Albert Einstein College of Medicine, Bronx, NY, USA
| | - Francesco Bistoni
- Microbiology Section, Department of Experimental Medicine & Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine & Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | - Arturo Casadevall
- Department of Microbiology & Immunology of the Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
108
|
Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, Horejsi V, Weiss A, Brdicka T. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148. J Biol Chem 2011; 286:22101-12. [PMID: 21543337 DOI: 10.1074/jbc.m110.196733] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.
Collapse
Affiliation(s)
- Ondrej Stepanek
- Institute of Molecular Genetics, Academy of Sciences of Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Sharma SK, Alexander-Miller MA. Increased sensitivity to antigen in high avidity CD8(+) T cells results from augmented membrane proximal T-cell receptor signal transduction. Immunology 2011; 133:307-17. [PMID: 21501160 DOI: 10.1111/j.1365-2567.2011.03440.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional avidity of a cytotoxic T lymphocyte (CTL) is known to be a critical determinant of the efficacy with which it clears pathogens. High avidity cells, which are by definition highly sensitive to peptide antigen, are superior for elimination of viruses and tumours. Our studies have established the ability of T cells to undergo avidity modulation as a result of antigen encounter. High and low avidity cells established in this manner exhibit significant differences in the amount of peptide required to elicit effector function. However, how signalling is regulated in these cells as it relates to the control of peptide sensitivity remains to be defined. To address this question, we compared T-cell receptor (TCR) signal transduction events in high and low avidity CTL generated from OT-I(rag2-) TCR transgenic mice. Our data suggest that divergent signalling is initiated at the TCR-associated CD3ζ, with low avidity CTL requiring higher amounts of pMHC to achieve threshold levels of phosphorylated CD3ζ compared with high avidity CTL. Further, this difference is transduced further downstream to mitogen-activated protein kinase and Ca(2+) signalling pathways. These results suggest that regulated control of the initiation of TCR signalling in high versus low avidity cells determines the amount of peptide required for T-cell activation.
Collapse
Affiliation(s)
- Sharad K Sharma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
110
|
Kumar S, Naqvi RA, Khanna N, Rao DN. Disruption of HLA-DR raft, deregulations of Lck-ZAP-70-Cbl-b cross-talk and miR181a towards T cell hyporesponsiveness in leprosy. Mol Immunol 2011; 48:1178-90. [PMID: 21453975 DOI: 10.1016/j.molimm.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 11/27/2022]
Abstract
Leprosy, a chronic human disease, results from infection of Mycobacterium leprae. Defective CMI and T cell hyporesponsiveness are the major hallmark of M. leprae pathogenesis. The present study demonstrates immunological-deregulations that eventually lead to T cell anergy/hyporesponsiveness in M. lepare infection. We firstly, evaluated the membrane fluidity and antigen-presenting-lipid-raft (HLA-DR) on macrophages of leprosy patients using fluorescence anisotropy and confocal microscopy, respectively. Increased membrane fluidity and raft-out localizations of over-expressed HLA-DR towards BL/LL pole are pinpointed as major defects, may be leading to defective antigen presentation in leprosy. Furthermore, altered expression and localization of Lck, ZAP-70, etc. and their deregulated cross talks with negative regulators (CD45, Cbl-b and SHP2) turned out to be the major putative reason(s) leading to T cell hyporesponsiveness in leprosy. Deregulations of Lck-ZAP-70 cross-talk in T cells were found to be associated with cholesterol-dependent-dismantling of HLA-DR rafts in macrophages in leprosy progression. Increased molecular interactions between Cbl-b and Lck/ZAP-70 and their subsequent degradation via ubiquitinization pathway, as result of high expression of Cbl-b, were turned out to be one of the principal underlying reason leading to T cell anergy in leprosy patients. Interestingly, overexpression of SHP2 due to gradual losses of miR181a and subsequent dephosphorylation of imperative T cell signaling molecules were emerged out as another important reason associated with prevailing T cell hyporesponsiveness during leprosy progression. Thus, this study for the first time pinpointed overexpression of Cbl-b and expressional losses of miR-181 as important hallmarks of progression of leprosy.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|
111
|
Stougaard M, Juul S, Andersen FF, Knudsen BR. Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors. Integr Biol (Camb) 2011; 3:982-92. [DOI: 10.1039/c1ib00049g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
112
|
Davis SJ, van der Merwe PA. Lck and the nature of the T cell receptor trigger. Trends Immunol 2010; 32:1-5. [PMID: 21190897 DOI: 10.1016/j.it.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/18/2010] [Accepted: 11/08/2010] [Indexed: 11/17/2022]
Abstract
Exactly how ligand binding 'triggers' T cell receptor (TCR) phosphorylation is unclear. It has been proposed that ligand engagement by the TCR somehow activates the Src kinase Lck, which in turn phosphorylates the receptor. Recent data, however, suggest instead that a significant fraction of the Lck in resting T cells is already activated and that the proportion of active Lck does not change during the early stages of T cell activation. We argue that, caveats notwithstanding, these new observations offer support for the 'kinetic-segregation' model of TCR triggering, which involves spatial reorganization of signalling proteins upon ligand binding and requires a fraction of Lck to be active in resting T cells.
