101
|
Wang Y, Huang Y, Li C, Wang X, Yang M, Xu D, Liu B, Yuan X. Establishment of a Necroptosis Related Genes Signature to Predict Prognosis and Therapeutic Response in Colon Cancer. Front Cell Dev Biol 2022; 10:921320. [PMID: 35874811 PMCID: PMC9305485 DOI: 10.3389/fcell.2022.921320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Necroptosis, as a form of programmed cell death, is involved in many physiological and pathological processes. However, its role in cancer progression and therapeutic response remains controversial. Colon cancer is one of the leading causes of cancer death and patients’ response to immune checkpoint blockade vary to a large degree. In this study, we investigated necroptosis related genes (NRGs) alterations in colon cancer by bioinformatics analysis. Colon cancer patients were classified into two subtypes with distinct clinical and molecular features based on NRGs. After finding differentially expressed genes and lasso regression, a prognostic model based on four necroptosis signature genes was constructed. The necroptosis signature was also a good predictor in the field of chemotherapy and immunotherapy in colon cancer. Altogether, this study illustrates the relationship between necroptosis and colon cancer, and establishes a novel scoring method to predict prognosis and therapeutic response in colon cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Liu
- *Correspondence: Bo Liu, ; Xianglin Yuan,
| | | |
Collapse
|
102
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Improving anticancer effect of aPD-L1 through lowering neutrophil infiltration by PLAG in tumor implanted with MB49 mouse urothelial carcinoma. BMC Cancer 2022; 22:727. [PMID: 35787261 PMCID: PMC9251917 DOI: 10.1186/s12885-022-09815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The PD-L1 antibody is an immune checkpoint inhibitor (ICI) attracting attention. The third-generation anticancer drug has been proven to be very effective due to fewer side effects and higher tumor-specific reactions than conventional anticancer drugs. However, as tumors produce additional resistance in the host immune system, the effectiveness of ICI is gradually weakening. Therefore, it is very important to develop a combination therapy that increases the anticancer effect of ICI by removing anticancer resistance factors present around the tumor. METHODS The syngeneic model was used (n = 6) to investigate the enhanced anti-tumor effect of PD-L1 antibody with the addition of PLAG. MB49 murine urothelial cancer cells were implanted into the C57BL/6 mice subcutaneously. PLAG at different dosages (50/100 mpk) was daily administered orally for another 4 weeks with or without 5 mpk PD-L1 antibody (10F.9G2). PD-L1 antibody was delivered via IP injection once a week. RESULTS The aPD-L1 monotherapy group inhibited tumor growth of 56% compared to the positive group, while the PLAG and aPD-L1 co-treatment inhibited by 89%. PLAG treatment effectively reduced neutrophils infiltrating localized in tumor and converted to a tumor microenvironment with anti-tumor effective T-cells. PLAG increased tumor infiltration of CD8 positive cytotoxic T-cell populations while effectively inhibiting the infiltration of neoplastic T-cells such as CD4/FoxP3. Eventually, neutrophil-induced tumor ICI resistance was resolved by restoring the neutrophil-to-lymphocyte ratio to the normal range. In addition, regulation of cytokine and chemokine factors that inhibit neutrophil infiltration and increase the killing activity of cytotoxic T cells was observed in the tumors of mice treated with PLAG + aPD-L1. CONCLUSIONS PLAG effectively turned the tumor-promoting microenvironment into a tumor-suppressing microenvironment. As a molecule that increases the anti-tumor effectiveness of aPD-L1, PLAG has the potential to be an essential and effective ICI co-therapeutic agent.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- grid.249967.70000 0004 0636 3099Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea
| |
Collapse
|
103
|
Zhang Y, He S, Xu C, Jiang Y, Miao Q, Pu K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy. Angew Chem Int Ed Engl 2022; 61:e202203184. [PMID: 35385175 DOI: 10.1002/anie.202203184] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Imaging to evaluate tumor-associated neutrophils (TANs) is imperative for cancer immunotherapy but remains challenging. We herein report an activatable semiconducting polymer nanoprobe (SPCy) for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of neutrophil elastase (NE), a biomarker of TANs. SPCy comprises a semiconducting polymer conjugated with a hemicyanine (hemi-Cy) dye caged by a NE-cleavable peptide as the side chain. After systemic administration, SPCy passively targets the tumor and reacts with NE to "uncage" the hemi-Cy, leading to enhanced NIRF and PA signals of the hemi-Cy but unchanged signals of the SP. Such NE-activated ratiometric NIRF and enhanced PA signals of SPCy correlate with the intratumoral population of TANs. Thus, this study not only presents the first TAN-specific PA probe, but also provides a general molecular design strategy for PA imaging of other immune-related biomarkers to facilitate screening of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
104
|
Pasqualetti F, Giampietro C, Montemurro N, Giannini N, Gadducci G, Orlandi P, Natali E, Chiarugi P, Gonnelli A, Cantarella M, Scatena C, Fanelli GN, Naccarato AG, Perrini P, Liberti G, Morganti R, Franzini M, Paolicchi A, Pellegrini G, Bocci G, Paiar F. Old and New Systemic Immune-Inflammation Indexes Are Associated with Overall Survival of Glioblastoma Patients Treated with Radio-Chemotherapy. Genes (Basel) 2022; 13:genes13061054. [PMID: 35741816 PMCID: PMC9223226 DOI: 10.3390/genes13061054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Systemic immunity and inflammation indexes (SI) derived from blood cells have gained increasing attention in clinical oncology as potential biomarkers that are associated with survival. Materials and methods. We tested 12 different SI using blood tests from patients with isocitrate dehydrogenase 1 and 2 wild-type glioblastomas, treated with radio-chemotherapy. The primary endpoint was their overall survival. Results. A total of 77 patients, comprising 43 males and 34 females, with a median age of 64 years (age range 26-84), who were treated between October 2010 and July 2020, were included in the present analysis (approved by a local ethics committee). In the univariate Cox regression analysis, all the indexes except two showed a statistically significant impact on OS. In the multivariate Cox regression analysis, neutrophil × platelet × leukocyte/(lymphocyte × monocyte) (NPW/LM) and neutrophil × platelet × monocyte/lymphocyte (NPM/L) maintained their statistically significant impact value. Conclusions. This univariate analysis confirms the potential of systemic inflammation indexes in patients with glioblastoma, while the multivariate analysis verifies the prognostic value of NPW/LM and NPM/L.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
- Department of Oncology, University of Oxford, Oxford OX1 4BH, UK
- Correspondence: or
| | - Celeste Giampietro
- UO Laboratorio Analisi Chimico Cliniche, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (C.G.); (E.N.); (P.C.); (G.P.)
| | - Nicola Montemurro
- Neurosurgery Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.M.); (P.P.); (G.L.)
| | - Noemi Giannini
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
| | - Giovanni Gadducci
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
| | - Paola Orlandi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (P.O.); (G.B.)
| | - Eleonora Natali
- UO Laboratorio Analisi Chimico Cliniche, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (C.G.); (E.N.); (P.C.); (G.P.)
| | - Paolo Chiarugi
- UO Laboratorio Analisi Chimico Cliniche, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (C.G.); (E.N.); (P.C.); (G.P.)
| | - Alessandra Gonnelli
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
| | - Martina Cantarella
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
| | - Cristian Scatena
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Giuseppe Nicolò Fanelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Paolo Perrini
- Neurosurgery Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.M.); (P.P.); (G.L.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Gaetano Liberti
- Neurosurgery Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.M.); (P.P.); (G.L.)
| | | | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Aldo Paolicchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| | - Giovanni Pellegrini
- UO Laboratorio Analisi Chimico Cliniche, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (C.G.); (E.N.); (P.C.); (G.P.)
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (P.O.); (G.B.)
| | - Fabiola Paiar
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (N.G.); (G.G.); (A.G.); (M.C.); (F.P.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.S.); (G.N.F.); (A.G.N.); (M.F.); (A.P.)
