101
|
Zhang Y, Xu R, Tang H, Wang L, Sun W. A review on approaches for hazardous organics removal from Bayer liquors. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122772. [PMID: 32388095 DOI: 10.1016/j.jhazmat.2020.122772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Alumina is a valuable raw material for the production of adsorbents, abrasives, polishing agents, refractory materials, and aluminum. It is generally produced from bauxites through the Bayer process. Several organic compounds such as humic matters and oxalates are introduced into the Bayer liquor during the digestion process, resulting in significant hazards to precipitation of aluminum hydroxide. Therefore, it is crucial to remove these organic compounds from Bayer liquor to enhance the production of alumina. It is difficult to remove these organic compounds. Various approaches for organics removal from Bayer liquors have been developed in the past few decades, including thermal treatment, chemical precipitation, membrane technology, photocatalytic degradation, biodegradation, and wet oxidation. This paper reviews the technologies for organics removal from Bayer liquor and the relative mechanisms proposed in the literature to identify its essential parameters. Chemicals dosage, temperature, pH value, reaction time, and solution concentration are essential factors in the process. Removal efficiency, green principle, and economic viability of various methods are discussed, and potential technologies are suggested. Wet oxidation appears to be a promising method for removing organic matters in Bayer liquors. Moreover, the combination of wet oxidation and electrooxidation shows excellent potential in organics removal. Various approaches for removing organic compounds and perspectives for further investigation are proposed.
Collapse
Affiliation(s)
- Ye Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, Hunan, 410083, China
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, Hunan, 410083, China
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, Hunan, 410083, China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, Hunan, 410083, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
102
|
CuO enhances the photocatalytic activity of Fe2O3 through synergistic reactive oxygen species interactions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
103
|
Cheng Z, Ling L, Wu Z, Fang J, Westerhoff P, Shang C. Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11584-11593. [PMID: 32794774 DOI: 10.1021/acs.est.0c03170] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photolysis of free chlorine (HOCl/ClO-) is an advanced oxidation process (AOP) to produce hydroxyl (HO•) and other radicals for refractory micropollutant degradation. However, HOCl/ClO- is only conducive to activation and production of radicals by ultraviolet (UV) light. For the first time, we show the use of visible light (>400 nm) to produce HO• and ClO•, through use of graphitic carbon nitride (g-C3N4) and photogenerated hvb+, ecb-, and O2•- in the presence of HOCl/ClO-, which was termed visible light g-C3N4-enabled chlorine AOP (VgC-AOP). The VgC-AOP increased the pseudo first-order degradation rate constant of a model micropollutant, carbamazepine, by 16 and 7 times higher than that without g-C3N4 and HOCl/ClO-, respectively, and remained active over multiple use cycles. Effects of water quality [pH, alkalinity, Cu(II), and natural organic matter (NOM)] and the operational conditions (g-C3N4 and HOCl/ClO- concentrations, irradiation wavelength, and dose) were investigated. Of particular significance is its superior performance in the presence of NOM, which absorbs less light at visible light wavelengths and scavenges less surface-bonded reactive species, compared against UV/TiO2 or UV/chlorine AOPs. The VgC-AOP is practically relevant, feasible, and easily implementable and it expands the potential types of light sources (e.g., LEDs and solar light).
Collapse
Affiliation(s)
- Zihang Cheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 99977, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 99977, Hong Kong
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85281, Arizona, United States
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 99977, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 99977, Hong Kong
| |
Collapse
|
104
|
Ali N, Ahmad S, Khan A, Khan S, Bilal M, Ud Din S, Ali N, Iqbal HMN, Khan H. Selenide-chitosan as High-performance Nanophotocatalyst for Accelerated Degradation of Pollutants. Chem Asian J 2020; 15:2660-2673. [PMID: 32598537 DOI: 10.1002/asia.202000597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Indexed: 02/05/2023]
Abstract
Water pollution is one of the major global challenges today. Water bodies are contaminated by the heavy release of waste effluents of textile industries, which includes intensively colored dye pollutants. Herein, a ternary nanocomposite of bismuth copper selenide with small particle size and ternary metal selenide (TMS)-chitosan microspheres (TMS-CM) of the spherical porous surface were successfully synthesized. SEM, XRD, EDX, FTIR, and UV/Vis spectrophotometry analysis revealed the structural and morphological characteristics of the newly synthesized nanocomposites. SEM imaging showed the average diameter of TMS nanoparticle to be 33 nm. The crystal size was calculated as 6.33 nm and crystalline structure as orthorhombic using XRD findings. EDX confirmed the presence of Bi, Cu, and Se in the ternary nanocomposite. The bandgap of 1.8 eV was calculated from Tauc's plot for the TMS nanocomposite. SEM confirmed the successful synthesis of spherical TMS-CM microspheres of porous surface morphology with an average size of 885.6 μm. The presence of chitosan microspheres in the synthesis of TMS nanocomposite was identified by FTIR spectral analysis. Furthermore, highly efficient photocatalytic degradation (up to 95.4%) of ARS was achieved within 180 min at pH 4.0 using 0.5 g of TMS-CM in sunlight. The first-order kinetic model fitted well to the photocatalytic decontamination of ARS using TMS-CM with a rate constant of 6.1x10-2 min-1 . The TMS-CM gave attractive results and high efficiency in photocatalytic degradation of ARS dye after reusing and regeneration of up to seven successive cycles. The newly synthesized nanophotocatalyst could be efficiently used for the decontamination of dye polluted water from textile industries.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shehzad Ahmad
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Saraf Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Salah Ud Din
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hammad Khan
- Faculty of Materials & Chemical Engineering GIK, Institute of Engineering Sciences & Technology, 23460, Topi, KP, Pakistan
| |
Collapse
|
105
|
Hejazi R, Mahjoub AR, Khavar AHC, Khazaee Z. Fabrication of novel type visible-light-driven TiO2@MIL-100 (Fe) microspheres with high photocatalytic performance for removal of organic pollutants. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
106
|
Graphene Oxide Hybridised TiO2 for Visible Light Photocatalytic Degradation of Phenol. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In industrial pollutants, phenol is a kind of degradation-resistant hazardous compound. It is generated during industrial processes in factories and treatment at sewage plants. In this study, we analyse the photocatalytic activity of TiO2 and rGO as a composite for the degradation of phenol. Hybridised titanium dioxide/reduced graphene oxide (TiO2/rGO) nanocomposites were synthesised by a simple hydrothermal method using flake graphite and tetrabutyl titanate as raw materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) specific area analysis, Fourier transform infrared spectroscopy (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), photoelectrochemical analysis, and UV–vis diffuse reflectance spectra (DRS) were employed to characterise the physicochemical properties of the as-prepared nanocomposites. The results showed the TiO2/rGO nanocomposites’ significant anatase phase and a small fraction of the rutile phase the same as that of the as-prepared TiO2 nanoparticles. The spherical TiO2 nanoparticles (diameter 20–50 nm) were agglomerated slightly and the agglomerates were anchored on the rGO sheets and dispersed symmetrically. The specific surface area of TiO2/rGO-4% nanocomposites was 156.4 m2/g, revealing a high specific surface area. Oxygen-containing functional groups that existed in TiO2/rGO-4% nanocomposites were almost removed during hydrothermal processing. The photocurrent response of TiO2/rGO-4% was strongest among the TiO2/rGO nanocomposites, and the bandgap of TiO2/rGO-4% was 2.91 eV, showing a redshift of absorption into the visible region, which was in favour of the high photocatalytic activity of TiO2/rGO nanocomposites under visible light (λ > 420 nm). Moreover, the samples were employed to photodegrade phenol solution under visible light irradiation. TiO2/rGO-4% nanocomposite degraded the phenol solution up to 97.9%, and its degradation rate constant was 0.0190 h−1, which had higher degradation activity than that of other TiO2/rGO nanocomposites. This is a promising candidate catalyst material for organic wastewater treatment.
