101
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
102
|
Li Y, Du X, Liu Z, Zhang M, Huang Y, Tian J, Jiang Q, Zhao Y. Two genes related to reproductive development in the juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. CHEMOSPHERE 2021; 281:130827. [PMID: 34015647 DOI: 10.1016/j.chemosphere.2021.130827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution in the form of nanoplastics poses a global threat to aquatic ecosystems and the organisms inhabiting them. However, few studies have been conducted on the effects of nanoplastic exposure on reproductive development in crustaceans. In order to address this issue, juvenile oriental river prawns (Macrobrachium nipponense) were exposed to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, 40 mg/L) for 28 days. In order to study the regulation of reproduction-related genes in the presence of nanoplastics, the Wee1 protein kinase gene (Wee1) and OTU domain ubiquitin aldehyde binding protein gene (OTUB) were selected. In this study, for the first time, the full-length cDNA of Mn-Wee1 and Mn-OTUB were cloned from M. nipponense. Homologous alignments revealed that Mn-Wee1 had a highly conserved function-critical sequence, and that Mn-OTUB was more closely related to OTUB1 than OTUB2. With increasing concentration of nanoplastics, the expression of both genes increased initially, then decreased. The inhibition of expression of Wee1 and OTUB occurred in 40 mg/L group, respectively. Analysis of the data also indicated that nanoplastic exposure might have differing effects on gene expression in M. nipponense male and female reproductive organs.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
103
|
Umamaheswari S, Priyadarshinee S, Bhattacharjee M, Kadirvelu K, Ramesh M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). CHEMOSPHERE 2021; 281:128592. [PMID: 33077188 DOI: 10.1016/j.chemosphere.2020.128592] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 05/12/2023]
Abstract
The substantial increase in the occurrence of microplastics (MPs) in the aquatic ecosystem has been recognized as an emerging concern today. Studies have revealed the toxicity of microplastics on behavior, physiology, and reproduction of fishes. Despite several reports, there are inadequate literature reports on the impact of microplastics on aquatic forms at the molecular level. The present study was aimed to investigate the adverse effects of polystyrene microplastics (PS-MPs) in adult zebrafish model system. Healthy fishes were exposed to different concentrations (10 and 100 μg L-1) of PS-MPs for 35 d. The results revealed that PS-MPs exposure induced ROS (Reactive oxygen species) generation disrupting the antioxidant defense system, hepatic enzymology, and neurotransmission. Correspondingly, the histological studies showed PS-MPs induced histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the brain and liver tissues of zebrafish. Furthermore, PS-MPs exposure significantly upregulated the expressions of gstp1, hsp70l, and ptgs2a gene along with the downregulation of cat, sod1, gpx1a, and ache genes. Therefore, the present study illustrates the potential of PS-MPs to induce different grades of toxic impacts in fishes by altering its metabolic mechanism, histological architecture, and gene regulation pattern through ROS induced oxidative stress.
Collapse
Affiliation(s)
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India
| | - Monojit Bhattacharjee
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
104
|
Carrasco-Navarro V, Muñiz-González AB, Sorvari J, Martínez-Guitarte JL. Altered gene expression in Chironomus riparius (insecta) in response to tire rubber and polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117462. [PMID: 34091266 DOI: 10.1016/j.envpol.2021.117462] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 05/12/2023]
Abstract
The extent until which plastics are present in our surrounding environment completely exceeds our expectations. Plastic materials in the form of microplastics have been found in terrestrial, freshwater and marine environments and are transported through the atmosphere even to remote locations. However, we are still far from understanding the effects that they may have caused and are causing to biota. In the present study, we investigated the alterations in the expression of twelve genes in the aquatic insect Chironomus riparius after 36 h exposures to polystyrene and tire rubber microplastics at nominal concentrations of 1 and 10 mg L-1. The results indicated that several genes encoding for heat shock proteins (hsp90, Glycoprotein 93 (Gp93), hsc70, hsp60, hsp40, and the small HSP hsp17) were overexpressed respect to the control. In addition, the genes coding for manganese superoxide dismutase (SOD Mn, related to alleviation of oxidative stress) and for the FK506-binding protein of 39 kDa. (FKBP39, related to development and pupation) showed altered expression. Most of the alterations on gene expression level occurred at a concentration of 10 mg L-1 of tire rubber microplastics, although specific modifications arose at other concentrations of both rubber and polystyrene. On the contrary, one hsp gene (hsp10) and genes related to biotransformation and detoxification (Cyp9f2, Cyp12a2, and ABCB6) did not alter their expression in any of the treatments. Overall, the results of the gene expression indicated that microplastics (especially tire rubber) or their additives caused cellular stress that led to some alterations in the normal gene expression but did not cause any mortality after 36 h. These results highlight the need for more studies that describe the alterations caused by microplastics at the molecular level. Additionally, it opens questions about the effects caused to aquatic fauna in environmental realistic situations, especially in hot spots of microplastic contamination (e.g., tire rubber released in storm water runoff discharge points).