| |
Collapse
|
105
|
Zhang Y, Guo L, Dai Q, Shang B, Xiao T, Di X, Zhang K, Feng L, Shou J, Wang Y. A signature for pan-cancer prognosis based on neutrophil extracellular traps. J Immunother Cancer 2022; 10:jitc-2021-004210. [PMID: 35688556 PMCID: PMC9189842 DOI: 10.1136/jitc-2021-004210] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) were originally thought to be formed by neutrophils to trap invading microorganisms as a defense mechanism. Increasing studies have shown that NETs play a pivotal role in tumor progression and diffusion. In this case, transcriptome analysis provides an opportunity to unearth the association between NETs and clinical outcomes of patients with pan-cancer. METHODS The transcriptome sequencing data of The Cancer Genome Atlas pan-cancer primary focus was obtained from UCSC Xena, and a 19-gene NETs score was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model based on the expression levels of 69 NETs initial biomarkers we collected from multistudies. In addition, multiple datasets covering multiple cancer types from other databases were collected and used to validate the signature. Gene ontology enrichment analyses were used to annotate the functions of NETs-related pathways. Immunohistochemistry (IHC) was implemented to evaluate the role of NETs-related genes in clinical patients across types of tumors, including lung adenocarcinoma (n=58), colorectal carcinoma (n=93), kidney renal clear cell carcinoma (n=90), and triple-negative breast cancer (n=80). RESULTS The NETs score was calculated based on 19-NETs related genes according to the LASSO Cox model. The NETs score was considered a hazardous factor in most cancer types, with a higher score indicating a more adverse outcome. In addition, we found that NETs were significantly correlated to various malignant biological processes, such as the epithelial to mesenchymal transition (R=0.7444, p<0.0001), angiogenesis (R=0.5369, p<0.0001), and tumor cell proliferation (R=0.3835, p<0.0001). Furthermore, in IHC cohorts of a variety of tumors, myeloperoxidase, a gene involved in the model and a classical delegate of NETs formation, was associated with poor clinical outcomes. CONCLUSIONS Collectively, these constitutive and complementary biomarkers represented the ability of NETs formation to predict the development of patients' progression. Integrative transcriptome analyses plus clinical sample validation may facilitate the biomarker discovery and clinical transformation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Qichen Dai
- Department of Breast Surgery, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingqing Shang
- Department of Urology, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yipeng Wang
- Department of Breast Surgery, National Cancer Center
- National Clinical Research Center for Cancer
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
106
|
Mealiea D, McCart JA. Cutting both ways: the innate immune response to oncolytic virotherapy. Cancer Gene Ther 2022; 29:629-646. [PMID: 34453122 DOI: 10.1038/s41417-021-00351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses (OVs), above and beyond infecting and lysing malignant cells, interact with the immune system in complex ways that have important therapeutic significance. While investigation into these interactions is still in its early stages, important insights have been made over the past two decades that will help improve the clinical efficacy of OV-based management strategies in cancer care moving forward. The inherent immunosuppression that defines the tumor microenvironment can be modified by OV infection, and the subsequent recruitment and activation of innate immune cells, in particular, is central to this. Indeed, neutrophils, macrophages, natural killer cells, and dendritic cells, as well as other populations such as myeloid-derived suppressor cells, are key to the immune escape that allows tumors to survive, but their natural response to infection can be exploited by virotherapy. While stimulation of innate immune cells by OVs can initiate antitumor responses, related antiviral activity can limit virus spread and direct cytopathogenic effects. In this review, we highlight how each innate immune cell population influences this balance of antitumor and antiviral forces during virotherapy, some of the important molecular pathways that have been identified, and specific therapeutic targets that have emerged through this work. We discuss the importance of OV-based combination therapies in optimizing antiviral and antitumor innate immune responses stimulated by virotherapy toward tumor eradication, and how these processes vary depending on the tumor and OV in question. Rather than concentrating on a particular OV species in the review, we present the range of effects that have been documented across OV types to emphasize the context-specific nature of these interactions and how this is important in the design of future OV-based treatment approaches.
Collapse
Affiliation(s)
- David Mealiea
- Department of Surgery, University of Toronto, Toronto, ON, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| | - J Andrea McCart
- Department of Surgery, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
107
|
Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, Lefor AK, Sata N, Kitayama J. Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells. Heliyon 2022; 8:e09730. [PMID: 35756123 PMCID: PMC9218137 DOI: 10.1016/j.heliyon.2022.e09730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Although neutrophil extracellular traps (NETs) are present in various tumors, their roles in tumor biology have not been clarified yet. In this study, we examined how NETs affect the pharmacokinetics and effects of doxorubicin (DOX). Methods NETs were generated by neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS). DOX was added to NETs and their distribution was observed under fluorescein microscopy, and the diffusion of DOX through 3 μM pores from lower to upper chambers was evaluated with a fluorescence-based assay. Ovarian cancer cells, KOC-2S and SKOV3, were embedded in collagen gel droplets and cultured in 3D way and their apoptosis was examined with flow cytometry. Results DOX was mostly co-localized with NETs. The transfer of DOX to upper chambers increased over time, which was significantly decreased by the presence of neutrophils stimulated with PMA or LPS in the lower chamber. DOX outside of the gel increased the rates of annexin V (+) apoptotic cells, which were significantly reduced by the addition of LPS-stimulated neutrophils in media both in KOC-2S and SKOV3. The reduced diffusion and apoptosis were mostly restored by the destruction of the NETs structure with 1000 u/ml DNAse I. Conclusion NETs efficiently trap and inhibit the diffusion of DOX which may attenuate its ability to induce apoptosis of ovarian cancer cells. Degradation of NETs with DNAse I may augment the response of ovarian cancer to DOX. Doxorubicin is efficiently trapped by neutrophil extracellular traps (NETs). NETs suppress diffusion of doxorubicin through micro-pores and infiltration into resected tumor. NETs suppress doxorubicin-induced apoptosis of tumor cells in 3-D culture. DNAse may augment the effect of anti-cancer drugs by modulating pharmacokinetics.
Collapse
Affiliation(s)
- Kohei Tamura
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Rihito Kanamaru
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Ai Sadatomo
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Japan
- Corresponding author.
| |
Collapse
|
108
|
Wang H, Man Q, Huo F, Gao X, Lin H, Li S, Wang J, Su F, Cai, L, Shi Y, Liu, B, Bu L. STAT3 pathway in cancers: Past, present, and future. MedComm (Beijing) 2022; 3:e124. [PMID: 35356799 PMCID: PMC8942302 DOI: 10.1002/mco2.124] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, discovered in the cytoplasm of almost all types of mammalian cells, plays a significant role in biological functions. The duration of STAT3 activation in normal tissues is a transient event and is strictly regulated. However, in cancer tissues, STAT3 is activated in an aberrant manner and is induced by certain cytokines. The continuous activation of STAT3 regulates the expression of downstream proteins associated with the formation, progression, and metastasis of cancers. Thus, elucidating the mechanisms of STAT3 regulation and designing inhibitors targeting the STAT3 pathway are considered promising strategies for cancer treatment. This review aims to introduce the history, research advances, and prospects concerning the STAT3 pathway in cancer. We review the mechanisms of STAT3 pathway regulation and the consequent cancer hallmarks associated with tumor biology that are induced by the STAT3 pathway. Moreover, we summarize the emerging development of inhibitors that target the STAT3 pathway and novel drug delivery systems for delivering these inhibitors. The barriers against targeting the STAT3 pathway, the focus of future research on promising targets in the STAT3 pathway, and our perspective on the overall utility of STAT3 pathway inhibitors in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Han‐Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Qi‐Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fang‐Yi Huo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Su‐Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Fu‐Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lulu Cai,
- Personalized Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySchool of MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Bing Liu,
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| | - Lin‐Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool & Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral & Maxillofacial Head Neck OncologySchool & Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
109
|
Yang H, Wang L, Zhang J. Leukocyte modulation by natural products from herbal medicines and potential as cancer immunotherapy. J Leukoc Biol 2022; 112:185-200. [PMID: 35612275 DOI: 10.1002/jlb.3ru0222-087rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer constitutes a kind of life-threatening disease that is prevalent throughout the world. In light of limitations in conventional chemotherapies or radiotherapies, cancer immunotherapy has emerged as a potent strategy in treating cancer. In cancer immunotherapy, preliminary studies have demonstrated that cancer immune surveillance serves a crucial role in tumor initiation, progression, and metastasis. Herbal medicines and natural products, which serve as alternative medicines, are involved in the modulation of tumor immunosurveillance to enhance antitumor activity. Accordingly, this review aimed to summarize the modulation function of herbal medicines and natural products on tumor immunosurveillance while providing scientific insight into further research on its molecular mechanism and potential clinical applications.
Collapse
Affiliation(s)
- Huihai Yang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China.,Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China.,Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lulu Wang
- Department of Chinese medicine, College of Medicine, Changchun Science-Technology University, Changchun, China
| | - Jing Zhang
- Department of Chinese Medicine, College of Chinese Medicine Material, Jilin Agricultural University, Changchun, China
| |
Collapse
|
110
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
111
|
Early and Long-Term Outcomes after Propofol-and Sevoflurane-Based Anesthesia in Colorectal Cancer Surgery: A Retrospective Study. J Clin Med 2022; 11:jcm11092648. [PMID: 35566773 PMCID: PMC9103516 DOI: 10.3390/jcm11092648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Propofol is considered to protect against immunosuppression and has lower inflammatory responses in the perioperative period than volatile agents. We evaluated whether the anesthetic agent is associated with cancer outcomes. Methods: We retrospectively reviewed 2616 patients who underwent colorectal cancer surgery under general anesthesia between 2016 and 2018 (follow-up closure: July 2021) at a single institution. Patients received propofol-based total intravenous anesthesia or sevoflurane-based inhalational anesthesia. After propensity score matching, the postoperative neutrophil-lymphocyte ratio (NLR) was compared as primary outcome, and clinical outcomes were evaluated. Results: After 1:2 propensity matching, 717 patients were given propofol anesthesia and 1410 patients were given sevoflurane anesthesia. In the matched cohort, preoperative NLR was not significantly different between propofol and sevoflurane anesthesia (mean (95% CI)2.3 (1.8 to 2.8) and 2.2 (1.9 to 3.2); p = 0.72). NLR was significantly lower in propofol anesthesia at postoperative day two and five (mean difference (95% CI) 0.71 (0.43 to 0.98); p = 0.000 and 0.52 (0.30 to 0.74); p = 0.000). Urinary retention showed a higher incidence after propofol anesthesia (4.9% vs. 2.6%; p = 0.008). Other postoperative complications and overall/recurrence-free survival were not different in the two groups. Discussion: Although propofol anesthesia showed lower postoperative NLR than sevoflurane anesthesia, there was no association with clinical outcomes.