Collapse
|
107
|
Šojić Merkulov D, Lazarević M, Djordjevic A, Náfrádi M, Alapi T, Putnik P, Rakočević Z, Novaković M, Miljević B, Bognár S, Abramović B. Potential of TiO 2 with Various Au Nanoparticles for Catalyzing Mesotrione Removal from Wastewaters under Sunlight. NANOMATERIALS 2020; 10:nano10081591. [PMID: 32823509 PMCID: PMC7466515 DOI: 10.3390/nano10081591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022]
Abstract
Nowadays, great focus is given to the contamination of surface and groundwater because of the extensive usage of pesticides in agriculture. The improvements of commercial catalyst TiO2 activity using different Au nanoparticles were investigated for mesotrione photocatalytic degradation under simulated sunlight. The selected system was 2.43 × 10−3% Au–S–CH2–CH2–OH/TiO2 (0.5 g/L) that was studied by transmission electron microscopy and ultraviolet-visible (UV-Vis) spectroscopy. It was found that TiO2 particles size was ~20 nm and ~50 nm, respectively. The Au nanoparticles were below 10 nm and were well distributed within the framework of TiO2. For 2.43 × 10−3% Au–S–CH2–CH2–OH/TiO2 (0.5 g/L), band gap energy was 2.45 eV. In comparison to the pure TiO2, addition of Au nanoparticles generally enhanced photocatalytic removal of mesotrione. By examining the degree of mineralization, it was found that 2.43 × 10−3% Au–S–CH2–CH2–OH/TiO2 (0.5 g/L) system was the most efficient for the removal of the mesotrione and intermediates. The effect of tert-butanol, NaF and ethylenediaminetetraacetic acid disodium salt on the transformation rate suggested that the relative contribution of various reactive species changed in following order: h+ > ●OHads > ●OHbulk. Finally, several intermediates that were formed during the photocatalytic treatment of mesotrione were identified.
Collapse
Affiliation(s)
- Daniela Šojić Merkulov
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Marina Lazarević
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Zlatko Rakočević
- Institute for Nuclear Sciences "Vinča", University of Belgrade, Mihajla Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Mirjana Novaković
- Institute for Nuclear Sciences "Vinča", University of Belgrade, Mihajla Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia
| | - Bojan Miljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Szabolcs Bognár
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Biljana Abramović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
108
|
Hooshmand S, Kargozar S, Ghorbani A, Darroudi M, Keshavarz M, Baino F, Kim HW. Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3511. [PMID: 32784877 PMCID: PMC7476041 DOI: 10.3390/ma13163511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Biomedical waste management is getting significant consideration among treatment technologies, since insufficient management can cause danger to medicinal service specialists, patients, and their environmental conditions. The improvement of waste administration protocols, plans, and policies are surveyed, despite setting up training programs on legitimate waste administration for all healthcare service staff. Most biomedical waste substances do not degrade in the environment, and may also not be thoroughly removed through treatment processes. Therefore, the long-lasting persistence of biomedical waste can effectively have adverse impact on wildlife and human beings, as well. Hence, photocatalysis is gaining increasing attention for eradication of pollutants and for improving the safety and clearness of the environment due to its great potential as a green and eco-friendly process. In this regard, nanostructured photocatalysts, in contrast to their regular counterparts, exhibit significant attributes such as non-toxicity, low cost and higher absorption efficiency in a wider range of the solar spectrum, making them the best candidate to employ for photodegradation. Due to these unique properties of nanophotocatalysts for biomedical waste management, we aim to critically evaluate various aspects of these materials in the present review and highlight their importance in healthcare service settings.
Collapse
Affiliation(s)
- Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.H.); (A.G.)
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.H.); (A.G.)
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Meysam Keshavarz
- Hamlyn Centre, Imperial College London, Bessemer Building, South Kensington Campus, Exhibition Road, Kensington, London SW7 2AZ, UK;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
109
|
Long Z, Li Q, Wei T, Zhang G, Ren Z. Historical development and prospects of photocatalysts for pollutant removal in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122599. [PMID: 32302881 DOI: 10.1016/j.jhazmat.2020.122599] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
Photocatalysis, as a low-cost and environment friendly technology, has demonstrated a significant potential for water pollution purification; it has received extensive attention in recent decades. The key is the photocatalyst; a large number of photocatalysts have been developed. To better understand and further develop the photocatalysis technology for water treatment, this review summarizes its development over time. The development period is divided into four stages (1960s-1993, 1994-2000, 2001-2010, and 2011-present) to provide readers with a better understanding of the development characteristics, and causes and consequences of each historical stage. This review expounds the origin and development of photocatalysis and the obstacles encountered and overcome. It describes the development of mechanisms and methods to solve these problems in each time period. Moreover, it reviews the recent development of new photocatalysts, the concept of designing photocatalysts, and photocatalytic-coupling systems. Finally, it enumerates the problems that continue to exist in the application of photocatalysis technology, and highlights the key issues that must be addressed in future research. The review is aimed at providing the researchers with a deeper understanding of photocatalysis technology and encourage further development of the application of photocatalysis to water treatment.
Collapse
Affiliation(s)
- Zeqing Long
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Qiangang Li
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Ting Wei
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Zhijun Ren
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
110
|
Jiang Z, Hu J, Zhang X, Zhao Y, Fan X, Zhong S, Zhang H, Yu X. A generalized predictive model for TiO 2-Catalyzed photo-degradation rate constants of water contaminants through artificial neural network. ENVIRONMENTAL RESEARCH 2020; 187:109697. [PMID: 32474313 DOI: 10.1016/j.envres.2020.109697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide (TiO2) is a well-known photocatalyst in the applications of water contaminant treatment. Traditionally, the kinetics of photo-degradation rates are obtained from experiments, which consumes enormous labor and experimental investments. Here, a generalized predictive model was developed for prediction of the photo-degradation rate constants of organic contaminants in the presence of TiO2 nanoparticles and ultraviolet irradiation in aqueous solution. This model combines an artificial neural network (ANN) with a variety of factors that affect the photo-degradation performance, i.e., ultraviolet intensity, TiO2 dosage, organic contaminant type and initial concentration in water, and initial pH of the solution. The molecular fingerprints (MF) were used to interpret the organic contaminants as binary vectors, a format that is machine-readable in computational linguistics. A dataset of 446 data points for training and testing was collected from the literature. This predictive model shows a good accuracy with a root mean square error (RMSE) of 0.173.