Collapse
Affiliation(s)
- Simon J Davis
- Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford Radcliffe Hospital, Oxford OX3 9DS, UK.
| | | |
Collapse
|
113
|
Dong S, Corre B, Nika K, Pellegrini S, Michel F. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One 2010; 5:e15114. [PMID: 21152094 PMCID: PMC2994893 DOI: 10.1371/journal.pone.0015114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive. Methodology/Principal Findings We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement. Conclusions/Significance Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.
Collapse
Affiliation(s)
- Shen Dong
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Béatrice Corre
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Konstantina Nika
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
114
|
|
115
|
Kountikov E, Nayak D, Wilson M, Miller NW, Bengtén E. Expression of alternatively spliced CD45 isoforms by channel catfish clonal T and B cells is dependent on activation state of the cell and regulated by protein synthesis and degradation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1109-1118. [PMID: 20547174 DOI: 10.1016/j.dci.2010.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 05/29/2023]
Abstract
In mammals, expression of the three alternatively spliced exons of the tyrosine phosphatase CD45 is regulated by the developmental and activation state of the cell. In comparison, the channel catfish, Ictalurus punctatus, CD45 homolog contains 18 functional alternatively spliced exons. Since very little is known about CD45 regulation in ectothermic vertebrates, this study examines the regulation of catfish CD45 mRNA isoform expression in clonal T and B cells in response to stimulation. Results show that mitogenic stimulation using catfish serum or concanavalin A induced expression of mRNAs for small CD45 isoforms, and isoform message expression was growth curve dependent, i.e. cells in logarithmic phase express message for smaller CD45 isoforms, whereas stationary phase cells express message for longer CD45 isoforms. In addition, cells treated with the protein synthesis inhibitor cycloheximide expressed message for longer CD45 isoforms, and treatment with lactacystin, which blocks protein degradation, rescued smaller isoform message expression. Collectively these data suggested that expression of CD45 isoforms, in catfish, at least at the mRNA level, is "constitutively dynamic" and highly dependent on extracellular stimuli.
Collapse
Affiliation(s)
- Evgueni Kountikov
- Department of Immunology Box 3010, Duke University Medical Center, 352 Jones Building, Research Drive, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
116
|
Mislocalization of Lck impairs thymocyte differentiation and can promote development of thymomas. Blood 2010; 117:108-17. [PMID: 20876849 DOI: 10.1182/blood-2010-03-277160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
T-cell development is critically dependent on the activities of the Src-family kinases p56(lck) and p59(fyn). While Lck plays a dominant role in the initiation of T-cell receptor (TCR) signaling and in thymocyte differentiation, Fyn plays a more subtle regulatory role. We sought to determine the role of intracellular localization in the differing functions of Lck and Fyn in T cells. By generating transgenic mice that express chimeric Lck-Fyn proteins, we showed that the N-terminal unique domain determines the intracellular localization and function of Lck in pre-TCR and mature αβTCR signaling in vivo. Furthermore, coexpression of a "domain-swap" Lck protein containing the Fyn unique domain with an inducible Lck transgene resulted in the development of thymomas. In contrast to previous reports of Lck-driven thymomas, tumor development was dependent on either pre-TCR or mature TCR signals, and was completely ablated when mice were crossed to a recombination activating gene 1 (Rag1)-deficient background. These data provide a mechanistic basis for the differing roles of Lck and Fyn in T-cell development, and show that intracellular localization as determined by the N-terminal unique domains is critical for Src-family kinase function in vivo.