Collapse
Affiliation(s)
- Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211, Kuopio, Finland.
| | - Ana-Belén Muñiz-González
- Group of Biology and Environmental Toxicology, Department of Mathematical Physics and Fluids, Faculty of Sciences, National Distance Education University (UNED), Madrid, Spain
| | - Jouni Sorvari
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211, Kuopio, Finland
| | - Jose-Luis Martínez-Guitarte
- Group of Biology and Environmental Toxicology, Department of Mathematical Physics and Fluids, Faculty of Sciences, National Distance Education University (UNED), Madrid, Spain
| |
Collapse
|
105
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Micro/nanoplastics effects on organisms: A review focusing on 'dose'. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126084. [PMID: 34229388 DOI: 10.1016/j.jhazmat.2021.126084] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/17/2023]
Abstract
Microplastics have become predominant contaminants, attracting much political and scientific attention. Despite the massively-increasing research on microplastics effects on organisms, the debate of whether environmental concentrations pose hazard and risk continues. This study critically reviews published literatures of microplastics effects on organisms within the context of "dose". It provides substantial evidence of the common occurrence of threshold and hormesis dose responses of numerous aquatic and terrestrial organisms to microplastics. This finding along with accumulated evidence indicating the capacity of organisms for recovery suggests that the linear-no-threshold model is biologically irrelevant and should not serve as a default model for assessing the microplastics risks. The published literature does not provide sufficient evidence supporting the general conclusion that environmental doses of microplastics cause adverse effects on individual organisms. Instead, doses that are smaller than the dose of toxicological threshold and more likely to occur in the environment may even induce positive effects, although the ecological implications of these responses remain unknown. This study also shows that low doses of microplastics can reduce whereas high doses can increase the negative effects of other pollutants. The mechanisms explaining these findings are discussed, providing a novel perspective for evaluating the risks of microplastics in the environment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
106
|
Yang W, Gao P, Ma G, Huang J, Wu Y, Wan L, Ding H, Zhang W. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117413. [PMID: 34049161 DOI: 10.1016/j.envpol.2021.117413] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of nanoplastics to aquatic organisms has been widely studied in terms of biochemical indicators. However, there is little discussion about the underlying toxic mechanism of nanoplastics on microalgae. Therefore, the chronic effect of polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa was investigated, in terms of responses at the biochemical and molecular/omic level. It was surprising that both inhibitory and promoting effects of nanoplastcis on C. pyrenoidosa were found during chronic exposure. Before 13 days, the maximum growth inhibition rate was 7.55% during 10 mg/L PS nanoplastics treatment at 9 d. However, the inhibitory effect gradually weakened with the prolongation of exposure time. Interestingly, algal growth was promoted for 1-5 mg/L nanoplastics during 15-21 d exposure. Transcriptomic analysis explained that the inhibitory effect of nanoplastics could be attributed to suppressed gene expression of aminoacyl-tRNA synthetase that resulted in the reduced synthesis of related enzymes. The promotion phenomenon may be due to that C. pyrenoidosa defended against nanoplastics stress by promoting cell proliferation, regulating intracellular osmotic pressure, and accelerating the degradation of damaged proteins and organs. This study is conducive to provide theoretical basis for evaluating the actual hazard of nanoplastics to aquatic organisms.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Guoyi Ma
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Jiayi Huang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Yixiao Wu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Liang Wan
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang, Jiangxi, 330029, PR China
| | - Weihao Zhang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China.