Collapse
Affiliation(s)
- Zhuoying Jiang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Jiajie Hu
- Departments of Computer and Data Sciences, and Electrical, Computer, and Systems Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Xijin Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Yihang Zhao
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Xudong Fan
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Shifa Zhong
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA
| | - Xiong Yu
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA; Departments of Computer and Data Sciences, and Electrical, Computer, and Systems Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
111
|
Yao F, Fu W, Ge X, Wang L, Wang J, Zhong W. Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H 3PW 12O 40/TiO 2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138425. [PMID: 32330709 DOI: 10.1016/j.scitotenv.2020.138425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Currently, the majority of wastewater with a high concentration of ammonia nitrogen (NH4+/NH3) is treated using biological methods, which have poor biodegradability and low removal efficiency. In this paper, a composite photocatalyst of copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) was prepared by sol-gel hydrothermal synthesis, and the composite catalyst was characterized by X-ray diffraction (XRD), UV-vis-diffuse reflectance spectroscopy (UV-VIS-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS)、scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The photocatalytic oxidation of a high-concentration NH4+/NH3 solution was carried out under ultraviolet (UV) light to explore the effects of different influencing factors on the photocatalytic effect and to optimize the reaction conditions. The prepared composite catalyst exhibited higher photocatalytic activity than that of TiO2. When the initial concentration of the solution was 300 mg·L-1, the initial pH was 11, the catalyst concentration was 1.5 g·L-1, the loading level of Cu-H3PW12O40 was 40%, and the aeration rate was 1.5 L·min-1, the removal rate of NH4+/NH3 by the composite photocatalyst could reach >80%. Very little NO2- and NO3- were produced, and N2 was the main product.
Collapse
Affiliation(s)
- Fanfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China.
| | - Xiaohong Ge
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China.
| | - Wanzhen Zhong
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, PR China
| |
Collapse
|
112
|
Aliste M, Garrido I, Flores P, Hellín P, Vela N, Navarro S, Fenoll J. Reclamation of agro-wastewater polluted with thirteen pesticides by solar photocatalysis to reuse in irrigation of greenhouse lettuce grown. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110565. [PMID: 32314743 DOI: 10.1016/j.jenvman.2020.110565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In Mediterranean countries, reuse of reclaimed water is essential for crop irrigation. The occurrence of pesticides in agro-wastewater may represent a risk for human health and environment owing to their release in soil and translocation to plants. The novelty of this work relies on the reuse of reclaimed agro-wastewater polluted with thirteen pesticides for lettuce irrigation. Removing of pesticide residues in agro-wastewater was carried out using natural sunlight and TiO2/Na2S2O8 in a pilot facility located in Murcia (SE of Spain). The studied pesticides were azoxystrobin, boscalid, chlorpropham, flutolanil, flutriafol, isoxaben, methoxyfenozide, myclobutanil, napropamide, prochloraz, propamocarb, propyzamide and triadimenol, which are commonly used in southeast Spain to treat lettuces grown. Different heterogeneous and homogeneous processes were studied and compared. Previously, the optimization of the process for the selection of the best catalytic system was performed at lab-scale. TiO2+ S2O82- was selected due to the greater effectiveness, achieving almost complete disappearance after about 400 kJ m-2 of cumulative UVA exposure. No significant differences were observed in quality parameters of lettuce grown using treated and non-treated agro-wastewater.
Collapse
Affiliation(s)
- M Aliste
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain.
| | - I Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - P Flores
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - P Hellín
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain
| | - N Vela
- Applied Technology Group to Environmental Health, Faculty of Health Science, Catholic University of Murcia, Campus de Los Jerónimos, s/n, Guadalupe, 30107, Murcia, Spain
| | - S Navarro
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - J Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n, La Alberca, 30150, Murcia, Spain.
| |
Collapse
|
113
|
Pergal MV, Kodranov ID, Dojčinović B, Avdin VV, Stanković DM, Petković BB, Manojlović DD. Evaluation of azamethiphos and dimethoate degradation using chlorine dioxide during water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27147-27160. [PMID: 32399889 DOI: 10.1007/s11356-020-09069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Chlorine dioxide (ClO2) degradation of the organophosphorus pesticides azamethiphos (AZA) and dimethoate (DM) (10 mg/L) in deionized water and in Sava River water was investigated for the first time. Pesticide degradation was studied in terms of ClO2 level (5 and 10 mg/L), degradation duration (0.5, 1, 2, 3, 6, and 24 h), pH (3.00, 7.00, and 9.00), and under light/dark conditions in deionized water. Degradation was monitored using high-performance liquid chromatography. Gas chromatography coupled with triple quadrupole mass detector was used to identify degradation products of pesticides. Total organic carbon was measured to determine the extent of mineralization after pesticide degradation. Real river water was used under recommended conditions to study the influence of organic matter on pesticide degradation. High degradation efficiency (88-100% for AZA and 85-98% for DM) was achieved in deionized water under various conditions, proving the flexibility of ClO2 degradation for the examined organophosphorus pesticides. In Sava River water, however, extended treatment duration achieved lower degradation efficiency, so ClO2 oxidized both the pesticides and dissolved organic matter in parallel. After degradation, AZA produced four identified products (6-chlorooxazolo[4,5-b]pyridin-2(3H)-one; O,O,S-trimethyl phosphorothioate; 6-chloro-3-(hydroxymethyl)oxazolo[4,5-b]pyridin-2(3H)-one; O,O-dimethyl S-hydrogen phosphorothioate) and DM produced three (O,O-dimethyl S-(2-(methylamino)-2-oxoethyl) phosphorothioate; e.g., omethoate; S-(2-(methylamino)-2-oxoethyl) O,O-dihydrogen phosphorothioate; O,O,S-trimethyl phosphorodithioate). Simple pesticide degradation mechanisms were deduced. Daphnia magna toxicity tests showed degradation products were less toxic than parent compounds. These results contribute to our understanding of the multiple influences that organophosphorus pesticides and their degradation products have on environmental ecosystems and to improving pesticide removal processes from water.