Collapse
|
112
|
Li L, Wang Y, He X, Li Z, Lu M, Gong T, Chang Q, Lin J, Liu C, Luo Y, Min L, Zhou Y, Tu C. Hematological Prognostic Scoring System Can Predict Overall Survival and Can Indicate Response to Immunotherapy in Patients With Osteosarcoma. Front Immunol 2022; 13:879560. [PMID: 35603156 PMCID: PMC9120642 DOI: 10.3389/fimmu.2022.879560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with a high metastatic potential. Nowadays, there is a lack of new markers to identify prognosis of osteosarcoma patients with response to medical treatment. Recent studies have shown that hematological markers can reflect to some extent the microenvironment of an individual with the potential to predict patient prognosis. However, most of the previous studies have studied the prognostic value of a single hematological index, and it is difficult to comprehensively reflect the tumor microenvironment of patients. Here, we comprehensively collected 16 hematological markers and constructed a hematological prognostic scoring system (HPSS) using LASSO cox regression analysis. HPSS contains many indicators such as immunity, inflammation, coagulation and nutrition. Our results suggest that HPSS is an independent prognostic factor for overall survival in osteosarcoma patients and is an optimal addition to clinical characteristics and well suited to further identify high-risk patients from clinically low-risk patients. HPSS-based nomograms have good predictive ability. Finally, HPSS also has some hints for immunotherapy response in osteosarcoma patients.
Collapse
Affiliation(s)
- Longqing Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhong He
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Chang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqi Lin
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Liu
- Institute of Jinan Yinfeng Medical Laboratory, Yinfeng Gene Technology Co Ltd, Jinan, China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhou
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Zhou, ; Chongqi Tu,
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Bone and Joint 3D-Printing and Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Zhou, ; Chongqi Tu,
| |
Collapse
|
113
|
Zhang Y, He S, Xu C, Jiang Y, Miao Q, Pu K. An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor‐Associated Neutrophils in Cancer Immunotherapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan 430074 P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Cheng Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou 215123 P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| |
Collapse
|
114
|
Feng B, Wu J, Shen B, Jiang F, Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures. Cancer Cell Int 2022; 22:166. [PMID: 35488263 PMCID: PMC9052457 DOI: 10.1186/s12935-022-02599-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Feng Jiang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
115
|
Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Biomedicines 2022; 10:biomedicines10040908. [PMID: 35453656 PMCID: PMC9030733 DOI: 10.3390/biomedicines10040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophil-mediated cytotoxicity toward tumor cells requires cell contact and is mediated by hydrogen peroxide. We have recently shown that Cathepsin G expressed on the neutrophil surface interacts with tumor RAGE, and this interaction facilitates neutrophil cytotoxicity. Interruption of the Cathepsin G–RAGE interaction led to 50–80% reduction in cytotoxicity, suggesting that additional interactions are also involved. Here we show that blocking antibodies to the C-type lectin receptors (CLRs) Clec4e and Dectin-1, but not those to NKG2D, attenuated murine neutrophil cytotoxicity towards murine tumor cells, suggesting a contributing role for these CLRs in neutrophil recognition of tumor cells. We further observed that the CLRs interact with tumor Nidogen-1 and Hspg2, two sulfated glycoproteins of the basement membrane. Both Nidogen-1 and Hspg2 were found to be expressed on the tumor cell surface. The knockdown of Nidogen-1, but not that of Hspg2, led to reduced susceptibility of the tumor cells to neutrophil cytotoxicity. Altogether, this study suggests a role for CLR–Nidogen-1 interaction in the recognition of tumor cells by neutrophils, and this interaction facilitates neutrophil-mediated killing of the tumor cells.
Collapse
|
116
|
Fan C, Li C, Lu S, Lai X, Wang S, Liu X, Song Y, Deng Y. Polysialic Acid Self-assembled Nanocomplexes for Neutrophil-Based Immunotherapy to Suppress Lung Metastasis of Breast Cancer. AAPS PharmSciTech 2022; 23:109. [PMID: 35411426 DOI: 10.1208/s12249-022-02243-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
The role of neutrophils in tumor metastasis has recently attracted widespread interest. Neutrophils are the most abundant immune cells in human peripheral blood, and large numbers can spontaneously migrate to metastatic sites, where they form an immunosuppressive microenvironment. Polysialic acid (PSA) can target peripheral blood neutrophils (PBNs) mediated by L-selectin, and abemaciclib (ABE) and mitoxantrone (MIT) can treat immunosuppressive microenvironments. Here, we aimed to inhibit lung metastasis of breast cancer and improve chemoimmunotherapy by designing a PSA-modified ABE and MIT co-delivery system (AM-polyion complex (PIC)) to target PBNs in mice with metastatic tumors. We found that through electrostatic interactions between the strong negative charge of PSA and the positive charge of the drug can form stable nanocomplexes and that spontaneous migration of neutrophils can mediate the aggregation of these complexes in the lungs, induce antimetastatic immune responses, enhance the effectiveness of cytotoxic T lymphocytes (CTLs), and inhibit regulatory T cell (Treg) proliferation in vivo and in vitro. Pharmacodynamic results suggested that neutrophil-mediated AM-PIC chemoimmunotherapy inhibited tumor metastasis in mice with lung metastasis of 4T1 breast cancer. Overall, PSA-modified nanocomplexes offer promising neutrophil-mediated, targeted drug delivery systems to treat lung metastasis of breast cancer.
Collapse
|
117
|
Yang M, Wang B, Hou W, Yu H, Zhou B, Zhong W, Liu Z, Li J, Zeng H, Liu C, Qin H, Lin T, Huang J. Negative Effects of Stromal Neutrophils on T Cells Reduce Survival in Resectable Urothelial Carcinoma of the Bladder. Front Immunol 2022; 13:827457. [PMID: 35386697 PMCID: PMC8978967 DOI: 10.3389/fimmu.2022.827457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Urothelial carcinoma of the bladder (UCB) is a major type of bladder cancer with a distinct tumor microenvironment (TME). Although neutrophils are the main component of myeloid cells in the TME, the clinical significance and function of the neutrophils remain unclear in UCB. Here, we observed CD66b+ neutrophils were predominantly enriched in the stroma of UCB tissues and their levels emerged as an independent prognostic factor for overall survival (P = 0.006, n = 237), and were positively associated with age (P = 0.033), tumor stage (P < 0.0001), nodal metastasis (P = 0.045), and histological grade (P < 0.0001). Furthermore, we found that CD66b+ neutrophils were frequently co-localized with CD4+ T cells (R=0.35, P = 0.0067), CD8+ T cells (R=0.52, P<0.0001) and Cleaved Caspase-3+ apoptosis cells (R=0.44, P = 0.0007) in the stroma of UCB tissue. In addition, better effects of T cells on patients’ survival were markedly reduced by neutrophils and T cells co-infiltration. Moreover, we confirmed bladder tumor cell supernatant treated neutrophils suppressed T cell proliferation and activation, and promoted T cell apoptosis through GM-CSF induced PD-L1 in vitro. The expression of PD-L1 by neutrophils was also detected in fresh UCB tissues by using flow cytometric analysis. These data suggested that stromal CD66b+ neutrophils may potentially represent a reliable marker of poor prognosis for UCB patients, and neutrophils might play an immunosuppressive role on T cell immunity partially via the expression of PD-L1.
Collapse
Affiliation(s)
- Meihua Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Weibin Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bingkun Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wenlong Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Zhuowei Liu
- Department of Urology, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jinqing Li
- Department of Urology, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Cheng Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tianxin Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
118
|
Fujimura T. Stromal Factors as a Target for Immunotherapy in Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2022; 23:ijms23074044. [PMID: 35409404 PMCID: PMC8999844 DOI: 10.3390/ijms23074044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD1) antibodies (Abs) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA4) Abs, have been widely administered for not only advanced melanoma, but also various non-melanoma skin cancers. Since profiles of tumor-infiltrating leukocytes (TILs) play important roles in immunotherapy using ICIs, it is important to evaluate cancer stromal cells such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), as well as stromal extracellular matrix protein, to predict the efficacy of ICIs. This review article focuses particularly on TAMs and related factors. Among TILs, TAMs and their related factors could be the optimal biomarkers for immunotherapy such as anti-PD1 Ab therapy. According to the studies presented, TAM-targeting therapies for advanced melanoma and non-melanoma skin cancer will develop in the future.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
119
|
Peng SM, Ren JJ, Yu N, Xu JY, Chen GC, Li X, Li DP, Yang J, Li ZN, Zhang YS, Qin LQ. The prognostic value of the Naples prognostic score for patients with non-small-cell lung cancer. Sci Rep 2022; 12:5782. [PMID: 35388133 PMCID: PMC8986824 DOI: 10.1038/s41598-022-09888-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
The Naples prognostic score (NPS) is an effective inflammatory and nutritional scoring system widely applied as a prognostic factor in various cancers. We aimed to analyze the prognostic value of the NPS in patients diagnosed with non-small-cell lung cancer (NSCLC). We prospectively collected 395 patients diagnosed with NSCLC between January 2016 and December 2018 in two university-affiliated hospitals. Patients were divided into three groups according to their pretreatment NPS (Group 0: NPS = 0; Group 1: NPS = 1–2; Group 2: NPS = 3–4). Kaplan–Meier survival curves indicated that patients with higher NPS had a poorer overall survival (OS) and progress-free survival (PFS) (both P < 0.05). NPS was further confirmed as an independent prognostic factors of OS and PFS by multivariable survival analysis (both P < 0.05). Furthermore, stratifying by TNM stage, NPS also has significant predictive performance for OS and PFS in both early (I–IIIA) and advanced (IIIB–IV) stage NSCLC (all P < 0.05). The time-dependent receiver operating characteristic curve analysis demonstrated that NPS was more superior to other prognostic factors in predicting OS and PFS. In conclusion, NPS may serve as an effective indicator to predict OS and PFS in NSCLC patients regardless of TNM stage.