| |
Collapse
|
107
|
Wang L, Feng J, Wang G, Guan T, Zhu C, Li J, Wang H. Effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112651. [PMID: 34419645 DOI: 10.1016/j.ecoenv.2021.112651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
As a non-essential and toxic element, cadmium poses an important threat to aquatic organisms and human food safety. In this study, the effects of cadmium on antioxidant and non-specific immunity of Macrobrachium nipponense were studied from the physiological and biochemical indexes, histology and expression of related genes. These results showed that low concentrations (0.01, 0.02 mg/L) of cadmium have a positive effect on the non-specific immunity of M. nipponense, but high concentration (0.04 mg/L) of cadmium could inhibit or even damage the non-specific immunity of M. nipponense. The cadmium could induce oxidative stress in M. nipponense, and M. nipponense actived the antioxidant defense system to deal with oxidative stress, but high concentration (0.04 mg/L) of cadmium could inhibit the antioxidant defense system of M. nipponense, leading to oxidative damage, and may induce apoptosis in severe case. At the same time, the results of histology showed that cadmium can damage the structure of gill and hepatopancreas tissues of M. nipponense. This study provides theoretical data for evaluating the influences of heavy metal cadmium on M. nipponense and the toxic mechanism of heavy metal cadmium.
Collapse
Affiliation(s)
- Long Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
108
|
Wang Q, Duan X, Huang F, Cheng H, Zhang C, Li L, Ruan X, He Q, Yang H, Niu W, Qin Q, Zhao H. Polystyrene nanoplastics alter virus replication in orange-spotted grouper (Epinephelus coioides) spleen and brain tissues and spleen cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125918. [PMID: 34492850 DOI: 10.1016/j.jhazmat.2021.125918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) are known to impair the function of the digestive system, intestinal flora, immune system, and nervous system of marine organisms. We tested whether PS-NPs influence viral infection of orange-spotted grouper (Epinephelus coioides). We found that grouper spleen (GS) cells took up PS-NPs at exposure concentrations of 5, 50, and 500 μg/mL and experienced cytotoxicity at 50 and 500 μg/mL concentrations. At 12 h after exposure to 50 μg/mL of PS-NPs, the replication of Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) increased in GS cells after their invasion. Juvenile fish exposed to 300 and 3000 μg/L of PS-NPs for 7 d showed PS-NPs uptake to the spleen and vacuole formation in brain tissue. Moreover, PS-NPs exposure accelerated SGIV replication in the spleen and RGNNV replication in the brain. PS-NP exposure also decreased the expression of toll-like receptor genes and interferon-related genes before and after virus invasion in vitro and in vivo, thus reducing the resistance of cells and tissues to viral replication. This is the first report that PS-NPs have toxic effects on GS cells and spleen and brain tissues, and it provides new insights into assessing the impact of PS-NPs on marine fish.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenbiao Niu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
109
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
110
|
Wang Z, Fan L, Wang J, Zhou J, Ye Q, Zhang L, Xu G, Zou J. Impacts of microplastics on three different juvenile shrimps: Investigating the organism response distinction. ENVIRONMENTAL RESEARCH 2021; 198:110466. [PMID: 33189744 DOI: 10.1016/j.envres.2020.110466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on aquaculture animals have raised increasing concern, but studies on MPs contamination in cultured shrimp are still limited. Therefore, the responses of three widely farmed shrimp species to MPs, including Penaeus monodon (P. monodon), Marsupenaeus japonicas (M. japonicus) and Litopenaeus vannamei (L. vannamei), were investigated in this study. The results showed that the mortality of P. monodon, M. japonicus and L. vannamei were 47%, 53% and 20% respectively after 48 h of 300 mg/L MPs exposure. After 48 h of 100 mg/L MPs exposure, for P. monodon, the MPs content in water and excreta were significantly different from that in M. japonicus and L. vannamei. For genes expressions, the expression of catalase (Cat) was significantly increased and the expression of apoptosis protein (IAP) was inhibited in these three shrimps, but only the expression of Lysozyme (Lys) was increased in L. vannamei after MPs exposure. After 48 h of depuration, the Cat and IAP expression of P. monodon and M. japonicus was significant decreased while the IAP and Lys expression of L. vannamei still maintained at a high level. The results suggested that the metabolic rate of MPs in P. monodon was significantly higher than that in M. japonicus and L. vannamei. The tolerance of L. vannamei to MPs was higher than that of P. monodon and M. japonicas and their different responses in anti-microbial gene might be one of the reasons for the difference of their mortality. This study provides the first report comparing the organism response distinction in cultured shrimp and enriching to the understanding of the impact of MPs on ecosystem.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiao Ye