Collapse
Affiliation(s)
- Marija V Pergal
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, 11000, Serbia.
| | - Igor D Kodranov
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Biljana Dojčinović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, 11000, Serbia
| | - Viacheslav V Avdin
- South Ural State University, Lenin prospekt 76, Chelyabinsk, Russia, 454080
| | - Dalibor M Stanković
- The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, Belgrade, 11001, Serbia
| | - Branka B Petković
- Faculty of Sciences, University of Priština, Lole Ribara 29,, Kosovska Mitrovica, 38220, Serbia
| | - Dragan D Manojlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
- South Ural State University, Lenin prospekt 76, Chelyabinsk, Russia, 454080
| |
Collapse
|
114
|
Synthesis of surface molecularly imprinted poly-o-phenylenediamine/TiO2/carbon nanodots with a highly enhanced selective photocatalytic degradation of pendimethalin herbicide under visible light. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104580] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
115
|
Pino E, Calderón C, Herrera F, Cifuentes G, Arteaga G. Photocatalytic Degradation of Aqueous Rhodamine 6G Using Supported TiO 2 Catalysts. A Model for the Removal of Organic Contaminants From Aqueous Samples. Front Chem 2020; 8:365. [PMID: 32432085 PMCID: PMC7215082 DOI: 10.3389/fchem.2020.00365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
As a model for the removal of complex organic contaminants from industrial water effluents, the heterogeneous photocatalytic degradation of Rhodamin 6G was studied using TiO2-derived catalysts, incorporated in water as suspension as well as supported in raschig rings. UV and Visible light were tested for the photo-degradation process. TiO2 catalysts were synthesized following acid synthesis methodology and compared against commercial TiO2 catalyst samples (Degussa P25 and Anatase). The bandgap (Eg) of the TiO2 catalysts was determined, were values of 2.97 and 2.98 eV were obtained for the material obtained using acid and basic conditions, respectively, and 3.02 eV for Degussa P25 and 3.18 eV for anatase commercial TiO2 samples. Raschig rings-supported TiO2 catalysts display a good photocatalytic performance when compared to equivalent amounts of TiO2 in aqueous suspension, even though a large surface area of TiO2 material is lost upon support. This is particularly evident by taking into account that the characteristics (XRD, RD, Eg) and observed photodegradative performance of the synthesized catalysts are in good agreement with the commercial TiO2 samples, and that the RH6G photodegradation differences observed with the light sources considered are minimal in the presence of TiO2 catalysts. The presence of additives induce changes in the kinetics and efficiency of the TiO2-catalyzed photodegradation of Rh6G, particularly when white light is used in the process, pointing toward a complex phenomenon, however the stability of the supported photocatalytic systems is acceptable in the presence of the studied additives. In line with this, the magnitude of the chemical oxygen demand, indicates that, besides the different complex photophysical processes taking place, the endproducts of the considered photocatalytic systems appears to be similar.
Collapse
Affiliation(s)
- Eduardo Pino
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Cristian Calderón
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Herrera
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Gerardo Cifuentes
- Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile, Santiago, Chile
| | - Gisselle Arteaga
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
116
|
Moya A, Creus J, Romero N, Alemán J, Solans-Monfort X, Philippot K, García-Antón J, Sala X, Mas-Ballesté R. Organocatalytic vs. Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Trans 2020; 49:6446-6456. [PMID: 32355938 DOI: 10.1039/d0dt01075h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical reduction of organic contaminants allows their removal from water. In this contribution, the electrocatalytic hydrogenation of nitrobenzene is studied using both oxidized carbon fibres and ruthenium nanoparticles supported on unmodified carbon fibres as catalysts. The two systems produce azoxynitrobenzene as the main product, while aniline is only observed in minor quantities. Although PhNO2 hydrogenation is the favoured reaction, the hydrogen evolution reaction (HER) competes in both systems under catalytic conditions. H2 formation occurs in larger amounts when using the Ru nanoparticle based catalyst. While similar reaction outputs were observed for both catalytic systems, DFT calculations revealed some significant differences related to distinct interactions between the catalytic material and the organic substrates or products, which could pave the way for the design of new catalytic materials.
Collapse
Affiliation(s)
- Alicia Moya
- Department of Inorganic Chemistry (module 07), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Jordi Creus
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain. and CNRS, LCC (Laboratoire de Chimie de Coordination), UPR8241, Université de Toulouse, UPS, INPT, F-31077 Toulouse cedex 4, France
| | - Nuria Romero
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - José Alemán
- Department of Organic Chemistry (module 01), Universidad Autónoma de Madrid, 28049, Madrid, Spain and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Xavier Solans-Monfort
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), UPR8241, Université de Toulouse, UPS, INPT, F-31077 Toulouse cedex 4, France
| | - Jordi García-Antón
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Xavier Sala
- Departament of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Rubén Mas-Ballesté
- Department of Inorganic Chemistry (module 07), Universidad Autónoma de Madrid, 28049, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
117
|
Synthesis of Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 Nanoparticles: The Photocatalytic Effects on Organic Pollutants upon Irradiation with UV-Vis Light. Catalysts 2020. [DOI: 10.3390/catal10050494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles with different molar ratios of CeVO4 to other inorganic components were synthesized through co-precipitation with a sonochemical-assisted method. X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, vibrating sample magnetometry, and scanning electron microscopy (SEM) methods were used for the physico–chemical characterization of the obtained nanoparticles. As shown in the SEM images, the average sizes of the Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 nanoparticles that formed aggregates were approximately 50–70 nm and 80–100 nm, respectively. The photocatalytic performance of these nanoparticles was examined by measuring methylene blue degradation under visible light (assisted by H2O2). The sample with a mass ratio of 1:2:1 (Fe3O4/ZnWO4/CeVO4, S4) exhibited optimal photocatalytic performance, and thus this sample was subsequently used for the photodegradation of different organic pollutants upon irradiation with ultraviolet (UV) and visible light. Approximately 90% and 70% degradation of methyl violet and methylene blue, respectively, was observed after visible light irradiation. Additionally, the mechanism of the photocatalytic reaction was investigated by measuring ˙OH release under UV light in a system with terephthalic acid and by measuring the release of ˙O2−, ˙OH, and hole scavengers.
Collapse
|
118
|
Abstract
Three different Advanced Oxidation Processes (AOPs) have been investigated for the degradation of the imidacloprid pesticide in water: photocatalysis, Fenton and photo-Fenton reactions. For these tests, we have compared the performance of two types of CeO2, employed as a non-conventional photocatalyst/Fenton-like material. The first one has been prepared by chemical precipitation with KOH, while the second one has been obtained by exposing the as-synthetized CeO2 to solar irradiation in H2 stream. This latter treatment led to obtain a more defective CeO2 (coded as “grey CeO2”) with the formation of Ce3+ sites on the surface of CeO2, as determined by Raman and X-ray Photoelectron Spectroscopy (XPS) characterizations. This peculiar feature has been demonstrated as beneficial for the solar photo–Fenton reaction, with the best performance exhibited by the grey CeO2. On the contrary, the bare CeO2 showed a photocatalytic activity higher with respect to the grey CeO2, due to the higher exposed surface area and the lower band-gap. The easy synthetic procedures of CeO2 reported here, allows to tune and modify the physico-chemical properties of CeO2, allowing a choice of different CeO2 samples on the basis of the specific AOPs for water remediation. Furthermore, neither of the samples have shown any critical toxicity.