Collapse
Affiliation(s)
- Si-Min Peng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jin-Jin Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Na Yu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xiaodong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Da-Peng Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeng-Ning Li
- Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Song Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China.
| |
Collapse
|
120
|
Tian T, Lu J, Zhao W, Wang Z, Xu H, Ding Y, Guo W, Qin P, Zhu W, Song C, Ma H, Zhang Q, Shen H. Associations of systemic inflammation markers with identification of pulmonary nodule and incident lung cancer in Chinese population. Cancer Med 2022; 11:2482-2491. [PMID: 35384389 PMCID: PMC9189452 DOI: 10.1002/cam4.4606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
Objectives Neutrophil‐to‐lymphocyte ratio (NLR), platelet‐to‐lymphocyte ratio (PLR), and systemic immune‐inflammation index (SII), easily accessible systemic inflammation response parameters, were reported to associate with poor lung cancer prognosis. However, research on the effects of these markers on the risk of positive nodules (PNs) and lung cancer is limited. Methods Participants in this retrospective study were those who had their first computed tomography (CT) screening at Jiangsu Province Hospital's Health Promotion Center between January 1, 2017 and December 31, 2020. We identified PNs (≥6 mm in diameter) from free text of CT reports and lung cancer from medical records. Multivariate logistic analysis was used to assess the association between NLR, PLR, or SII and PNs or lung cancer. Results The detected rate of PNs was 9.60% among the 96,476 participants. Age, smoking and body mass index were possible influencing factors for PNs. We observed linear dose‐effect relationship between NLR, PLR, or SII and PNs (pnon‐linear > 0.05). Compared with low quintile, participants with top quintiles of NLR, PLR or SII had an increased risk of PNs, with the adjusted ORs of 1.19 (1.11–1.28), 1.11 (1.04–1.19) or 1.11 (1.03–1.18), respectively. Meanwhile, NLR showed the U‐shaped relationship with lung cancer, with adjusted ORs of 1.40 (1.08–1.81) comparing highest NLR quintile to the third quintile. The high PLR and SII showed significantly associated with lung cancer with adjusted ORs of 1.29 (0.99–1.68) and 1.35 (1.04–1.74) comparing to the lowest quintile. Conclusions The high levels of systemic inflammation markers were associated with the risk of positive pulmonary nodules and lung cancer, which suggested systemic immune response may be an important pre‐clinical feature for the early identification of diseases.
Collapse
Affiliation(s)
- Ting Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Lu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Health Promotion Center, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhongming Wang
- Information Department, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Xu
- Department of Radiology, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqing Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wen Guo
- Health Promotion Center, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei Qin
- Health Promotion Center, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfang Zhu
- Health Promotion Center, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qun Zhang
- Health Promotion Center, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
121
|
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, Lei P, Wu H, Zhao J. Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105240. [PMID: 35128843 PMCID: PMC8981446 DOI: 10.1002/advs.202105240] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Pancreatic cancer is a deadly disease with little response to standard therapies. Irreversible electroporation (IRE) has emerged as a novel ablative technique for the clinical treatment of pancreatic cancer. Combinations of IRE and immunotherapies, including anti-programmed death 1 (αPD1) immune checkpoint blockade, have shown promising efficacy in both preclinical and clinical studies. However, tumor recurrence remains an obstacle that needs to be overcome. It herein is shown that IRE induces a substantial infiltration of neutrophils into pancreatic tumors. These neutrophils are then polarized into a protumor phenotype by immunosuppressive cues, in particular transforming growth factor β (TGF-β). Using glutathione-responsive degradable mesoporous silica nanoparticles loaded with SB525334, an inhibitor of TGF-β1 receptor, it is demonstrated that local inhibition of TGF-β within the tumor microenvironment promotes neutrophil polarization into an antitumor phenotype, enhances pancreatic cancer response to combined IRE and αPD1 therapy, and induces long-term antitumor memory. The therapeutic efficacy is also attributed to tumor infiltration by CD8+ cytotoxic T cells, depletion of regulatory T cells, and maturation of antigen-presenting dendritic cells. Thus, modulating neutrophil polarization with nanomedicine is a promising strategy for treating pancreatic cancer.
Collapse
Affiliation(s)
- Huiming Peng
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Jian Shen
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430022China
| | - Xin Long
- Department of Histology and EmbryologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xiaoqi Zhou
- Department of ImmunologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Jiaqi Zhang
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xina Xu
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Teng Huang
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Hui Xu
- Ultrastructural Pathology LaboratoryDepartment of PathologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Shuguo Sun
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Chun Li
- Department of Cancer Systems ImagingUniversity of Texas MD Anderson CancerHoustonTX77030USA
| | - Ping Lei
- Department of ImmunologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Heshui Wu
- Department of Pancreatic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430022China
| | - Jun Zhao
- Department of AnatomySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanHubei Province430030China
- Department of Nuclear Medicine and PETTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
- Cell Architecture Research CenterHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
122
|
Xiong T, He P, Zhou M, Zhong D, Yang T, He W, Xu Z, Chen Z, Liu YW, Dai SS. Glutamate blunts cell-killing effects of neutrophils in tumor microenvironment. Cancer Sci 2022; 113:1955-1967. [PMID: 35363928 PMCID: PMC9207372 DOI: 10.1111/cas.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Neutrophils are the first defenders of the innate system for injury and infection. They have gradually been recognized as important participants in tumor initiation and development due to their heterogeneity and plasticity. In the tumor microenvironment (TME), neutrophils can exert antitumor and protumor functions, depending on the surroundings. Tumor cells systemically alter intracellular amino acid (AA) metabolism and extracellular AA distribution to meet their proliferation need, leading to metabolic reprogramming and TME reshaping. However, the underlying mechanisms that determine how altered AAs affect neutrophils in TME are less‐explored. Here, we identified that abundant glutamate releasing from tumor cells blunted neutrophils’ cell‐killing effects toward tumor cells in vitro and in vivo. Mass spectrometric detection, flow cytometry, and western blot experiments proved that increased levels of pSTAT3/RAB10/ARF4, mediated by glutamate, were accompanied with immunosuppressive phenotypes of neutrophils in TME. We also discovered that riluzole, an FDA‐approved glutamate release inhibitor, significantly inhibited tumor growth by restoring neutrophils’ cell‐killing effects and decreasing glutamate secretion from tumor cells. These findings highlight the importance of tumor‐released glutamate on neutrophil transformation in TME, providing new possible cancer treatments targeting altered glutamate metabolism.
Collapse
Affiliation(s)
- Tiantian Xiong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Ping He
- Department of Cardiac Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Zongtao Chen
- Health Management Center, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, PR China
| |
Collapse
|
123
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
124
|
Lasagna A, Muzzana M, Ferretti VV, Klersy C, Pagani A, Cicognini D, Pedrazzoli P, Brugnatelli SG. The Role of Pre-treatment Inflammatory Biomarkers in the Prediction of an Early Response to Panitumumab in Metastatic Colorectal Cancer. Cureus 2022; 14:e24347. [PMID: 35607541 PMCID: PMC9123381 DOI: 10.7759/cureus.24347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/17/2023] Open
Abstract
Background Systemic inflammation is a critical component of the development and progression of several types of cancer. Neutrophil-lymphocyte ratio (NLR) and lymphocyte-monocyte ratio (LMR) are simple, inexpensive, and reliable predictors of the systemic inflammatory response to the therapy in different malignant tumors, including colorectal cancer. Methods Metastatic colorectal cancer (mCRC) patients treated with panitumumab plus chemotherapy at first-line at the medical oncology unit of Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo di Pavia between January 1st 2016 and February 1st 2021 were retrospectively analyzed. NLR and LMR were divided into two groups (high and low) based on the cut-off points, with the estimation of the prognostic accuracy of NLR for the early treatment response as the primary end-point of this study. Results The receiver operating characteristic (ROC) analysis showed a fair prognostic accuracy of NLR for early treatment response (area under the curve (AUC)=0.76, 95% CI: 0.62-0.89). A slightly lower prognostic accuracy was found for LMR (AUC=0.71, 95% CI: 0.57-0.85). In the univariable proportional hazard Cox model, no effect of NLR on PFS was found (NLRHigh vs. NLRLow HR=1.3; 95% CI: 0.7-2.4, p=0.414). Patients with higher levels of LMR showed a trend towards higher PFS (LMRHigh vs. LMRLow HR=0.4; 95% CI: 0.2-1.1, p=0.066). No association was found between NLR (or LMR) and skin toxicity. Conclusions NLR and LMR may be used as biomarkers of prognostic accuracy for the early treatment response in mCRC patients treated with panitumumab.