- College of Life Sciences, Huizhou University, Huizhou, 516007, Guangdong, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
111
|
Kukkola A, Krause S, Lynch I, Sambrook Smith GH, Nel H. Nano and microplastic interactions with freshwater biota - Current knowledge, challenges and future solutions. ENVIRONMENT INTERNATIONAL 2021; 152:106504. [PMID: 33735690 DOI: 10.1016/j.envint.2021.106504] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Current understanding of nano- and microplastic movement, propagation and potential effects on biota in freshwater environments is developing rapidly. Still, there are significant disconnects in the integration of knowledge derived from laboratory and field studies. This review synthesises the current understanding of nano- and microplastic impacts on freshwater biota from field studies and combines it with the more mechanistic insights derived from laboratory studies. Several discrepancies between the field and laboratory studies, impacting progress in process understanding, were identified including that the most prevalent plastic morphologies found in the field (fibres) are not those used in most of the laboratory studies (particles). Solutions to overcome these disparities are proposed to aid comparability of future studies. For example, environmental sampling and separation of biota into its constituents is encouraged when conducting field studies to map microplastic uptake preferences. In laboratory studies, recommendations include performing toxicity studies to systematically test possible factors affecting toxicity of nano- and microplastics, including morphology, chemical makeup (e.g., additives) and effects of plastic size. Consideration should be given to environmentally relevant exposure factors in laboratory studies, such as realistic exposure medium and effects of plastic ageing. Furthermore, based on this comprehensive review recommendations of principal toxicity endpoints for each of the main trophic levels (microbes, primary producers, primary consumers and secondary consumers) that should be reported to make toxicity studies more comparable in the future are given.
Collapse
Affiliation(s)
- Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France; Institute of Global Innovation, University of Birmingham, B15 2SA Birmingham, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom; Institute of Global Innovation, University of Birmingham, B15 2SA Birmingham, United Kingdom
| | - Gregory H Sambrook Smith
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Holly Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
112
|
Wang Z, Fan L, Wang J, Xie S, Zhang C, Zhou J, Zhang L, Xu G, Zou J. Insight into the immune and microbial response of the white-leg shrimp Litopenaeus vannamei to microplastics. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105377. [PMID: 34087762 DOI: 10.1016/j.marenvres.2021.105377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 μg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
113
|
Umamaheswari S, Priyadarshinee S, Kadirvelu K, Ramesh M. Polystyrene microplastics induce apoptosis via ROS-mediated p53 signaling pathway in zebrafish. Chem Biol Interact 2021; 345:109550. [PMID: 34126101 DOI: 10.1016/j.cbi.2021.109550] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Microplastic (MP) pollution is ubiquitous and has become an emerging threat to aquatic biota. Recent scientific reports have recorded their toxic impacts at the cellular and organism levels, but the underlying molecular mechanism of their toxicity remains unclear. The present study elucidates an array of molecular events underlying apoptosis in the gills of polystyrene microplastics (PS-MPs) exposed zebrafish (Danio rerio). PS-MPs at different concentrations (10 and 100 μg L-1) induced the reactive oxygen species (ROS) generation, in turn affecting the oxidative and immune defense mechanism. The expression profile of antioxidant genes cat, sod1, gpx1a and gstp1 were altered significantly. PS-MPs also significantly inhibited the neurotransmission in zebrafish. In addition, the PS-MPs exposure upregulated the expression of p53, gadd45ba, and casp3b resulting in apoptosis. We demonstrate that PS-MPs significantly upregulate the transcriptional pattern of tnfa and ptgs2a which are essential gene markers in inflammatory mechanism. Further, the oxidative damage induced by PS-MPs exposure could lead to cytological damage resulting in altered lamellar structures, capillary dilation, and necrosis in gill histomaps. In conclusion, the findings of this work strongly suggest that PS-MPs induce dose-and time-dependent ROS mediated apoptotic responses in zebrafish. Furthermore, the physiological responses observed in the gills correlate with the above observations and helps in unravelling the potential molecular mechanism underpinning the PS-MPs toxicity in zebrafish.