Collapse
|
117
|
Pericolini E, Gabrielli E, Bistoni G, Cenci E, Perito S, Chow SK, Riuzzi F, Donato R, Casadevall A, Vecchiarelli A. Role of CD45 signaling pathway in galactoxylomannan-induced T cell damage. PLoS One 2010; 5:e12720. [PMID: 20856869 PMCID: PMC2939064 DOI: 10.1371/journal.pone.0012720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022] Open
Abstract
Previously, we reported that Galactoxylomannan (GalXM) activates the extrinsic and intrinsic apoptotic pathways through an interaction with the glycoreceptors on T cells. In this study we establish the role of the glycoreceptor CD45 in GalXM-induced T cell apoptosis, using CD45(+/+) and CD45(-/-) cell lines, derived from BW5147 murine T cell lymphoma. Our results show that whereas CD45 expression is not required for GalXM association by the cells, it is essential for apoptosis induction. In CD45(+/+) cells, CD45 triggering by GalXM reduces the activation of Lck, ZAP70 and Erk1/2. Conversely, in CD45(-/-) cells, Lck was hyperphosphorylated and did not show any modulation after GalXM stimulation. On the whole, our findings provide evidence that the negative regulation of Lck activation occurs via CD45 engagement. This appears to be related to the capacity of GalXM to antagonize T cell activation and induce T cell death. Overall this mechanism may be responsible for the immune paralysis that follows GalXM administration and could explain the powerful immunosuppression that accompanies cryptococcosis.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Bistoni
- Department of Plastic and Reconstructive Surgery, University of Rome “La Sapienza” Medical School, Rome, Italy
| | - Elio Cenci
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Perito
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Francesca Riuzzi
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology of the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anna Vecchiarelli
- Microbiology and Anatomy Sections, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
118
|
Ellison S, Mori J, Barr AJ, Senis YA. CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases. J Thromb Haemost 2010; 8:1575-83. [PMID: 20345711 DOI: 10.1111/j.1538-7836.2010.03865.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY BACKGROUND We have previously shown that the receptor-like protein tyrosine phosphatase (PTP) CD148 is essential for initiating glycoprotein VI (GPVI) signaling in platelets. We proposed that CD148 does so by dephosphorylating the C-terminal inhibitory tyrosine of Src family kinases (SFKs). However, this mechanism is complicated by CD148-deficient mouse platelets having a concomitant reduction in GPVI expression. OBJECTIVES To investigate the effect of CD148 on GPVI signaling independent of the decrease in GPVI expression and to further establish the molecular basis of the activatory effect of CD148 and downregulation of GPVI. METHODS CD148-deficient mouse platelets were investigated for functional and biochemical defects. The DT40/NFAT-lucifierase reporter assay was used to analyze the effect of CD148 on GPVI signaling. CD148-SFK interactions and dephosphorylation were quantified using biochemical assays. RESULTS CD148-deficient mouse platelets exhibited reduced collagen-mediated aggregation, secretion and spreading in association with reduced expression of GPVI and FcR gamma-chain and reduced tyrosine phosphorylation. The phosphorylation status of SFKs suggested a global reduction in SFK activity in resting CD148-deficient platelets. Studies in a cell model confirmed that CD148 inhibits GPVI signaling independent of a change in receptor expression and through a mechanism dependent on tyrosine dephosphorylation. Recombinant CD148 dephosphorylated the inhibitory tyrosines of Fyn, Lyn and Src in vitro, although paradoxically it also dephosphorylated the activation loop of SFKs. CONCLUSIONS CD148 plays a critical role in regulating GPVI/FcR gamma-chain expression and maintains a pool of active SFKs in platelets by directly dephosphorylating the C-terminal inhibitory tyrosines of SFKs that is essential for platelet activation.