Collapse
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Marta Muzzana
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Virginia V Ferretti
- Service of Clinical Epidemiology & Biostatistic, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Catherine Klersy
- Service of Clinical Epidemiology & Biostatistic, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Anna Pagani
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Daniela Cicognini
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Paolo Pedrazzoli
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| | - Silvia G Brugnatelli
- Medical Oncology, Fondazione Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Matteo, Pavia, ITA
| |
Collapse
|
125
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
126
|
Kaasinen M, Hagström J, Mustonen H, Sorsa T, Sund M, Haglund C, Seppänen H. Matrix Metalloproteinase 8 Expression in a Tumour Predicts a Favourable Prognosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:3314. [PMID: 35328734 PMCID: PMC8951094 DOI: 10.3390/ijms23063314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant cause of cancer-related death globally, and, despite improvements in diagnostics and treatment, survival remains poor. Matrix metalloproteinases (MMPs) are enzymes involved in stroma remodelling in inflammation and cancer. MMP-8 plays a varied prognostic role in cancers of the gastrointestinal tract. We examined the prognostic value of MMP-8 immunoexpression in tumour tissue and the amount of MMP-8-positive polymorphonuclear cells (PMNs) in PDAC and their association with immune responses using C-reactive protein (CRP) as a marker of systemic inflammation. Tumour samples from 141 PDAC patients undergoing surgery in 2002−2011 at the Department of Surgery, Helsinki University Hospital were stained immunohistochemically, for which we evaluated MMP-8 expression in cancer cells and the amount of MMP-8-positive PMNs. We assessed survival using the Kaplan−Meier analysis while uni- and multivariable analyses relied on the Cox proportional hazards model. A negative MMP-8 stain and elevated CRP level predicted a poor prognosis (hazard ratio [HR] = 6.95; 95% confidence interval (CI) 2.69−17.93; p < 0.001) compared to a positive stain and low CRP level (<10 mg/L). The absence of PMNs together with an elevated CRP level also predicted an unfavourable outcome (HR = 3.17; 95% CI 1.60−6.30; p = 0.001). MMP-8 expression in the tumour served as an independent positive prognostic factor (HR = 0.33; 95% CI 0.16−0.68; p = 0.003). Tumour MMP-8 expression and a low CRP level may predict a favourable outcome in PDAC with similar results for MMP-8-positive PMNs and low CRP levels. Tumoural MMP-8 expression represents an independent positive prognostic factor in PDAC.
Collapse
Affiliation(s)
- Mirjami Kaasinen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Department of Oral Pathology and Radiology, University of Turku, 20014 Turku, Finland
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Solna, Sweden
| | - Malin Sund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, 90187 Umeå, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
127
|
Jiang N, Zhang X, Chen Q, Kantawong F, Wan S, Liu J, Li H, Zhou J, Lu B, Wu J. Identification of a Mitochondria-Related Gene Signature to Predict the Prognosis in AML. Front Oncol 2022; 12:823831. [PMID: 35359394 PMCID: PMC8960857 DOI: 10.3389/fonc.2022.823831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-related metabolic reprogramming plays a major role in the occurrence, development, drug resistance, and recurrence of acute myeloid leukemia (AML). However, the roles of mitochondria-related genes (MRGs) in the prognosis and immune microenvironment for AML patients remain largely unknown. In this study, by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, 4 MRGs’ (HPDL, CPT1A, IDH3A, and ETFB) signature was established that demonstrated good robustness in TARGET AML datasets. The univariate and multivariate Cox regression analyses both demonstrated that the MRG signature was a robust independent prognostic factor in overall survival prediction with high accuracy for AML patients. Based on the risk score calculated by the signature, samples were divided into high- and low-risk groups. Gene set enrichment analysis (GSEA) suggested that the MRG signature is involved in the immune-related pathways. Via immune infiltration analysis and immunosuppressive genes analysis, we found that MRG risk of AML patients was strikingly positively correlated with an immune cell infiltration and expression of critical immune checkpoints, indicating that the poor prognosis might be caused by immunosuppressive tumor microenvironment (TME). In summary, the signature based on MRGs could act as an independent risk factor for predicting the clinical prognosis of AML and could also reflect an association with the immunosuppressive microenvironment, providing a novel method for AML metabolic and immune therapy based on the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Foreign Language School, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xinzhuo Zhang
- Foreign Language School, Southwest Medical University, Luzhou, China
| | - Qi Chen
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Shengli Wan
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bin Lu
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Jianming Wu, ; Bin Lu,
| |
Collapse
|
128
|
Identification of IL20RB as a Novel Prognostic and Therapeutic Biomarker in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:9443407. [PMID: 35299868 PMCID: PMC8923803 DOI: 10.1155/2022/9443407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a type of life-threatening malignant tumor of the urinary system. IL20RB, interleukin 20 receptor subunit beta, is a cytokine receptor subunit coding gene and was initially found to play a vital role in human cancers, while its role in ccRCC still remains unclear. Methods In this work, we explored the prognostic value and therapeutic potential of IL20RB in ccRCC mainly by online tools. Firstly, we used UALCAN and GEPIA to explore the expression profile and prognostic value of IL20RB in various cancers; the expression profile in tumor cell lines was also analysed with CCLE and Expression Atlas. Then, we decided to focus on ccRCC for further analysis; we further demonstrated the significant correlation between expression and clinical features by GEPIA and UALCAN. In order to reveal the potential intrinsic mechanism responsible for the upregulation of IL20RB in ccRCC, we made genetic alternation analysis and methylation analysis. cBioPortal was used for genetic alternation analysis. UALCAN, MethSurv, and Xena were used for methylation analysis. To learn details of how IL20RB might function in ccRCC, we further conducted functional analysis and immune infiltration analysis. STRING and GSEA were used to do functional analysis. TIMER was used for immune infiltration analysis; KM plotter was used for survival analysis. Results Results show that IL20RB is upregulated in ccRCC, and low methylation may be responsible for its upregulation. Both high expression and low methylation of IL20RB predict worse survival, and both have a strong positive correlation with clinical characteristics. In addition, results indicate that there exists a crosstalk between IL20RB and neutrophils. Furthermore, the immune microenvironment could influence the prognosis predicting ability of IL20RB. Conclusions In conclusion, IL20RB plays an important role in ccRCC and is identified as a novel prognostic and potential therapeutic biomarker in ccRCC.
Collapse
|
129
|
Shahzad MH, Feng L, Su X, Brassard A, Dhoparee-Doomah I, Ferri LE, Spicer JD, Cools-Lartigue JJ. Neutrophil Extracellular Traps in Cancer Therapy Resistance. Cancers (Basel) 2022; 14:1359. [PMID: 35267667 PMCID: PMC8909607 DOI: 10.3390/cancers14051359] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils and their products are increasingly recognized to have a key influence on cancer progression and response to therapy. Their involvement has been shown in nearly every aspect of cancer pathophysiology with growing evidence now supporting their role in resistance to a variety of cancer therapies. Recently, the role of neutrophils in cancer progression and therapy resistance has been further complicated with the discovery of neutrophil extracellular traps (NETs). NETs are web-like structures of chromatin decorated with a variety of microbicidal proteins. They are released by neutrophils in a process called NETosis. NET-dependent mechanisms of cancer pathology are beginning to be appreciated, particularly with respect to tumor response to chemo-, immuno-, and radiation therapy. Several studies support the functional role of NETs in cancer therapy resistance, involving T-cell exhaustion, drug detoxification, angiogenesis, the epithelial-to-mesenchymal transition, and extracellular matrix remodeling mechanisms, among others. Given this, new and promising data suggests NETs provide a microenvironment conducive to limited therapeutic response across a variety of neoplasms. As such, this paper aims to give a comprehensive overview of evidence on NETs in cancer therapy resistance with a focus on clinical applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan J. Cools-Lartigue
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada; (M.H.S.); (L.F.); (X.S.); (A.B.); (I.D.-D.); (L.E.F.); (J.D.S.)
| |
Collapse
|
130
|
BACH1: A Potential Predictor of Survival in Early-Stage Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3921095. [PMID: 35035660 PMCID: PMC8758312 DOI: 10.1155/2022/3921095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022]
Abstract
Purpose Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t-AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.