Collapse
Affiliation(s)
- Sathisaran Umamaheswari
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Sheela Priyadarshinee
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India
| | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641 046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
114
|
Zhou XX, He S, Gao Y, Li ZC, Chi HY, Li CJ, Wang DJ, Yan B. Protein Corona-Mediated Extraction for Quantitative Analysis of Nanoplastics in Environmental Waters by Pyrolysis Gas Chromatography/Mass Spectrometry. Anal Chem 2021; 93:6698-6705. [PMID: 33871972 DOI: 10.1021/acs.analchem.1c00156] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a growing concern about the effects of nanoplastics on biological safety and human health because of their global ubiquity in the environment. Methodologies for quantitative analysis of nanoplastics are important for the critical evaluation of their possible risks. Herein, a sensitive yet simple and environmentally friendly extraction approach mediated by protein corona is developed and coupled to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) for nanoplastic determination in environmental waters. The developed methodology involved the formation of protein corona by addition of bovine serum albumin (BSA) to samples and protein precipitation via salting out. Then, the resulting extract was directly introduced to Py-GC/MS for nanoplastic mass quantification. Taking 50 nm polystyrene (PS) particles as a model, the highest extraction efficiency for nanoplastics was achieved under the extraction conditions of BSA concentration of 20 mg/L, equilibration time of 5 min, pH 3.0, 10% (w/v) NaCl, incubation temperature of 80 °C, and incubation period of 15 min. The extraction was confirmed to be mediated by the protein corona by transmission electron microscopy (TEM) analysis of the extracted nanoplastics. In total, 1.92 and 2.82 μg/L PS nanoplastics were detected in river water and the influent of wastewater treatment plant (WWTP), respectively. Furthermore, the feasibility of the present methodology was demonstrated by applying to extract PS and poly(methyl methacrylate) (PMMA) nanoplastics from real waters with recoveries of 72.1-98.9% at 14.2-50.4 μg/L spiked levels. Consequently, our method has provided new insights and possibilities for the investigation of nanoplastic pollution and its risk assessment in the environment.
Collapse
Affiliation(s)
- Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuai He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yan Gao
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Ze-Chen Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Cheng-Jun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China
| | - Du-Jia Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, P. R. China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P. R. China.,School of Environmental Science and Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
115
|
Guimarães ATB, Charlie-Silva I, Malafaia G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124833. [PMID: 33352420 DOI: 10.1016/j.jhazmat.2020.124833] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
We aim at evaluating the toxicity of naturally-aged polystyrene microplastics (MPs) in Danio rerio at intermediate development stage. Animal models were stactically exposed to 4 × 104 and 4 × 106 microparticles/m3 for five days - this concentration is environmentally relevant. We evaluated MP's impact on animals' nutritional status and REDOX balance, as well as its potential neuro- and cytotoxic action on them. Initially, MPs did not induce any change in total carbohydrates, triglycerides and total cholesterol levels. MP accumulation was associated with oxidative stress induction, which was inferred by the nitrite and thiobarbituric acid reactive substances levels. Furthermore, we observed that such stress was not counterbalanced by increase in the assessed enzymatic (total glutathione, catalase and superoxide dismutase) and non-enzymatic (total thiols, reduced glutathione and DPPH radical scavenging activity) antioxidants. The association between high acetylcholinesterase activity and numerical changes in neuroblasts distributed on animals' body surface confirmed MP's neurotoxic potential. MP's ability to induce apoptosis and necrosis processes in animals' erythrocytes suggested its cytotoxic action; therefore, the present study is pioneer in providing insight on how MPs can affect young freshwater fish at environmental concentrations. It is essential knowing the magnitude of these pollutants' impact on the ichthyofauna.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Goiás, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil.