Collapse
Affiliation(s)
- S Ellison
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
119
|
Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 2010; 32:766-77. [PMID: 20541955 PMCID: PMC2996607 DOI: 10.1016/j.immuni.2010.05.011] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to ∼40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-ζ phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors.
Collapse
|
120
|
Wu Z, Yates AL, Hoyne GF, Goodnow CC. Consequences of increased CD45RA and RC isoforms for TCR signaling and peripheral T cell deficiency resulting from heterogeneous nuclear ribonucleoprotein L-like mutation. THE JOURNAL OF IMMUNOLOGY 2010; 185:231-8. [PMID: 20505149 DOI: 10.4049/jimmunol.0903625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD45 is the most abundant protein tyrosine phosphatase in the plasma membrane of T cells and serves a critical role in TCR signaling. Different CD45 isoforms are made by alternative mRNA splicing depending on the stage of T cell development and activation, yet their role remains unclear. Expression of CD45RA and RC isoforms is increased 20- to 200-fold on T cells from thunder mice with a loss-of-function mutation in the RNA-binding protein, heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL), although total CD45 expression is unaltered. In this study, we test the hypothesis that this shift in CD45 isoform expression alters TCR signaling, thymic selection, and accumulation of peripheral T cells. There was no discernable effect of the change in CD45 isoform expression upon Lck phosphorylation or T cell positive and negative selection, whereas these indices were strongly affected by a decrease in the overall amount of CD45 in Ptprc mutant animals. The one exception to this conclusion was in thymocytes from Ptprc(loc/loc) animals with 4% of normal CD45 protein levels, where Lck505 phosphorylation was increased 25% in Hnrpll mutant cells, suggesting that high m.w. CD45 isoforms had lower Lck505 phosphatase activity in this context. In T cells with no CD45 protein, hnRNPLL mutation still diminished peripheral T cell accumulation, demonstrating that hnRNPLL regulates T cell longevity independently from its effects on CD45 splicing.
Collapse
Affiliation(s)
- Zuopeng Wu
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
121
|
Zikherman J, Jenne C, Watson S, Doan K, Raschke W, Goodnow CC, Weiss A. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 2010; 32:342-54. [PMID: 20346773 DOI: 10.1016/j.immuni.2010.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/23/2009] [Accepted: 12/29/2009] [Indexed: 12/18/2022]
Abstract
The kinase-phosphatase pair Csk and CD45 reciprocally regulate phosphorylation of the inhibitory tyrosine of the Src family kinases Lck and Fyn. T cell receptor (TCR) signaling and thymic development require CD45 expression but proceed constitutively in the absence of Csk. Here, we show that relative titration of CD45 and Csk expression reveals distinct regulation of basal and inducible TCR signaling during thymic development. Low CD45 expression is sufficient to rescue inducible TCR signaling and positive selection, whereas high expression is required to reconstitute basal TCR signaling and beta selection. CD45 has a dual positive and negative regulatory role during inducible but not basal TCR signaling. By contrast, Csk titration regulates basal but not inducible signaling. High physiologic expression of CD45 is thus required for two reasons-to downmodulate inducible TCR signaling during positive selection and to counteract Csk during basal TCR signaling.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
123
|
Earl LA, Bi S, Baum LG. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 2009; 285:2232-44. [PMID: 19920154 DOI: 10.1074/jbc.m109.066191] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-1, a beta-galactoside-binding protein highly expressed in the thymus, induces apoptosis of specific thymocyte subsets and activated T cells. Galectin-1 binds to N- and O-glycans on several glycoprotein receptors, including CD7, CD43, and CD45. Here we show that galectin-1 signaling through CD45, which carries both N- and O-glycans, is regulated by CD45 isoform expression, core 2 O-glycan formation and the balance of N-glycan sialylation. Regulation of galectin-1 T cell death by O-glycans is mediated through CD45 phosphatase activity. While galectin-1 signaling in cells expressing low molecular weight isoforms of CD45 requires expression of core 2 O-glycans (high affinity ligands for galectin-1), galectin-1 signaling in cells expressing a high molecular weight isoform of CD45 does not require core 2 O-glycans, suggesting that a larger amount of core 1 O-glycans (low affinity ligands for galectin-1) is sufficient to overcome lack of core 2 O-glycans. Furthermore, regulation of galectin-1 signaling by alpha2,6-sialylation of N-glycans is not solely dependent on CD45 phosphatase activity and can be modulated by the relative expression of enzymes that attach sialic acid in an alpha2,6- or alpha2,3-linkage. Thus, N- and O-glycans modulate galectin-1 T cell death by distinct mechanisms, and different glycosylation events can render thymocytes susceptible or resistant to galectin-1.
