101
|
Luciano CG, Tessaro L, Bonilla J, Balieiro JCDC, Trindade MA, Sobral PJDA. Application of bi-layers active gelatin films for sliced dried-cured Coppa conservation. Meat Sci 2022; 189:108821. [PMID: 35421736 DOI: 10.1016/j.meatsci.2022.108821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
Processed meat products have been increasingly consumed, a highlight being dried-cured coppa, commonly purchased sliced, making it more susceptible to bacterial deterioration and lipid oxidation. The aim of this work was to produce and apply bi-layers films based on gelatin (in both layers) with addition of nisin and/or Pitanga leaf hydroethanolic extract (PLHE) only in the food contact thinner layer, in order to evaluate their effect on the refrigerated storage of sliced dried-cured coppa. Dried-cured coppa slices covered with active films were vacuum-packaged and stored under refrigeration for 120 days. Every 30 days, samples were tested for moisture content, water activity, pH, color parameters, lipid oxidation by TBARS and peroxide index methods, and microbiological analysis. The different film formulations presented no influence on the water activity, pH and color parameters of sliced dried-cured coppa. However, they significantly affected moisture content, bacterial count and lipid oxidation. The addition of both active compounds - nisin and PLHE - in the food contact thinner layer was observed to have the most favorable effect.
Collapse
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Jeannine Bonilla
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Júlio César de Carvalho Balieiro
- Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marco Antonio Trindade
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C; 05508-080 São Paulo (SP), Brazil.
| |
Collapse
|
102
|
Effect of Low Concentration of SiO2 Nanoparticles on Grape Seed Essential Oil/PBAT Composite Films for Sustainable Food Packaging Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14138073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active packaging material has been used in the food industry to maintain the quality of packaged foods. The use of conventional polymers has serious environmental consequences due to improper disposal or recycling methods. Therefore, active packaging films based on biopolymers have been developed due to their excellent biocompatibility, degradability, and eco-friendliness. Amongst all essential oils, grape seed oil is considered to be a promising antimicrobial agent. It comprises large quantities of flavonoids, tocopherols, and other antimicrobial compounds. Grape seed essential oil has good antimicrobial and antioxidant activity. As a film, it is used to preserve food items such as poultry products, fish, and tomatoes. This work aimed to develop a polybutylene adipate terephthalate (PBAT) biocomposite film incorporated with natural grape seed essential oil (GEO) in addition to silica nanoparticles (SiO2 NPs) using the solution casting process. To achieve the desired packaging properties of the prepared PBAT-based film, the concentrations of grape seed essential oil as a plasticizer and nanosilica as a filler material were varied. The optical, physical, barrier, mechanical, surface hydrophobicity, and antibacterial properties of the PBAT/GEO/SiO2NP films were assessed. The FT-IR and XRD results indicated that GEO had effective miscibility with the PBAT/SiO2NP matrix. The addition of GEO increased the film flexibility, opacity, and antimicrobial activity, but the incorporation of SiO2NPs in the PBAT/GEO blend increased the tensile strength, thermal stability, and antimicrobial activities. The PBAT/GEO/SiO2NP films exhibited excellent antibacterial activity against food spoilage microorganisms. Finally, due to improved antimicrobial activities, film flexibility, optical, and heat resistance properties, the PBAT/GEO/NP nanocomposite films were found to have high potential for usage in active food packaging applications.
Collapse
|
103
|
Horvat G, Žvab K, Knez Ž, Novak Z. Simple, One-Pot Method for Preparing Transparent Ethyl Cellulose Films with Good Mechanical Properties. Polymers (Basel) 2022; 14:polym14122399. [PMID: 35745974 PMCID: PMC9228318 DOI: 10.3390/polym14122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, ethyl cellulose films were prepared by a simple, easy, controlled one-pot method using either ethanol or ethyl lactate as solvents, the films being formed at 6 °C. Titanium dioxide nanoparticles were incorporated to improve the oxygen transmission and water vapour transmission rates of the obtained films. This method used no plasticizers, and flexible materials with good mechanical properties were obtained. The resulting solvent-free and transparent ethyl cellulose films exhibited good mechanical properties and unique free-shapable properties. The obtained materials had similar properties to those reported in the literature, where plasticizers were incorporated into ethyl cellulose films with an elastic modulus of 528 MPa. Contact angles showed the hydrophobic nature of all the prepared materials, with contact angles between 80 and 108°. Micrographs showed the smooth surfaces of the prepared samples and porous intersections with honeycomb-like structures. The oxygen and water vapor transmission rates were the lowest for the ethyl cellulose films prepared in ethyl lactate, these being 615 cm3·m−2·day−1 and 7.8 gm−2·day−1, respectively, showing that the films have promise for food packaging applications.
Collapse
Affiliation(s)
- Gabrijela Horvat
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul.17, 2000 Maribor, Slovenia; (G.H.); (K.Ž.); (Ž.K.)
| | - Klara Žvab
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul.17, 2000 Maribor, Slovenia; (G.H.); (K.Ž.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul.17, 2000 Maribor, Slovenia; (G.H.); (K.Ž.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul.17, 2000 Maribor, Slovenia; (G.H.); (K.Ž.); (Ž.K.)