Collapse
|
131
|
Robertson TF, Huttenlocher A. Real-time imaging of inflammation and its resolution: It's apparent because it's transparent. Immunol Rev 2022; 306:258-270. [PMID: 35023170 PMCID: PMC8855992 DOI: 10.1111/imr.13061] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
The ability to directly observe leukocyte behavior in vivo has dramatically expanded our understanding of the immune system. Zebrafish are particularly amenable to the high-resolution imaging of leukocytes during both homeostasis and inflammation. Due to its natural transparency, intravital imaging in zebrafish does not require any surgical manipulation. As a result, zebrafish are particularly well-suited for the long-term imaging required to observe the temporal and spatial events during the onset and resolution of inflammation. Here, we review major insights about neutrophil and macrophage function gained from real-time imaging of zebrafish. We discuss neutrophil reverse migration, the process whereby neutrophils leave sites of tissue damage and resolve local inflammation. Further, we discuss the current tools available for investigating immune function in zebrafish and how future studies that simultaneously image multiple leukocyte subsets can be used to further dissect mechanisms that regulate both the onset and resolution of inflammation.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
132
|
Bohaumilitzky L, Kluck K, Hüneburg R, Gallon R, Nattermann J, Kirchner M, Kristiansen G, Hommerding O, Pfuderer PL, Wagner L, Echterdiek F, Kösegi S, Müller N, Fischer K, Nelius N, Hartog B, Borthwick G, Busch E, Haag GM, Bläker H, Möslein G, von Knebel Doeberitz M, Seppälä TT, Ahtiainen M, Mecklin JP, Bishop DT, Burn J, Stenzinger A, Budczies J, Kloor M, Ahadova A. The Different Immune Profiles of Normal Colonic Mucosa in Cancer-Free Lynch Syndrome Carriers and Lynch Syndrome Colorectal Cancer Patients. Gastroenterology 2022; 162:907-919.e10. [PMID: 34863788 DOI: 10.1053/j.gastro.2021.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Owing to the high load of immunogenic frameshift neoantigens, tumors arising in individuals with Lynch syndrome (LS), the most common inherited colorectal cancer (CRC) syndrome, are characterized by a pronounced immune infiltration. However, the immune status of normal colorectal mucosa in LS is not well characterized. We assessed the immune infiltrate in tumor-distant normal colorectal mucosa from LS CRC patients, sporadic microsatellite-unstable (MSI) and microsatellite-stable (MSS) CRC patients, and cancer-free LS carriers. METHODS CD3-positive, FOXP3-positive, and CD8-positive T cells were quantified in, respectively, 219, 233, and 201 formalin-fixed paraffin-embedded (FFPE) normal colonic mucosa tissue sections from CRC patients and cancer-free LS carriers and 26, 22, and 19 LS CRCs. CD3-positive T cells were also quantified in an independent cohort of 97 FFPE normal rectal mucosa tissue sections from LS carriers enrolled in the CAPP2 clinical trial. The expression of 770 immune-relevant genes was analyzed in a subset of samples with the use of the NanoString nCounter platform. RESULTS LS normal mucosa specimens showed significantly elevated CD3-, FOXP3-, and CD8-positive T-cell densities compared with non-LS control specimens. Gene expression profiling and cluster analysis revealed distinct immune profiles in LS carrier mucosa with and without cancer manifestation. Long-term follow-up of LS carriers within the CAPP2 trial found a correlation between mucosal T-cell infiltrate and time to subsequent tumor occurrence. CONCLUSIONS LS carriers show elevated mucosal T-cell infiltration even in the absence of cancer. The normal mucosa immune profile may be a temporary or permanent tumor risk modifier in LS carriers.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | - Pauline L Pfuderer
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lelia Wagner
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Echterdiek
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Nephrology, Klinikum Stuttgart-Katharinenhospital, Stuttgart, Germany
| | - Svenja Kösegi
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nico Müller
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Fischer
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Nelius
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Hartog
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Gillian Borthwick
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Elena Busch
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg Martin Haag
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Gabriela Möslein
- Department of Surgery, Ev. Krankenhaus Bethesda Hospital, Duisburg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Toni T Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, Helsinki, Finland; Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Molecular Pathology, Central Finland Hospital Nova, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Surgery, Central Finland Hospital Nova, Jyväskylä, Finland
| | - D Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
133
|
Sarcopenia and the rate of change of the neutrophil/lymphocyte ratio as predictors of pembrolizumab efficacy in advanced urothelial carcinoma. Anticancer Drugs 2022; 33:459-466. [DOI: 10.1097/cad.0000000000001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
134
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
135
|
Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. NANOSCALE 2022; 14:1621-1645. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neutrophils, the most abundant leukocytes in humans, play a crucial role in acute inflammation during infection and tumorigenesis. Neutrophils are the major types of cells recruited to the inflammation sites induced by pathogens, exhibiting great homing ability towards inflammatory disorders and tumor sites. Therefore, a neutrophil-based drug delivery system (NDDS) has become a promising platform for anti-cancer and anti-inflammatory treatment. Recent decades have witnessed the huge progress of applying nanomaterials in drug delivery. Nanomaterials are regarded as innovative components to enrich the field of neutrophil-based therapies due to their unique physiochemical characteristics. In this review, the latest advancement of combining diverse nanomaterials with an NDDS for cancer and inflammatory disease treatment will be summarized. It is discussed how nanomaterials empower the therapeutic area of an NDDS and how an NDDS circumvents the limitations of nanomaterials. Moreover, based on the finding that neutrophils are closely involved in the progression of cancer and inflammatory diseases, emerging therapeutic strategies that target neutrophils will be outlined. Finally, as neutrophils were demonstrated to play a central role in the immunopathology of COVID-19, which causes necroinflammation that is responsible for the cytokine storm and sepsis during coronavirus infections, novel therapeutic approaches that anchor neutrophils against the pathological consequences related to COVID-19 will be highlighted as well.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lijun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
136
|
Zhu M, Chen L, Kong X, Wang X, Li X, Fang Y, Wang J. The Systemic Immune-Inflammation Index is an Independent Predictor of Survival in Breast Cancer Patients. Cancer Manag Res 2022; 14:775-820. [PMID: 35241935 PMCID: PMC8887616 DOI: 10.2147/cmar.s346406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose The current investigation examines the potential clinical value and prognostic significance of a systemic immune-inflammation index (SII) in patients with breast cancer. Patients and Methods A total of 477 individuals underwent neoadjuvant chemotherapy, and 308 individuals did not at our center between January 1998 and December 2016 were selected. An optimized SII threshold was generated using a receiver operating characteristic curve (ROC). The relationship between various factors and breast cancer in predicting disease-free survival (DFS) and overall survival (OS) were analyzed. Results The SII < 560 group (Low SII group) and SII ≥ 560 group (High SII group) are divided according to the threshold value. SII was an independent predictor for breast cancer DFS and OS based on univariate and multivariate analyses. Low SII patients had higher mean DFS and OS in contrast to those in the high SII groups (46.65 vs 27.37 months and 69.92 vs 49.53 months). Those in the low SII cohort who also had early or advanced breast cancer, different molecular subtypes, and with or without lymph vessel invasion all had higher mean survival time of DFS and OS in contrast to those with raised SII values (P<0.05). The mean DFS and OS durations also varied based on different Miller and Payne grades (MPG) (P <0.005), and different response groups (P<0.05). Conclusion SII can be used as an easily accessible and minimally invasive potential prognostic factor in individuals with breast cancer and may also guide clinicians in treating and prognosticating patients with breast cancer.
Collapse
Affiliation(s)
- Mengliu Zhu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
- Correspondence: Jing Wang; Yi Fang, Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China, Email ;
| |
Collapse
|
137
|
de los Reyes AA, Kim Y. Optimal regulation of tumour-associated neutrophils in cancer progression. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210705. [PMID: 35127110 PMCID: PMC8808100 DOI: 10.1098/rsos.210705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
In a tumour microenvironment, tumour-associated neutrophils could display two opposing differential phenotypes: anti-tumour (N1) and pro-tumour (N2) effector cells. Converting N2 to N1 neutrophils provides innovative therapies for cancer treatment. In this study, a mathematical model for N1-N2 dynamics describing the cancer survival and immune inhibition in response to TGF-β and IFN-β is considered. The effects of exogenous intervention of TGF-β inhibitor and IFN-β are examined in order to enhance N1 recruitment to combat tumour progression. Our approach employs optimal control theory to determine drug infusion protocols that could minimize tumour volume with least administration cost possible. Four optimal control scenarios corresponding to different therapeutic strategies are explored, namely, TGF-β inhibitor control only, IFN-β control only, concomitant TGF-β inhibitor and IFN-β controls, and alternating TGF-β inhibitor and IFN-β controls. For each scheme, different initial conditions are varied to depict different pathophysiological condition of a cancer patient, leading to adaptive treatment schedule. TGF-β inhibitor and IFN-β drug dosages, total drug amount, infusion times and relative cost of drug administrations are obtained under various circumstances. The control strategies achieved could guide in designing individualized therapeutic protocols.
Collapse
Affiliation(s)
- Aurelio A. de los Reyes
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Institute of Mathematics, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Mathematical Biosciences Institute, Columbus, OH 43210, USA
| |
Collapse
|
138
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
139
|
Chemokines as Regulators of Neutrophils: Focus on Tumors, Therapeutic Targeting, and Immunotherapy. Cancers (Basel) 2022; 14:cancers14030680. [PMID: 35158948 PMCID: PMC8833344 DOI: 10.3390/cancers14030680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Neutrophils are the main leukocyte subset present in human blood and play a fundamental role in the defense against infections. Neutrophils are also an important component of the tumor stroma because they are recruited by selected chemokines produced by both cancer cells and other cells of the stroma. Even if their presence has been mostly associated with a bad prognosis, tumor-associated neutrophils are present in different maturation and activation states and can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines not only induce neutrophil directional migration but also have an important role in their activation and maturation. For these reasons, chemokines and chemokine receptors are now considered targets to improve the antitumoral function of neutrophils in cancer immunotherapy. Abstract Neutrophils are an important component of the tumor microenvironment, and their infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils have been shown to be endowed with both protumor and antitumor activities, reflecting their heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect neutrophil maturation and effector functions. Here, we review human and mouse data suggesting that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve their antitumor properties and the efficiency of immunotherapy.