Collapse
|
119
|
Tang M, Ao Y, Wang P, Wang C. All-solid-state Z-scheme WO 3 nanorod/ZnIn 2S 4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121713. [PMID: 31767501 DOI: 10.1016/j.jhazmat.2019.121713] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
A Z-scheme WO3/ZnIn2S4 photocatalyst was synthesized via a simple solvothermal method. Compared with pure WO3 and ZnIn2S4, photocatalytic experiments showed that these Z-scheme photocatalysts exhibited enhanced activity for the degradation of nitenpyram (NTP). The apparent rate constant (k) of NTP degradation on 50WZ (WO3/ 50 wt% Znln2S4) was 0.042 min-1 (∼3.8 times higher than WO3 and ∼2.5 times higher than ZnIn2S4). Photoluminescence (PL), photocurrent (PC), and electrochemical impedance spectroscopy (EIS) showed that the separation and transfer efficiency of photogenerated carriers in 50WZ was markedly enhanced, which was favorable for improving its photocatalytic activity. Active species capture experiments and electron spin resonance (ESR) measurements showed that superoxide radicals and holes were the main active species for NTP degradation, and they confirmed the formation of the Z-scheme structure. Furthermore, a possible NTP degradation pathway was deduced based on the results of high-performance liquid chromatography mass spectrometry (HPLC-MS).
Collapse
Affiliation(s)
- Mengling Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| |
Collapse
|
120
|
Kaushal S, Kaur H, Kumar S, Badru R, Mittal S, Singh P. Novel Horizon: Smart TiO2/Sn(IV)SbP Nanocomposite with Enhanced Electrochemical and Photocatalytic Properties. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620040087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
|
122
|
Synthesis of Fe3O4/SiO2/TiO2-Ag Photo-Catalytic Nano-structures with an Effective Silica Shell for Degradation of Methylene blue. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
123
|
Zong S, Xu X, Ran G, Liu J. Comparative study of atrazine degradation by magnetic clay activated persulfate and H 2O 2. RSC Adv 2020; 10:11410-11417. [PMID: 35495336 PMCID: PMC9050470 DOI: 10.1039/d0ra00345j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
To effectively remove the endocrine disrupting chemicals (EDCs) in water, Fe3O4 was loaded on the surface of modified sepiolite clay by the method of co-precipitation to catalyze potassium persulfate (K2S2O8) and hydrogen peroxide (H2O2) respectively to generate SO4˙- and ·OH for atrazine (ATZ) removal. The magnetic clay catalyst was characterized by XRD, SEM, N2 adsorption-desorption and isoelectric point. The degradation efficiency of ATZ in the two systems was systematically compared in terms of initial pH, oxidant dosage and oxidant utilization rate. The results revealed that, after 90 minutes, systems with K2S2O8 and H2O2 can remove 65.7% and 57.8% of the ATZ under the given conditions (30 °C, catalyst load: 1 g L-1, initial pH: 5, [ATZ]0: 10 mg L-1, [H2O2]0: 46 mmol L-1, [PDS]0: 46 mmol L-1). The magnetic clay catalyst still maintained good catalytic activity and stability during the four consecutive runs. Based on the quenching experiments, it was demonstrated that the dominant radical species in the two systems were SO4˙-/·OH and ·OH, respectively. However, the degradation efficiency of the two systems presented different responses toward the condition variations; the system with K2S2O8 was relatively more sensitive to solution pH, the oxidant efficiency was generally higher than that of the H2O2 system (except 184 mmol L-1).
Collapse
Affiliation(s)
- Shaoyan Zong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Ximeng Xu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Jian Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University Chengdu 611756 China
| |
Collapse
|
124
|
Photodegradation of 4-chloropehol in aqueous media using LaBO3 (B = Fe, Mn, Co) perovskites: Study of the influence of the transition metal ion in the photocatalytic activity. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
125
|
Poblete R, Cortes E, Salihoglu G, Salihoglu NK. Ultrasound and heterogeneous photocatalysis for the treatment of vinasse from pisco production. ULTRASONICS SONOCHEMISTRY 2020; 61:104825. [PMID: 31669848 DOI: 10.1016/j.ultsonch.2019.104825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/21/2023]
Abstract
Production of the distilled alcohol pisco results in vinasse, dark brown wastewater with high polyphenols contents and chemical oxygen demand (COD). No prior research exists on the efficiency of advanced oxidations processes (AOPs) in treating pisco vinasse. Therefore, the purpose of this study was to assess the efficiency of ultraviolet (UV), ultrasound (US), US + UV, heterogeneous photocatalysis (HP), and HP + US treatments. Polyphenols, COD, and color removal, as well as oxidation-reduction potential, were monitored over a 60-minute treatment period. Energy consumption levels and synergies were also calculated. The HP + US treatment achieved the best removal ratios for polyphenols (68%), COD (70%), and color (48%). While the HP treatment was the second most efficient in terms of polyphenols (62%), COD (58%), and color (40%) removal, this AOP comparatively required the least amount of energy. Considering the energy efficiency and relatively high pollutant-removal rates of the HP treatment, this AOP is recommended as a practical alternative for treating pisco vinasse.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente, Coquimbo, Chile.
| | - Ernesto Cortes
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente, Coquimbo, Chile
| | - Guray Salihoglu
- Environmental Engineering Department, Engineering Faculty, Bursa Uludag University, Bursa, Turkey
| | - Nezih Kamil Salihoglu
- Environmental Engineering Department, Engineering Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
126
|
Aliste M, Pérez-Lucas G, Vela N, Garrido I, Fenoll J, Navarro S. Solar-driven photocatalytic treatment as sustainable strategy to remove pesticide residues from leaching water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7222-7233. [PMID: 31883076 DOI: 10.1007/s11356-019-07061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
We have demonstrated the potential leaching of eight compounds, one insecticide (flonicamid) and seven fungicides (myclobutanil, penconazole, boscalid, difenoconazole, trifloxystrobin, pyraclostrobin and fenpyroximate) trough a typical Mediterranean soil (Calcaric regosol). The concentrations found in leaching water were in all cases above the limit set by the EU in groundwater (0.1 μg L-1). For this, the efficiency of different homogeneous (photo-Fenton and photo-Fenton-like) and heterogeneous (ZnO and TiO2) photocatalytic systems was tested in deionized water to choose the most appropriate treatment to remove pesticide residues from leaching water. The efficiency was in the order: ZnO + S2O82- (pH 7) > TiO2+ S2O82- (pH 7) > ZnO (pH 7) > TiO2 (pH 7) > Fe3+ (pH 3) > Fe3+ (pH 5) > Fe2+ (pH 3) > Fe2+ (pH 5). Thus, in the subsequent experiment we focus on the efficacy of solar heterogeneous photocatalysis (ZnO/Na2S2O8 and TiO2/ Na2S2O8) on their removal from leaching water. A fast removal was observed for all pesticides at the end of the photoperiod, noticeably higher in the case of ZnO system, with the exception of flonicamid, a recalcitrant pesticide where the degradation rate only reached about 20% after 240 min of solar exposure. Although the mineralisation of the initial dissolved organic carbon was not complete due to the presence of interfering substances in the leaching water, the conversion rate under ZnO/Na2S2O8 treatment was about 1.3 times higher than using TiO2/Na2S2O8.