Collapse
Affiliation(s)
- Lesley A Earl
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
124
|
Reduced Levels of Protein Tyrosine Phosphatase CD45 Protect Mice from the Lethal Effects of Ebola Virus Infection. Cell Host Microbe 2009; 6:162-73. [DOI: 10.1016/j.chom.2009.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/16/2009] [Accepted: 07/14/2009] [Indexed: 01/01/2023]
|
125
|
Tribulatti MV, Cattaneo V, Hellman U, Mucci J, Campetella O. Galectin-8 provides costimulatory and proliferative signals to T lymphocytes. J Leukoc Biol 2009; 86:371-80. [PMID: 19401394 DOI: 10.1189/jlb.0908529] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Galectin (Gal) constitute a family of carbohydrate-recognizing molecules ubiquitously expressed in mammals. In the immune system, they regulate many processes such as inflammation, adhesion, and apoptosis. Here, we report the expression in the spleen of the two same Gal-8 splice variants described previously in the thymus. Gal-8 was found to induce two separate biological activities on T lymphocytes: a robust naive CD4(+) T cell proliferation in the absence of antigen and notably, a costimulatory signal that synergized the cognate OVA peptide in DO11.10 mice transgenic for TCR(OVA). The antigen-independent proliferation induced by Gal-8 displayed increased expression of pro- and anti-inflammatory cytokines, thus suggesting the polyclonal expansion of Th1 and Th2 clones. The costimulatory effect on antigen-specific T cell activation was evidenced when the Gal and the peptide were assayed at doses suboptimal to induce T cell proliferation. By mass spectra analysis, several integrins and leukocyte surface markers, including CD45 isoforms, as well as other molecules specific to macrophages, neutrophils, and platelets, were identified as putative Gal-8 counter-receptors. Gal-8 triggered pZAP70 and pERK1/2. Moreover, pretreatment with specific inhibitors of CD45 phosphatase or ERK1/2 prevented its antigen-dependent and -independent T cell-proliferative activities. This seems to be associated with the agonistic binding to CD45, which lowers the activation threshold of the TCR signaling pathway. Taken together, our findings support a distinctive role for locally produced Gal-8 as an enhancer of otherwise borderline immune responses and also suggest that Gal-8 might fuel the reactivity at inflammatory foci.
Collapse
Affiliation(s)
- María Virginia Tribulatti
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
126
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
127
|
Panchal RG, Ulrich RL, Bradfute SB, Lane D, Ruthel G, Kenny TA, Iversen PL, Anderson AO, Gussio R, Raschke WC, Bavari S. Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem 2009; 284:12874-85. [PMID: 19269962 DOI: 10.1074/jbc.m809633200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Tyrosine phosphorylation and dephosphorylation of proteins play a critical role for many T-cell functions. The opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) determine the level of tyrosine phosphorylation at any time. It is well accepted that PTKs are essential during T-cell signaling; however, the role and importance of PTPs are much less known and appreciated. Both transmembrane and cytoplasmic tyrosine phosphatases have been identified in T cells and shown to regulate T-cell responses. This review focuses on the roles of the two cytoplasmic PTPs, the Src-homology 2 domain (SH2)-containing SHP-1 and SHP-2, in T-cell signaling, development, differentiation, and function.