Collapse
|
140
|
Zhai WY, Duan FF, Chen S, Wang JY, Lin YB, Wang YZ, Rao BY, Zhao ZR, Long H. A Novel Inflammatory-Related Gene Signature Based Model for Risk Stratification and Prognosis Prediction in Lung Adenocarcinoma. Front Genet 2022; 12:798131. [PMID: 35069695 PMCID: PMC8766344 DOI: 10.3389/fgene.2021.798131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammation is an important hallmark of cancer and plays a role in both neogenesis and tumor development. Despite this, inflammatory-related genes (IRGs) remain to be poorly studied in lung adenocarcinoma (LUAD). We aim to explore the prognostic value of IRGs for LUAD and construct an IRG-based prognosis signature. The transcriptomic profiles and clinicopathological information of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Least absolute shrinkage and selection operator (LASSO) analysis and multivariate Cox regression were applied in the TCGA set to generate an IRG risk signature. LUAD cases with from the GSE31210 and GSE30219 datasets were used to validate the predictive ability of the signature. Analysis of the TCGA cohort revealed a five-IRG risk signature consisting of EREG, GPC3, IL7R, LAMP3, and NMUR1. This signature was used to divide patients into two risk groups with different survival rates. Multivariate Cox regression analysis verified that the risk score from the five-IRG signature negatively correlated with patient outcome. A nomogram was developed using the IRG risk signature and stage, with C-index values of 0.687 (95% CI: 0.644-0.730) in the TCGA training cohort, 0.678 (95% CI: 0.586-0.771) in GSE30219 cohort, and 0.656 (95% CI: 0.571-0.740) in GSE30219 cohort. Calibration curves were consistent between the actual and the predicted overall survival. The immune infiltration analysis in the TCGA training cohort and two GEO validation cohorts showed a distinctly differentiated immune cell infiltration landscape between the two risk groups. The IRG risk signature for LUAD can be used to predict patient prognosis and guide individual treatment. This risk signature is also a potential biomarker of immunotherapy.
Collapse
Affiliation(s)
- Wen-Yu Zhai
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang-Fang Duan
- State Key Laboratory of Oncology in Southern China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Si Chen
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ye Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yao-Bin Lin
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Zhi Wang
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Bing-Yu Rao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Rui Zhao
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in Southern China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Lung Cancer Research Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
141
|
Langiu M, Palacios-Acedo AL, Crescence L, Mege D, Dubois C, Panicot-Dubois L. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. Int J Mol Sci 2022; 23:ijms23031257. [PMID: 35163180 PMCID: PMC8836160 DOI: 10.3390/ijms23031257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Spontaneous venous thrombosis is often the first clinical sign of cancer, and it is linked to a worsened survival rate. Traditionally, tumor-cell induced platelet activation has been the main actor studied in cancer-associated-thrombosis. However, platelet involvement alone does not seem to be sufficient to explain this heightened pro-thrombotic state. Neutrophils are emerging as key players in both thrombus generation and cancer progression. Neutrophils can impact thrombosis through the release of pro-inflammatory cytokines and expression of molecules like P-selectin and Tissue Factor (TF) on their membrane and on neutrophil-derived microvesicles. Their role in cancer progression is evidenced by the fact that patients with high blood-neutrophil counts have a worsened prognosis. Tumors can attract neutrophils to the cancer site via pro-inflammatory cytokine secretions and induce a switch to pro-tumoral (or N2) neutrophils, which support metastatic spread and have an immunosuppressive role. They can also expel their nuclear contents to entrap pathogens forming Neutrophil Extracellular Traps (NETs) and can also capture coagulation factors, enhancing the thrombus formation. These NETs are also known to have pro-tumoral effects by supporting the metastatic process. Here, we strived to do a comprehensive literature review of the role of neutrophils as drivers of both cancer-associated thrombosis (CAT) and cancer progression.
Collapse
Affiliation(s)
- Mélanie Langiu
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Ana-Luisa Palacios-Acedo
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Lydie Crescence
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Diane Mege
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
- Department of Digestive Surgery, La Timone University Hospital, 13005 Marseille, France
| | - Christophe Dubois
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
- Correspondence:
| | - Laurence Panicot-Dubois
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| |
Collapse
|
142
|
CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers (Basel) 2022; 14:cancers14030515. [PMID: 35158784 PMCID: PMC8833752 DOI: 10.3390/cancers14030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is one of the main causes of mortality among breast cancer patients, but the origins and the mechanisms that drive this process remain poorly understood. Here, we report that the upregulation of certain CXCR2-associated ligands in the brain metastatic variants of the breast cancer cells (BrM) dynamically activate the corresponding CXCR2 receptors on the neutrophils, thereby resulting in the modulation of certain key functional neutrophil responses towards the BrM. Using established neutrophil-tumor biomimetic co-culture models, we show that the upregulation of CXCR2 increases the recruitment of Tumor-Associated Neutrophils (TANs) towards the BrM, to enable location-favored formation of Neutrophil Extracellular Traps (NETs). Inhibition of CXCR2 using small molecule antagonist AZD5069 reversed this behavior, limiting the neutrophil responses to the BrM and retarding the reciprocal tumor development. We further demonstrate that abrogation of NETs formation using Neutrophil Elastase Inhibitor (NEI) significantly decreases the influx of neutrophils towards BrM but not to their parental tumor, suggesting that CXCR2 activation could be used by the brain metastatic tumors as a mechanism to program the tumor-infiltrating TANs into a pro-NETotic state, so as to assume a unique spatial distribution that assists in the subsequent migration and invasion of the metastatic tumor cells. This new perspective indicates that CXCR2 is a critical target for suppressing neutrophilic inflammation in brain metastasis.
Collapse
|
143
|
Abstract
Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis. Many recent studies have provided evidence that cancer is able to hijack the immunoregulatory components of the complement system which fundamentally are tasked with protecting the body against abnormal cells and pathogens. Indeed, recent evidence shows that many types of cancer use C1q receptors (C1qRs) to promote tumor growth and progression. More importantly, most cancer cells express both C1q and its major receptors (gC1qR and cC1qR) on their surface which are essential for cell proliferation and survival. In this review, we discuss the ability of cancer to control and manipulate the complement system in the tumor microenvironment and identify possible therapeutic targets, including C1q and gC1qR.
Collapse
Affiliation(s)
- Danyaal Ain
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Talha Shaikh
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Samantha Manimala
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| |
Collapse
|
144
|
Geng S, Pradhan K, Li L. Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handb Exp Pharmacol 2022; 276:23-41. [PMID: 34085119 DOI: 10.1007/164_2021_485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
145
|
Oh SE, Park JS, Jeung HC. Pre-treatment Nutritional Risk Assessment by NRS-2002 Predicts Prognosis in Patients With Advanced Biliary Tract Cancer: A Single Center Retrospective Study. Clin Nutr Res 2022; 11:183-193. [PMID: 35949556 PMCID: PMC9348911 DOI: 10.7762/cnr.2022.11.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the predictors of survival in patients with advanced BTC according to their baseline nutritional status estimated by the Nutritional Risk Screening (NRS)-2002. From September 2006 to July 2017, we reviewed the data of 601 inpatients with BTC. Data on demographic and clinical parameters was collected from electronic medical records, and overall survival (OS) and progression-free survival were analyzed using the Kaplan-Meier method and the stepwise Cox regression analysis. Patients with an NRS-2002 score of ≤ 2, 3, and ≥ 4 were respectively classified as “no risk,” “moderate risk,” “high risk.” Following initial NRS-2002 score, 333 patients (55%) were classified as “no-risk,” 109 patients (18%) as “moderate-risk,” and 159 patients (27%) as “high-risk.” Survival analysis demonstrated significant differences in the median OS: “no-risk”: 12.6 months (95% confidence interval [CI], 11.5–13.7); “moderate-risk”: 6.1 months (95% CI, 4.3–8.0); and “high-risk”: 3.9 months (95% CI, 3.2–4.6) (p < 0.001). NRS-2002 score was an independent factor for OS (hazard ratio [HR], 1.616 for “moderate-risk”, 95% CI, 1.288–2.027, p < 0.001; HR, 2.121 for “high-risk”, 95% CI, 1.722–2.612, p < 0.001), along with liver metastasis, peritoneal seeding, white blood cell count, platelet count, neutrophil-to-lymphocyte ratio, cholesterol, carcinoembryonic antigen, and carbohydrate antigen 19-9. In conclusion, baseline NRS-2002 is an appropriate method for discriminating those who are already malnourished and who have poor prognosis in advanced BTC patient. Significance of these results merit further validation to be integrated in the routine practice to improve quality of care in BTC patients.