Collapse
Affiliation(s)
- Marina Aliste
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n. La Alberca, 30150, Murcia, Spain.
| | - Gabriel Pérez-Lucas
- Department of Agricultural Chemistry, Geology and Pedology. School of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health. School of Health Science, Catholic University of Murcia, Campus de Los Jerónimos, s/n. Guadalupe, 30107, Murcia, Spain
| | - Isabel Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - José Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products, Murcia Institute of Agri-Food Research and Development, C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology. School of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
127
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
128
|
Chen T, Li W, Chen X, Guo Y, Hu W, Hu W, Liu YA, Yang H, Wen K. A Triazine‐Based Analogue of Graphyne: Scalable Synthesis and Applications in Photocatalytic Dye Degradation and Bacterial Inactivation. Chemistry 2020; 26:2269-2275. [DOI: 10.1002/chem.201905133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Tao Chen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wen‐Qian Li
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Jia Chen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Yun‐Zhe Guo
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Bo Hu
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Wen‐Jing Hu
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Yahu A. Liu
- Medicinal ChemistryChemBridge Research Laboratories San Diego CA 92127 USA
| | - Hui Yang
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| | - Ke Wen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
129
|
Sánchez V, López-Bellido FJ, Cañizares P, Villaseñor J, Rodríguez L. Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109806. [PMID: 31759201 DOI: 10.1016/j.jenvman.2019.109806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Electrokinetic-assisted phytoremediation (EKPR) has been recently proposed for the removal of pesticides from polluted soils. In this work, we report the results from an EKPR experiment that was carried out in a mesocosm mock-up of 0.386 m3 using ryegrass (Lolium perenne L.) and a low permeability soil spiked with atrazine. Plants were initially grown for 35 days; then, the soil was spiked with atrazine at a dose of 2 mg kg-1 soil. A DC electrical field of 0.6 V cm-1 was applied 24 h every day, switching polarity daily. Another identical mock-up with the same experimental conditions but without plants was used for comparison purposes. The duration of the EKPR test was 19 days during which some operational parameters were registered (electric current intensity, soil pH and temperature) and soil porewater samples were taken and analysed. Plant tissues and soil samples from the different sections in which the mock-ups were divided, were also collected and analysed at the end of the experiment. 3-D profiles of soil pH, water content and atrazine residues concentration in plants and soil were obtained and discussed. The results of this experiment were compared with others previously reported by us from a similar EKPR pot test. In spite of the difficulties to get an adequate geometric and operational similarity between setups of different scale, the main output parameters of the EKPR process (electric current, specific current charge, overall atrazine removal, specific atrazine removal efficiency, root biomass:soil weight ratio) were discussed. It was shown that, although the processes carried out are essentially the same in both scales, their extent may be quite different; it highlights the limitations of small-scale experiments to predict the results at field conditions.
Collapse
Affiliation(s)
- Virtudes Sánchez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain
| | - Francisco Javier López-Bellido
- Department of Plant Production and Agricultural Technology, School of Agricultural Engineering, University of Castilla-La Mancha, Ronda de Calatrava, S/n, 13003, Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - José Villaseñor
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - Luis Rodríguez
- Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela, 2, 13071, Ciudad Real, Spain.
| |
Collapse
|
130
|
Sánchez V, López-Bellido FJ, Rodrigo MA, Fernández FJ, Rodríguez L. A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
131
|
Nagamine S. Photocatalytic microreactor using TiO2/Ti plates: Formation of TiO2 nanostructure and separation of oxidation/reduction into different channels. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Gholampour N, Eslamian M. Ultrasound-assisted synthesis of layered zeolitic imidazolate framework: crystal formation and characteristics. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1713316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nadia Gholampour
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai, China
| | - Morteza Eslamian
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai, China
| |
Collapse
|
133
|
Photocatalytic Performance of Electrospun Silk Fibroin/ZnO Mats to Remove Pesticide Residues from Water under Natural Sunlight. Catalysts 2020. [DOI: 10.3390/catal10010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have evaluated the efficiency of silk fibroin (SF) coated with ZnO nanoparticles in the photocatalytic disappearance of one acaricide (etoxazole) and three fungicides (difenoconazole, myclobutanil and penconazole) in water exposed to sunlight irradiation. Electrospun SF/ZnO mats were successfully synthesized by electrospinning technique and characterized by XRD, FE-SEM, XPS, XDS, FTIR, and BET. The influence of catalyst loading on the degradation kinetics of the different pesticides was examined in order to gain knowledge of maximum degradation efficiency. A significant increment in degradation rates was observed with the addition of ZnO. SF mats with 25 mg of ZnO were finally selected since no significant differences (p < 0.05) were detected when the loading was enlarged from 25 to 50 mg for the majority of the compounds. In the experimental conditions, the half-lives ranged from 33 min to 93 min for etoxazole and myclobutanil, respectively. The comparison of SF materials coated with similar amount of TiO2 and ZnO showed that the later was slightly more efficient to remove pesticide residues. Hence, the use of electrospun SF/ZnO nanostructures would provide an environmentally friendly approach with photocatalytic activity to be applied in the reclamation of water polluted by pesticides.
Collapse
|
134
|
Muszyński P, Brodowska MS, Paszko T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1276-1293. [PMID: 31788729 PMCID: PMC6994553 DOI: 10.1007/s11356-019-06510-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/10/2019] [Indexed: 05/07/2023]
Abstract
The article presents the behavior of phenoxy acids in water, the levels in aquatic ecosystems, and their transformations in the water environment. Phenoxy acids are highly soluble in water and weakly absorbed in soil. These highly mobile compounds are readily transported to surface and groundwater. Monitoring studies conducted in Europe and in other parts of the world indicate that the predominant phenoxy acids in the aquatic environment are mecoprop, 4-chloro-2-methylphenoxyacetic acid (MCPA), dichlorprop, 2,4-dichlorophenoxyacetic acid (2,4-D), and their metabolites which are chlorophenol derivatives. In water, the concentrations of phenoxy acids are effectively lowered by hydrolysis, biodegradation, and photodegradation, and a key role is played by microbial decomposition. This process is determined by the qualitative and quantitative composition of microorganisms, oxygen levels in water, and the properties and concentrations of phenoxy acids. In shallow and highly insolated waters, phenoxy acids can be decomposed mainly by photodegradation whose efficiency is determined by the form of the degraded compound. Numerous studies are underway on the use of advanced oxidation processes (AOPs) to remove phenoxy acids. The efficiency of phenoxy acid degradation using AOPs varies depending on the choice of oxidizing system and the conditions optimizing the oxidation process. Most often, methods combining UV radiation with other reagents are used to oxidize phenoxy acids. It has been found that this solution is more effective compared with the oxidation process carried out using only UV.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Marzena S Brodowska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland.