| |
Collapse
|
116
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
117
|
Chen Z, Huang Z, Liu J, Wu E, Zheng Q, Cui L. Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124697. [PMID: 33307450 DOI: 10.1016/j.jhazmat.2020.124697] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Nanoplastics, a kind of emerging pollutant in natural environments, have now drawn tremendous attention worldwide. Flocculation with Mg/Al-layered double hydroxides (LDH) precursor solutions has showed great potential for removing negatively charged nanoparticles from water. In this study, the flocculation behavior and mechanism for the removal of polystyrene nanoplastics (PSNP) with Mg/Al flocs or Mg/Al LDH were systematically analyzed and investigated. During the process of flocculation, it was observed that in situ Mg/Al LDH can be gradually formed with increasing pH, in addition, PSNP were captured or attached to the surface of LDH with a turning point around pH of 5.0. In acidic solutions with pH < 5.0, the negative surface charges of PSNP were diminished mainly due to the high concentrations of hydrogen ions and the positive charges from Mg and Al ions. In a moderately alkaline solution, Mg and Al ions gradually formed crystals capturing PSNP. Electrostatic adsorption and intermolecular force are the main mechanisms via which PSNP are captured on Mg/Al flocs. Herein, PSNP removal efficiencies from water were more than 90.0%. As the problem of plastic pollution becomes more severe, in situ LDH growth flocculation can provide an efficient way for the removal of PSNP.
Collapse
Affiliation(s)
- Ziying Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhujian Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Junhong Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Enya Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
118
|
Li M, Liu Y, Xu G, Wang Y, Yu Y. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144037. [PMID: 33348149 DOI: 10.1016/j.scitotenv.2020.144037] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the bioavailability and toxicity of metals (Cu and Ni) in the soil containing polyethylene microplastics (PE-MPs). The bioavailability of the metals determined by the five-step chemical sequential extraction method increased with the addition of MPs (0.1%, 1%, 10%) in the soil, which was confirmed by the adsorption-desorption characteristics. To further examine the bioavailability and toxicity of metals, earthworms (Eisenia fetida) were exposed to soil containing Cu2+ (100 mg/kg) or Ni2+ (40 mg/kg) with different amounts (0.01%, 0.05%, and 0.1%) of PE-MPs for 21 days. The highest concentrations of Cu2+ and Ni2+ in earthworms reached to 73.3 and 36.3 mg/kg, respectively. Moreover, metal concentrations in earthworms increased with MP contents in the soil, which was consistent with the bioavailability measured by the sequential extraction method. Furthermore, changes in biomarkers including peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) activity, malondialdehyde (MDA) contents, and related gene expression levels in earthworms suggested that the pollutants caused toxicity to earthworms. Overall, MPs increased the bioavailability of metals in the soil and the toxic effects to earthworms. These findings provide insights regarding the impacts of MPs on the bioavailability of metals and the combined toxic effects of these two kinds of pollutants on terrestrial animals.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
119
|
Li Y, Liu Z, Yang Y, Jiang Q, Wu D, Huang Y, Jiao Y, Chen Q, Huang Y, Zhao Y. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115890. [PMID: 33176947 DOI: 10.1016/j.envpol.2020.115890] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics are common pollutants in aquatic environments and have attracted widespread research attention. However, few studies focus on the effects of nanoplastic exposure on energy metabolism in crustaceans. Accordingly, we exposed juvenile oriental river prawns (Macrobrachium nipponense) to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, and 40 mg/L) for 7, 14, 21, or 28 days. Thereafter, the effects of nanoplastic exposure on metabolite content, energy metabolism-related enzyme activity, and gene expression were evaluated. Our results showed that (1) with increasing nanoplastic concentration and exposure time, the survival rate decreased, while weight gain rate and molting number increased and then decreased; glycogen, triglyceride, and total cholesterol content all declined while lactic acid content increased with higher exposure to nanoplastic concentrations; (2) the activities of acetyl-CoA carboxylase (ACC), hexokinase (HK), carnitine palmitoyl transferase-1, pyruvate kinase (PK), lipase, and fatty acid synthase tended to decrease, while the activity of lactate dehydrogenase (LDH) increased. In particular, the activity of 6-phosphofructokinase exposed to 5 mg/L nanoplastics increased significantly (P < 0.05). (3) Expression of the metabolism-related genes 6-phosphate glucokinase (G-6-Pase), HK, PK, ACC, Acetyl-CoA-binding protein (ACBP), CPT-1, and fatty-acid-binding protein 10 (FABP 10) increased and then decreased, while expression of the LDH gene showed an upward trend. These results indicate that nanoplastics affect growth, enzyme activity, and the gene expression of energy metabolism in M. nipponense, and that high concentrations of nanoplastics have a negative impact on energy metabolism.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yuan Yang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yang Jiao
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qiang Chen
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yinying Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|