Collapse
Affiliation(s)
- Se Eung Oh
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Juong Soon Park
- Department of Clinical Nutrition, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Hei-Cheul Jeung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Pancreato-biliary Cancer Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| |
Collapse
|
146
|
Spence S, Doonan J, Farhan-Alanie OM, Chan CD, Tong D, Cho HS, Sahu MA, Traub F, Gupta S. Does the modified Glasgow Prognostic Score aid in the management of patients undergoing surgery for a soft-tissue sarcoma? : an international multicentre study. Bone Joint J 2022; 104-B:168-176. [PMID: 34969280 DOI: 10.1302/0301-620x.104b1.bjj-2021-0874.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS The modified Glasgow Prognostic Score (mGPS) uses preoperative CRP and albumin to calculate a score from 0 to 2 (2 being associated with poor outcomes). mGPS is validated in multiple carcinomas. To date, its use in soft-tissue sarcoma (STS) is limited, with only small cohorts reporting that increased mGPS scores correlates with decreased survival in STS patients. METHODS This retrospective multicentre cohort study identified 493 STS patients using clinical databases from six collaborating hospitals in three countries. Centres performed a retrospective data collection for patient demographics, preoperative blood results (CRP and albumin levels and neutrophil, leucocyte, and platelets counts), and oncological outcomes (disease-free survival, local, or metastatic recurrence) with a minimum of two years' follow-up. RESULTS We found that increased mGPS, tumour size, grade, neutrophil/lymphocyte ratio, and disease recurrence were associated with reduced survival. Importantly, mGPS was the best at stratifying prognosis and could be used in conjunction with tumour grade to sub-stratify patient survival. CONCLUSION This study demonstrated that prognosis of localized STS strongly correlates with mGPS, as an increasing score is associated with a poorer outcome. We note that 203 patients (41%) with an STS have evidence of systemic inflammation. We recommend the mGPS and other biochemical blood indicators be introduced into the routine diagnostic assessment in STS patients to stratify patient prognosis. Its use will support clinical decision-making, especially when morbid treatment options such as amputation are being considered. Cite this article: Bone Joint J 2022;104-B(1):168-176.
Collapse
Affiliation(s)
| | - Stephanie Spence
- Department of Trauma and Orthopaedics, Glasgow Royal Infirmary, Glasgow, UK
| | - James Doonan
- Department of Trauma and Orthopaedics, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Corey D Chan
- North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne, UK
| | - Daniel Tong
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Hwan Seong Cho
- Seoul National University Bundang Hospital Cancer Center, Seoul, South Korea
| | | | - Frank Traub
- Centre for Soft Tissue Sarcoma, GIST and Bone Tumors, Eberhard-Karls-University, Tuebingen, Germany
| | - Sanjay Gupta
- Department of Trauma and Orthopaedics, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
147
|
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 2022; 29:10-21. [PMID: 33603130 PMCID: PMC8761573 DOI: 10.1038/s41417-021-00303-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Immune cell infiltration into solid tumors, their movement within the tumor microenvironment (TME), and interaction with other immune cells are controlled by their directed migration towards gradients of chemokines. Dysregulated chemokine signaling in TME favors the growth of tumors, exclusion of effector immune cells, and abundance of immunosuppressive cells. Key chemokines directing the migration of immune cells into tumor tissue have been identified. In this review, we discuss well-studied chemokine receptors that regulate migration of effector and immunosuppressive immune cells in the context of cancer immunology. We discuss preclinical models that have described the role of respective chemokine receptors in immune cell migration into TME and review preclinical and clinical studies that target chemokine signaling as standalone or combination therapies.
Collapse
Affiliation(s)
- Karan Kohli
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Venu G. Pillarisetty
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Teresa S. Kim
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| |
Collapse
|
148
|
Guo JJ, Ye YQ, Liu YD, Wu WF, Mei QQ, Zhang XY, Lao J, Wang B, Wang JY. Interaction between human leukocyte antigen (HLA-C) and killer cell Ig-like receptors (KIR2DL) inhibits the cytotoxicity of natural killer cells in patients with hepatoblastoma. Front Med (Lausanne) 2022; 9:947729. [PMID: 36507493 PMCID: PMC9726742 DOI: 10.3389/fmed.2022.947729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common liver malignancy in childhood with poor prognosis and lack of effective therapeutic targets. Single-cell transcriptome sequencing technology has been widely used in the study of malignant tumors, which can understand the tumor microenvironment and tumor heterogeneity. MATERIALS AND METHODS Two children with HB and a healthy child were selected as the research subjects. Peripheral blood and tumor tissue were collected for single-cell transcriptome sequencing, and the sequencing data were compared and analyzed to describe the differences in the immune microenvironment between children with HB and normal children. RESULTS There were significant differences in the number and gene expression levels of natural killer cells (NK cells) between children with HB and normal children. More natural killer cells were seen in children with HB compared to normal control. KIR2DL were highly expressed in children with HB. CONCLUSION Single-cell transcriptome sequencing of peripheral blood mononuclear cells (PBMC) and tumor tissue from children with HB revealed that KIR2DL was significantly up-regulated in NK cells from children with HB. HLA-C molecules on the surface of tumor cells interact with inhibitory receptor KIR2DL on the surface of NK cells, inhibiting the cytotoxicity of NK cells, resulting in immune escape of tumors. Inhibitors of related immune checkpoints to block the interaction between HLA-C and KIR2DL and enhance the cytotoxicity of NK cells, which may be a new strategy for HB treatment.
Collapse
Affiliation(s)
- Jing-Jie Guo
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Yong-Qin Ye
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Yi-Di Liu
- Shenzhen Children’s Hospital of Shantou University Medical College, Shenzhen, Guangdong, China
| | - Wei-Fang Wu
- Shenzhen Children’s Hospital of Shantou University Medical College, Shenzhen, Guangdong, China
| | - Qian-Qian Mei
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Xi-Yun Zhang
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Jing Lao
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Bin Wang,
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Jian-Yao Wang,
| |
Collapse
|
149
|
Macrophage and Neutrophil Interactions in the Pancreatic Tumor Microenvironment Drive the Pathogenesis of Pancreatic Cancer. Cancers (Basel) 2021; 14:cancers14010194. [PMID: 35008355 PMCID: PMC8750413 DOI: 10.3390/cancers14010194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The survival rates for patients with pancreatic adenocarcinoma are very low. This dismal prognosis is due in part to late detection and early development of metastases, and successful treatments for pancreatic adenocarcinoma are also lacking. One potential method of treatment is immunotherapy, which has been successfully implemented in several cancers. Despite success in other cancer types, there has been little progress in pancreatic adenocarcinoma. To understand these shortcomings, we explore the roles of macrophages and neutrophils, two prominent immune cell types in the pancreatic tumor environment. In this review, we discuss how macrophages and neutrophils lead to the harsh environment that is unique to pancreatic adenocarcinoma. We further explore how these immune cells can impact standard of care therapies and decrease their effectiveness. Macrophages and neutrophils could ultimately be targeted to improve outcomes for patients with pancreatic adenocarcinoma. Abstract Despite modest improvements in survival in recent years, pancreatic adenocarcinoma remains a deadly disease with a 5-year survival rate of only 9%. These poor outcomes are driven by failure of early detection, treatment resistance, and propensity for early metastatic spread. Uncovering innovative therapeutic modalities to target the resistance mechanisms that make pancreatic cancer largely incurable are urgently needed. In this review, we discuss the immune composition of pancreatic tumors, including the counterintuitive fact that there is a significant inflammatory immune infiltrate in pancreatic cancer yet anti-tumor mechanisms are subverted and immune behaviors are suppressed. Here, we emphasize how immune cell interactions generate tumor progression and treatment resistance. We narrow in on tumor macrophage (TAM) spatial arrangement, polarity/function, recruitment, and origin to introduce a concept where interactions with tumor neutrophils (TAN) perpetuate the microenvironment. The sequelae of macrophage and neutrophil activities contributes to tumor remodeling, fibrosis, hypoxia, and progression. We also discuss immune mechanisms driving resistance to standard of care modalities. Finally, we describe a cadre of treatment targets, including those intended to overcome TAM and TAN recruitment and function, to circumvent barriers presented by immune infiltration in pancreatic adenocarcinoma.
Collapse
|
150
|
Neutrophils Promote Larynx Squamous Cell Carcinoma Progression via Activating the IL-17/JAK/STAT3 Pathway. J Immunol Res 2021; 2021:8078646. [PMID: 34938816 PMCID: PMC8687822 DOI: 10.1155/2021/8078646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the main type of laryngeal cancer with poor prognosis. Incidence of LSCC increases every year, posing a great threat to human health. The underlying mechanism needs further study. Neutrophils are the most prevalent type of immune cells, which play vital roles in crosstalk between the microenvironment and cancer cells. In our study, we aim to figure out the complex regulation between neutrophils and LSCC. Our experiments showed that LSCC cells could promote the activation and mobility of neutrophils. And, in return, neutrophils enhanced the proliferation, migration, and invasion of LSCC. The subsequent results showed that IL-17 was highly expressed in neutrophil conditioned medium. Block of IL-17 could effectively inhibit the progression of LSCC induced by neutrophils. What is more, the results showed that IL-17 activated the JAK/STAT3 pathway in LSCC. Inhibition of the JAK/STAT3 pathway could significantly block neutrophil-induced LSCC progression. Our research reveals the complex interaction between neutrophils and LSCC cells, providing new ideas for the treatment of LSCC.
Collapse
|