| | - Tadeusz Paszko
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| |
Collapse
|
135
|
Aznar-Cervantes S, Aliste M, Garrido I, Yañez-Gascón MJ, Vela N, Cenis JL, Navarro S, Fenoll J. Electrospun silk fibroin/TiO2 mats. Preparation, characterization and efficiency for the photocatalytic solar treatment of pesticide polluted water. RSC Adv 2020; 10:1917-1924. [PMID: 35494574 PMCID: PMC9047524 DOI: 10.1039/c9ra09239k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
The photocatalytic properties of silk fibroin (SF) incorporating TiO2 nanoparticles using an electrospinning technique were examined. Electrospun SF/TiO2 mats were successfully prepared and characterized by different techniques (XRD, FE-SEM, XPS, XDS, FTIR and BET). The photocatalytic efficiency of these materials were assessed by their ability to degrade four pesticides (boscalid, hexythiazox, pyraclostrobin and trifloxystrobin) in water exposed to solar irradiation. The effect of catalyst loading on the disappearance kinetics of the different pesticides was studied in order to determine the maximum degradation efficiency. The degradation rate significantly increases upon adding the TiO2. However, no significant differences (p < 0.05) were observed when the TiO2 loading was increased from 25 to 50 mg for most compounds. Thus, SF mats with 25 mg of TiO2 were selected. Therefore, a new and simple approach to produce materials with photocatalytic activity, safety and potential application in the purification of water contaminated by pesticides has been developed. The photocatalytic properties of silk fibroin (SF) incorporating TiO2 nanoparticles using an electrospinning technique were examined.![]()
Collapse
Affiliation(s)
| | - Marina Aliste
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - Isabel Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - María J. Yañez-Gascón
- Applied Technology Group to Environmental Health
- Faculty of Health Science
- Catholic University of Murcia
- Murcia
- Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health
- Faculty of Health Science
- Catholic University of Murcia
- Murcia
- Spain
| | - Jose L. Cenis
- Biotechnology Group
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology
- Faculty of Chemistry
- University of Murcia
- Murcia
- Spain
| | - José Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| |
Collapse
|
136
|
Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Top Curr Chem (Cham) 2019; 378:7. [DOI: 10.1007/s41061-019-0272-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
137
|
Influence of the origin of carbon support on the structure and properties of TiO2 nanoparticles prepared by dip coating method. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
138
|
Salgado BCB, Valentini A. EVALUATION OF THE PHOTOCATALYTIC ACTIVITY OF SiO2@TiO2 HYBRID SPHERES IN THE DEGRADATION OF METHYLENE BLUE AND HYDROXYLATION OF BENZENE: KINETIC AND MECHANISTIC STUDY. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20190139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
139
|
Alshammari A, Bagabas A, Assulami M. Photodegradation of rhodamine B over semiconductor supported gold nanoparticles: The effect of semiconductor support identity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
140
|
Zhou Q, Wang M, Tong Y, Wang H, Zhou X, Sheng X, Sun Y, Chen C. Improved photoelectrocatalytic degradation of tetrabromobisphenol A with silver and reduced graphene oxide-modified TiO 2 nanotube arrays under simulated sunlight. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109472. [PMID: 31352210 DOI: 10.1016/j.ecoenv.2019.109472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In present study, reductive graphene oxide and silver nanoparticles co-comodified TiO2 nanotube arrays were prepared, and which was investigated to degrade tetrabromobisphenol A. The arrays co-modified with silver nanoparticles and reductive graphene oxide prepared by electrodeposition method exhibited good photoelectrocatalytic degradative activity for tetrabromobisphenol A, and the degradation efficiency reached 99.6% within 80 min. The synergistic effect of high photoresponse of Ag nanoparticles with their high capture ability for photogenerated electrons and the extended wavelength absorption range of reductive graphene oxide resulted in the highest degradation efficiencies. Degradation is postulated to follow a stepwise reductive debromination mechanism.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Mengyun Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Hongyuan Wang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xianqi Zhou
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China.
| |
Collapse
|
141
|
Sajid MM, Shad NA, Javed Y, Khan SB, Zhang Z, Amin N. Study of the interfacial charge transfer in bismuth vanadate/reduce graphene oxide (BiVO4/rGO) composite and evaluation of its photocatalytic activity. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04029-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
142
|
Li Y, Li J, Wang D, Wang G, Yue X, Kong X, Young L, Huang W. Denitrifying Microbial Community Structure and bamA Gene Diversity of Phenol Degraders in Soil Contaminated from the Coking Process. Appl Biochem Biotechnol 2019; 190:966-981. [DOI: 10.1007/s12010-019-03144-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
143
|
Heterogeneous Catalytic Performance and Stability of Iron-Loaded ZSM-5, Zeolite-A, and Silica for Phenol Degradation: A Microscopic and Spectroscopic Approach. Catalysts 2019. [DOI: 10.3390/catal9100859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In this study, we compared the performances of three iron-containing crystalline and amorphous catalysts, that is, Fe-Zeo-A, Fe-ZSM-5, and Fe-silica, respectively, for the degradation of phenol in an aqueous solution. Catalytic activity for the degradation of phenol was assessed by heterogeneous photolysis, Fenton, and photo-Fenton oxidation. All catalysts exhibited higher activity in the photo-Fenton process. In addition, the catalyst stability was evaluated by the estimation of the iron loss and structural variations after the oxidation processes. Results revealed that Fe-silica and Fe-ZSM-5 exhibit higher catalytic activity (~100% phenol removal), while only 64% of phenol removal over Fe-Zeo-A was observed. Moreover, among all catalysts, Fe-ZSM-5 exhibited higher stability with low iron leaching, attributed to the uniform distribution of bonded Fe in the crystalline framework and narrow channels. On the contrary, amorphous Fe-silica exhibited higher iron leaching due to the presence of isolated iron species in the structure, leading to the partial involvement of a homogeneous reaction during the degradation of phenol. The structural stability of Fe-based catalysts was examined using microscopic and spectroscopic techniques.
Collapse
|
144
|
Azizi-Toupkanloo H, Karimi-Nazarabad M, Shakeri M, Eftekhari M. Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C 3N 4 nanostructures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30941-30953. [PMID: 31452123 DOI: 10.1007/s11356-019-06274-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/16/2019] [Indexed: 05/17/2023]
Abstract
The entrance of some hard-degradable pharmaceutical contaminants can cause irreparable damage to humans and other organisms; therefore, removing these pollutants from water is one of the most important activities in water purification field. In this work, the mineralization of morphine was performed using photocatalytic degradation method. Graphitic carbon nitride (g-C3N4) nanosheets, due to their promising tunable characteristics, were chosen as visible-light-driven nanostructured heterogeneous photocatalyst. To enhance the photocatalytic activity, g-C3N4 was doped with Ag noble metal due to its surface plasmon resonance effect and acting as an electron sink. The photodegradation of morphine was evaluated under different pH values, the dosage of the photocatalyst, initial concentration of morphine, and Ag% loading under sunlight as green energy. The maximum efficiency was obtained in the very low concentration of Ag@g-C3N4 photocatalyst with the superior low value of 0.17 g L-1. Near complete mineralization of morphine was achieved by Ag@g-C3N4 with metal content percentage equal to 5 in 180 min and pH = 2. Also, using various active species scavengers, superoxide anion radical was identified as the main responsible species in the photocatalysis reaction of morphine degradation.