Collapse
Affiliation(s)
- Ulrike Lorenz
- Department of Microbiology and The Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
129
|
Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228:288-311. [PMID: 19290935 PMCID: PMC2739744 DOI: 10.1111/j.1600-065x.2008.00752.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is central to normal immune cell function. Disruption of the equilibrium between PTK and PTP activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases (SFKs) play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B-cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of SFKs activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple PTPs are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of SFKs in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease.
Collapse
Affiliation(s)
- Michelle L. Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-2413, Fax: 415-502-5127,
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| | - Jing W. Zhu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| |
Collapse
|
130
|
The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood 2009; 113:4942-54. [PMID: 19246339 PMCID: PMC2686144 DOI: 10.1182/blood-2008-08-174318] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.
Collapse
|
131
|
Acuto O, Di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol 2009; 8:699-712. [PMID: 18728635 DOI: 10.1038/nri2397] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The T-cell receptor (TCR) signalling machinery is central in determining the response of a T cell (establishing immunity or tolerance) following exposure to antigen. This process is made difficult by the narrow margin of self and non-self discrimination, and by the complexity of the genetic programmes that are induced for each outcome. Recent studies have identified novel negative feedback mechanisms that are rapidly induced by TCR engagement and that have key roles in the regulation of signal triggering and propagation. In vitro and in vivo data suggest that they are important in determining ligand discrimination by the TCR and in regulating signal output in response to antigen.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
132
|
Falahati R, Leitenberg D. Selective regulation of TCR signaling pathways by the CD45 protein tyrosine phosphatase during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2009; 181:6082-91. [PMID: 18941197 DOI: 10.4049/jimmunol.181.9.6082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
133
|
Differential impact of the CD45 juxtamembrane wedge on central and peripheral T cell receptor responses. Proc Natl Acad Sci U S A 2009; 106:546-51. [PMID: 19129486 DOI: 10.1073/pnas.0811647106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cooperative activity of protein tyrosine kinases and phosphatases plays a central role in regulation of T cell receptor (TCR) signal strength. Perturbing this balance, and thus the threshold for TCR signals, has profound impacts on T cell development and function. We previously generated mice containing a point mutation in the juxtamembrane wedge of the receptor-like protein tyrosine phosphatase CD45. Demonstrating the critical negative regulatory function of the wedge, the CD45 E613R (WEDGE) mutation led to a lymphoproliferative disorder (LPD) and a lupus-like autoimmune syndrome. Using genetic, cellular, and biochemical approaches, we now demonstrate that the CD45 wedge influences T cell development and function. Consistent with increased TCR signal strength, WEDGE mice have augmented positive selection and enhanced sensitivity to the CD4-mediated disease experimental autoimmune encephalitis (EAE). These correspond with hyperresponsive calcium and pERK responses to TCR stimulation in thymocytes, but surprisingly, not in peripheral T cells, where these responses are actually depressed. Together, the data support a role for the CD45 wedge in regulation of T cell responses in vivo and suggest that its effects depend on cellular context.
Collapse
|
134
|
Conze T, Shetye A, Tanaka Y, Gu J, Larsson C, Göransson J, Tavoosidana G, Söderberg O, Nilsson M, Landegren U. Analysis of genes, transcripts, and proteins via DNA ligation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:215-239. [PMID: 20636060 DOI: 10.1146/annurev-anchem-060908-155239] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Analytical reactions in which short DNA strands are used in combination with DNA ligases have proven useful for measuring, decoding, and locating most classes of macromolecules. Given the need to accumulate large amounts of precise molecular information from biological systems in research and in diagnostics, ligation reactions will continue to offer valuable strategies for advanced analytical reactions. Here, we provide a basis for further development of methods by reviewing the history of analytical ligation reactions, discussing the properties of ligation reactions that render them suitable for engineering novel assays, describing a wide range of successful ligase-based assays, and briefly considering future directions.