- Correspondence:
| |
Collapse
|
104
|
Vargas VH, Flôres SH, Mercali GD, Marczak LDF. Effect of OHMIC heating and ultrasound on functional properties of biodegradable gelatin‐based films. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Victoria Hermes Vargas
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | | |
Collapse
|
105
|
Díaz-Cruz CA, Caicedo C, Jiménez-Regalado EJ, Díaz de León R, López-González R, Aguirre-Loredo RY. Evaluation of the Antimicrobial, Thermal, Mechanical, and Barrier Properties of Corn Starch-Chitosan Biodegradable Films Reinforced with Cellulose Nanocrystals. Polymers (Basel) 2022; 14:polym14112166. [PMID: 35683839 PMCID: PMC9183151 DOI: 10.3390/polym14112166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/21/2023] Open
Abstract
Packaging materials play an essential role in the preservation and marketing of food and other products. To improve their conservation capacity, antimicrobial agents that inhibit bacterial growth are used. Biopolymers such as starch and chitosan are a sustainable alternative for the generation of films for packaging that can also serve as a support for preservatives and antimicrobial agents. These substances can replace packaging of synthetic origin and maintain good functional properties to ensure the quality of food products. Films based on a mixture of corn starch and chitosan were developed by the casting method and the effect of incorporating cellulose nanocrystals (CNC) at different concentrations (0 to 10% w/w) was studied. The effect of the incorporation of CNC on the rheological, mechanical, thermal and barrier properties, as well as the antimicrobial activity of nanocomposite films, was evaluated. A significant modification of the functional and antimicrobial properties of the starch–chitosan films was observed with an increase in the concentration of nanomaterials. The films with CNC in a range of 0.5 to 5% presented the best performance. In line with the physicochemical characteristics which are desired in antimicrobial materials, this study can serve as a guide for the development this type of packaging for food use.
Collapse
Affiliation(s)
- Claudio Alonso Díaz-Cruz
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza SN, Saltillo 25280, Coahuila, Mexico;
| | - Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Pampalinda, Santiago de Cali 760035, Colombia;
| | - Enrique Javier Jiménez-Regalado
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Ramón Díaz de León
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Ricardo López-González
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
| | - Rocio Yaneli Aguirre-Loredo
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico; (E.J.J.-R.); (R.D.d.L.); (R.L.-G.)
- Investigadora por México CONACYT-Centro de Investigación en Química Aplicada Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico
- Correspondence:
| |
Collapse
|
106
|
Interaction between Gelatin and Mulberry Leaf Polysaccharides in Miscible System: Physicochemical Characteristics and Rheological Behavior. Foods 2022; 11:foods11111571. [PMID: 35681321 PMCID: PMC9180381 DOI: 10.3390/foods11111571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle size, distribution, and rheological properties of the miscible systems were evaluated. Under acidic conditions, the miscible systems of four polysaccharides and gelatin were in a clear state; under alkaline conditions, G-HBSS and G-CHSS were clarified, and G-DASS and G-CASS changed from clarification to turbidity. The zeta potential changed from positive to negative with the increase in pH. When the pH was at 7, it increased with the increase in polysaccharide concentration but was still negative. The four miscible systems all showed polydispersity. The particle sizes of G-HBSS and G-CHSS decreased with the increase in pH, while the particle sizes of G-DASS and G-CASS were increased. The four miscible systems showed “shear thinning” behavior, and the addition of gelatin reduced the apparent viscosity of the four polysaccharide solutions. G-CHSS was highly stable, and G-CASS was more suitable as a stabilizer in the freezing process.
Collapse
|
107
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|
108
|
Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. MEMBRANES 2022; 12:membranes12050442. [PMID: 35629768 PMCID: PMC9148007 DOI: 10.3390/membranes12050442] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
This review discusses the potential application of gelatin-based film as biodegradable food packaging material from various types of gelatin sources. The exploitation of gelatin as one of the biopolymer packaging in the food industry has rising interest among researchers as the world becomes more concerned about environmental problems caused by petroleum-based packaging and increasing consumer demands on food safety. Single gelatin-based film properties have been characterized in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as thickness, color, and biodegradability were much influenced by total solid contents in each film. While, for mechanical and light barrier properties, poultry-based gelatin films have shown better properties compared to mammalian and marine gelatin films. This paper detailed the information on gelatin-based film characterization in comparison with active and intelligent gelatin-based composite films. The physical properties of gelatin-based film such as color, UV-Vis absorption spectra, water vapor permeability, thermal, and moisture properties are discussed along with their mechanical properties, including tensile strength and elongation at break.