Collapse
Affiliation(s)
| | - Mahdi Karimi-Nazarabad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Chemistry, Faculty of Samen Hojaj, Mashhad Branch, Technical and Vocational University, Tehran, Iran.
| | - Mahbubeh Shakeri
- Department of Chemistry, University of Neyshabur, Neyshabur, 9319774446, Iran
| | - Mohammad Eftekhari
- Department of Chemistry, University of Neyshabur, Neyshabur, 9319774446, Iran
| |
Collapse
|
145
|
Saran S, Arunkumar P, Manjari G, Devipriya SP. Reclamation of grey water for non-potable purposes using pilot-scale solar photocatalytic tubular reactors. ENVIRONMENTAL TECHNOLOGY 2019; 40:3190-3199. [PMID: 29683409 DOI: 10.1080/09593330.2018.1468486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Application of pilot-scale slurry-type tubular photocatalytic reactor was tested for the decentralized treatment of actual grey water. The reactors were fabricated by reusing the locally available materials at low cost, operated in batch recycle mode with 25 L of grey water. The influence of operational parameters such as catalysts' concentration, initial slurry pH and addition of H2O2 on COD abatement were optimized. The results show that Ag-decorated TiO2 showed a two-fold increase in COD abatement than did pure TiO2. Better COD abatement was observed under acidic conditions, and addition of H2O2 significantly increases the rate of COD abatement. Within 2 h, 99% COD abatement was observed when the reactor was operated with optimum operational conditions. Silver ion lixiviate was also monitored during the experiment and is five times less than the permissible limits. The catalyst shows good stability even after five cycles without much loss in its photocatalytic activity. The results clearly reveal that pilot-scale slurry tubular solar photocatalytic reactors could be used as a cost-effective method to treat grey water and the resulting clean water could be reused for various non-potable purposes, thus conserving precious water resource. This study favours decentralized grey water treatment and possible scaling up of solar photocatalytic reactor using locally available materials for the potential reuse of treated water.
Collapse
Affiliation(s)
- Sarangapany Saran
- Environmental Photocatalysis Research Laboratory (EPRL), Department of Ecology and Environmental Sciences, Pondicherry University , Pondicherry , India
| | - Patchaiyappan Arunkumar
- Environmental Photocatalysis Research Laboratory (EPRL), Department of Ecology and Environmental Sciences, Pondicherry University , Pondicherry , India
| | - Gangarapu Manjari
- Environmental Photocatalysis Research Laboratory (EPRL), Department of Ecology and Environmental Sciences, Pondicherry University , Pondicherry , India
| | - Suja P Devipriya
- Environmental Photocatalysis Research Laboratory (EPRL), Department of Ecology and Environmental Sciences, Pondicherry University , Pondicherry , India
| |
Collapse
|
146
|
Gusain R, Gupta K, Joshi P, Khatri OP. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv Colloid Interface Sci 2019; 272:102009. [PMID: 31445351 DOI: 10.1016/j.cis.2019.102009] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Metal oxide nanomaterials and their composites are comprehensively reviewed for water remediation. The controlled morphological and textural features, variable surface chemistry, high surface area, specific crystalline nature, and abundant availability make the nanostructured metal oxides and their composites highly selective materials for efficient removal of organic pollutants based on adsorption and photocatalytic degradation. A wide range of metal oxides like iron oxides, magnesium oxide, titanium oxides, zinc oxides, tungsten oxides, copper oxides, metal oxides composites, and graphene-metal oxides composites having variable structural, crystalline and morphological features are reviewed emphasizing the recent development, challenges, and opportunities for adsorptive removal and photocatalytic degradation of organic pollutants viz. dyes, pesticides, phenolic compounds, and so on. It also covers the deep discussion on the photocatalytic mechanism of metal oxides and their composites along with the properties relevant to photocatalysis. High photodegradation efficiency, economically-viable approaches for the preparation of photocatalytic materials, and controlled band-gap engineering make metal oxides highly efficient photocatalysts for degradation of organic pollutants. The review would be an excellent resource for researchers who are currently focusing on metal oxides-based materials for water remediation as well as for those who are interested in adsorptive and photocatalytic applications of metal oxides and their composites.
Collapse
Affiliation(s)
- Rashi Gusain
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Kanika Gupta
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Pratiksha Joshi
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Om P Khatri
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
147
|
Xu X, Chen W, Zong S, Ren X, Liu D. Atrazine degradation using Fe 3O 4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:62-69. [PMID: 31151041 DOI: 10.1016/j.jhazmat.2019.05.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
In this study, with sepiolite as a support, a novel magnetic Fe3O4-sepiolite composite was fabricated by coprecipitation method. The characterization results reveal that the sepiolite support could anchor Fe3O4 nanoparticles with good dispersion. The composite was used as a catalyst to activate persulfate (PS) for atrazine (ATZ) degradation. 71.6% of ATZ and 20.9% of solution TOC could be removed after 60 min with 92 mmol/L of PS ([ATZ]0 = 10 mmol/L). Due to the good adsorption capacity of Fe3O4-sepiolite composite toward ATZ, the degradation was considered to be facilitated by an adsorption process, since the adsorbed ATZ can be more easily transported to the active sites and be degraded in situ. Operation factors, including PS dose and solution pH, were investigated and found to be influential for the ATZ removal. The Fe3O4-sepiolite composite maintained its catalytic activity and structural stability with negligible Fe leaching during the recycling batch experiments. The intermediate products were further identified and the possible transformation pathway was then proposed based on the results. The findings of this research promote the application of Fe3O4-sepiolite composite as efficient and recyclable heterogeneous catalyst for organic degradation, and provide insights into the development of alternative catalysts with good adsorptive properties.
Collapse
Affiliation(s)
- Ximeng Xu
- Southwest Jiaotong University, Chengdu, 610031, China; Yunnan Institute of Environmental Science, Kunming, 650034, China.
| | - Weiming Chen
- Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaoyan Zong
- Southwest Jiaotong University, Chengdu, 610031, China
| | - Xu Ren
- Southwest Jiaotong University, Chengdu, 610031, China
| | - Dan Liu
- Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
148
|
Shi X, Liu JB, Hosseini M, Shemshadi R, Razavi R, Parsaee Z. Ultrasound-aasisted photodegradation of Alprazolam in aqueous media using a novel high performance nanocomosite hybridation g-C3N4/MWCNT/ZnO. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.04.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
149
|
Esmeray E, Özata O. Nanopartiküllerin Çevre Mühendisliğinde Kullanımı ve Temel Laboratuvar Malzemeleri ile Gümüş Nanopartikül (AgNPs) Sentezi. ACTA ACUST UNITED AC 2019. [DOI: 10.31590/ejosat.570308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
150
|
Gopinath A, Krishna K. Photocatalytic Degradation of a Chlorinated Organic Chemical Using Activated Carbon Fiber Coupled with Semiconductor. Photochem Photobiol 2019; 95:1311-1319. [DOI: 10.1111/php.13130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ashitha Gopinath
- DRDO‐BU Center for Life Sciences Bharathiar University Coimbatore India
| | - Kadirvelu Krishna
- DRDO‐BU Center for Life Sciences Bharathiar University Coimbatore India
| |
Collapse
|