Collapse
Affiliation(s)
- Tim Conze
- Department of Genetics and Pathology, The Rudbeck Lab, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kabouridis PS, Jury EC. Lipid rafts and T-lymphocyte function: implications for autoimmunity. FEBS Lett 2008; 582:3711-8. [PMID: 18930053 PMCID: PMC2596348 DOI: 10.1016/j.febslet.2008.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Experimental evidence indicates that the mammalian cell membrane is compartmentalized. A structural feature that supports membrane segmentation implicates assemblies of selected lipids broadly referred to as lipid rafts. In T-lymphocytes, lipid rafts are implicated in signalling from the T-cell antigen receptor (TCR) and in localization and function of proteins residing proximal to the receptor. This review summarizes the current literature that deals with lipid raft involvement in T-cell activation and places particular emphasis in recent studies investigating lipid rafts in autoimmunity. The potential of lipid rafts as targets for the development of a new class of immune-modulating compounds is discussed.
Collapse
Affiliation(s)
- Panagiotis S Kabouridis
- William Harvey Research Institute, Queen Mary's School of Medicine & Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | | |
Collapse
|
136
|
Dexamethasone augments CXCR4-mediated signaling in resting human T cells via the activation of the Src kinase Lck. Blood 2008; 113:575-84. [PMID: 18840710 DOI: 10.1182/blood-2008-04-151803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dexamethasone (DM) is a synthetic member of the glucocorticoid (GC) class of hormones that possesses anti-inflammatory and immunosuppressant activity and is commonly used to treat chronic inflammatory disorders, severe allergies, and other disease states. Although GCs are known to mediate well-defined transcriptional effects via GC receptors (GCR), there is increasing evidence that GCs also initiate rapid nongenomic signaling events in a variety of cell types. Here, we report that DM induces the phosphorylation of Lck and the activation of other downstream mediators, including p59Fyn, Zap70, Rac1, and Vav in resting but not activated human T cells. DM treatment also augments CXCL12-mediated signaling in resting T cells through its cell surface receptor, CXCR4 resulting in the enhanced actin polymerization, Rac activation, and cell migration on ligand exposure. Lck was found to be a critical intermediate in these DM-induced signaling activities. Moreover, DM-mediated Lck phosphorylation in T cells was dependent on the presence of both the GCR and the CD45 molecule. Overall, these results elucidate additional nongenomic effects of DM and the GCR on resting human T cells, inducing Lck and downstream kinase activation and augmenting chemokine signaling and function.
Collapse
|
137
|
Oberdoerffer S, Moita LF, Neems D, Freitas RP, Hacohen N, Rao A. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 2008; 321:686-91. [PMID: 18669861 DOI: 10.1126/science.1157610] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The transition from naïve to activated T cells is marked by alternative splicing of pre-mRNA encoding the transmembrane phosphatase CD45. Using a short hairpin RNA interference screen, we identified heterogeneous ribonucleoprotein L-like (hnRNPLL) as a critical inducible regulator of CD45 alternative splicing. HnRNPLL was up-regulated in stimulated T cells, bound CD45 transcripts, and was both necessary and sufficient for CD45 alternative splicing. Depletion or overexpression of hnRNPLL in B and T cell lines and primary T cells resulted in reciprocal alteration of CD45RA and RO expression. Exon array analysis suggested that hnRNPLL acts as a global regulator of alternative splicing in activated T cells. Induction of hnRNPLL during hematopoietic cell activation and differentiation may allow cells to rapidly shift their transcriptomes to favor proliferation and inhibit cell death.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Department of Pathology, Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Salmond RJ, McNeill L, Holmes N, Alexander DR. CD4+ T cell hyper-responsiveness in CD45 transgenic mice is independent of isoform. Int Immunol 2008; 20:819-27. [DOI: 10.1093/intimm/dxn040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
140
|
Ennis J, Götherström C, Le Blanc K, Davies J. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 2008; 10:174-81. [DOI: 10.1080/14653240801891667] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
141
|
Abstract
The balance between kinases and phosphatases is crucial for regulating lymphocyte signaling. In this issue, McNeill et al. (2007) show that the transmembrane phosphatase CD45 has a role as both positive and negative regulator of T cell signaling.
Collapse
Affiliation(s)
- Rose Zamoyska
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA UK.
| |
Collapse
|