Collapse
|
109
|
Wu T, Dai R, Shan Z, Chen H, Woo MW, Yi J. High efficient crosslinking of gelatin and preparation of its excellent flexible composite film using deep eutectic solvent. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
110
|
Synthesis, Characterization, and Optimization Studies of Starch/Chicken Gelatin Composites for Food-Packaging Applications. Molecules 2022; 27:molecules27072264. [PMID: 35408663 PMCID: PMC9000547 DOI: 10.3390/molecules27072264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1–T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 °C for the starch-only film (T1) to 206 °C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 ± 0.5% for T1 to 285.1 ± 10.0% for T5) while decreasing the tensile strength (from 14.6 ± 0.5 MPa for T1 to 1.5 ± 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films’ cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.
Collapse
|
111
|
Tymczewska A, Furtado BU, Nowaczyk J, Hrynkiewicz K, Szydłowska-Czerniak A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int J Mol Sci 2022; 23:2734. [PMID: 35269873 PMCID: PMC8911258 DOI: 10.3390/ijms23052734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to develop and characterize gelatin/polyvinyl alcohol (G/PVA) films loaded with black cumin cake extract (BCCE) and zinc oxide nanoparticles (ZnONPs). The BCCE was also applied for the green synthesis of ZnONPs with an average size of less than 100 nm. The active films were produced by a solvent-casting technique, and their physicochemical and antibacterial properties were investigated. Supplementation of G/PVA film in ZnONPs decreased the tensile strength (TS) from 2.97 MPa to 1.69 MPa. The addition of BCCE and ZnONPs increased the elongation at the break (EAB) of the enriched film by about 3%. The G/PVA/BCCE/ZnONPs film revealed the lowest water vapor permeability (WVP = 1.14 × 10-9 g·mm·Pa-1·h-1·mm-2) and the highest opacity (3.41 mm-1). The QUick, Easy, New, CHEap and Reproducible (QUENCHER) methodologies using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) were applied to measure antioxidant capacity (AC) of the prepared films. The incorporation of BCCE and ZnONPs into G/PVA films enhanced the AC by 8-144%. The films containing ZnONPs and a mixture of BCCE and ZnONPs inhibited the growth of three Gram-positive bacterial strains. These nanocomposite films with desired functional properties can be recommended to inhibit microbial spoilage and oxidative rancidity of packaged food.
Collapse
Affiliation(s)
- Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (B.U.F.); (K.H.)
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
112
|
Vargas-Torrico MF, von Borries-Medrano E, Valle-Guadarrama S, Aguilar-Méndez MA. Development of gelatin-carboxymethylcellulose coatings incorporated with avocado epicarp and coconut endocarp extracts to control fungal growth in strawberries for shelf-life extension. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Fernanda Vargas-Torrico
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | - Erich von Borries-Medrano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | | | - Miguel A. Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| |
Collapse
|
113
|
Caicedo C, Díaz-Cruz CA, Jiménez-Regalado EJ, Aguirre-Loredo RY. Effect of Plasticizer Content on Mechanical and Water Vapor Permeability of Maize Starch/PVOH/Chitosan Composite Films. MATERIALS 2022; 15:ma15041274. [PMID: 35207816 PMCID: PMC8878178 DOI: 10.3390/ma15041274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/19/2022]
Abstract
Packaging materials based on biodegradable polymers are a viable alternative to replace conventional plastic packaging from fossil origin. The type of plasticizer used in these materials affects their functionality and performance. The effect of different plasticizers such as glycerol (GLY), sorbitol (SOR), and poly(ethylene glycol) (PEG) in concentrations of 5%, 10%, and 15% (w/w) on the structural features and functional properties of starch/PVOH/chitosan films was evaluated. The incorporation of a plasticizer increased the thickness of the biodegradable composite films. Furthermore, the material plasticized with 30% (w/w) sorbitol had the highest elongation at break, lowest water vapor permeability, and better thermal resistance. The results obtained in this study suggest that maize starch/PVOH/chitosan biodegradable composite films are a promising packaging material, and that sorbitol is the most suitable plasticizer for this formulation.
Collapse
Affiliation(s)
- Carolina Caicedo
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Pampalinda, Santiago de Cali 760035, Colombia;
| | - Claudio Alonso Díaz-Cruz
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza SN, Saltillo 25280, Coahuila, Mexico;
| | - Enrique Javier Jiménez-Regalado
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico;
| | - Rocio Yaneli Aguirre-Loredo
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico;
- Investigadora por México CONACyT-CIQA, Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Coahuila, Mexico
- Correspondence:
| |
Collapse
|
114
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
115
|
Liu X, Xie Y, Li C, Xue F. Comparative studies on physicochemical properties of gluten‐ And glutenin‐based films functionalized by polyphenols. Cereal Chem 2022. [DOI: 10.1002/cche.10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinye Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
- School of Science RMIT University Melbourne Australia
| | - Yuran Xie
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
| | - Chen Li
- College of Food Science and Light Industry Nanjing Tech University Nanjing China
| | - Feng Xue
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
116
|
Liu Y, Liu S, Liu J, Zheng X, Tang K. Effect of gelatin type on the structure and properties of microfibrillated cellulose reinforced gelatin edible films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yanchun Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Shujie Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Jie Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Xuejing Zheng
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| | - Keyong Tang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou Henan China
| |
Collapse
|