101
|
Saeed M, Khan I, Adeel M, Akram N, Muneer M. Synthesis of a CoO–ZnO photocatalyst for enhanced visible-light assisted photodegradation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d1nj05633f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mechanism of photodegradation of methylene blue over CoO–ZnO photocatalyst.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Iltaf Khan
- College of Chemical and Materials Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| | - Muhammad Adeel
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Majid Muneer
- Department of Chemistry, Government College University Faisalabad, Pakistan
| |
Collapse
|
102
|
Ji P, Wang L, Chen S, Wen Q, Wu J, Meng G, Hou J, Liu Z, Guo X. Enhanced photo-Fenton activity of γ-Fe2O3/Bent modified with BiVO4 under visible light. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.138987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
103
|
Patidar P, Prakash T. Decoding the roles of extremophilic microbes in the anaerobic environments: Past, Present, and Future. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100146. [PMID: 35909618 PMCID: PMC9325894 DOI: 10.1016/j.crmicr.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The inaccessible extreme environments harbor a large majority of anaerobic microbes which remain unknown. Anaerobic microbes are used in a variety of industrial applications. In the future, metagenomic-assisted techniques can be used to identify novel anaerobic microbes from the unexplored extreme environments. Genetic engineering can be used to enhance the efficiency of anaerobic microbes for various processes.
The genome of an organism is directly or indirectly correlated with its environment. Consequently, different microbes have evolved to survive and sustain themselves in a variety of environments, including unusual anaerobic environments. It is believed that their genetic material could have played an important role in the early evolution of their existence in the past. Presently, out of the uncountable number of microbes found in different ecosystems we have been able to discover only one percent of the total communities. A large majority of the microbial populations exists in the most unusual and extreme environments. For instance, many anaerobic bacteria are found in the gastrointestinal tract of humans, soil, and hydrothermal vents. The recent advancements in Metagenomics and Next Generation Sequencing technologies have improved the understanding of their roles in these environments. Presently, anaerobic bacteria are used in various industries associated with biofuels, fermentation, production of enzymes, vaccines, vitamins, and dairy products. This broad applicability brings focus to the significant contribution of their genomes in these functions. Although the anaerobic microbes have become an irreplaceable component of our lives, a major and important section of such anaerobic microbes still remain unexplored. Therefore, it can be said that unlocking the role of the microbial genomes of the anaerobes can be a noteworthy discovery not just for mankind but for the entire biosystem as well.
Collapse
Affiliation(s)
- Pratyusha Patidar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
- Corresponding author.
| |
Collapse
|
104
|
Saeed M, Muneer M, Haq AU, Akram N. Photocatalysis: an effective tool for photodegradation of dyes-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:293-311. [PMID: 34523090 DOI: 10.1007/s11356-021-16389-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The disposal of dye-contaminated wastewater is a major concern around the world for which a variety of techniques are used for its treatment. The photocatalytic treatment of dye-contaminated wastewater is one of the treatment methods. Semiconductor-assisted photocatalytic treatment of dye-contaminated wastewater has gained pronounced attention recently. This review outlines the recent advancements in the photocatalytic treatment of dye-contaminated wastewater. The photocatalytic degradation of dyes follows three types of mechanisms: (1) dye sensitization through charge injection, (2) indirect dye degradation through oxidation/reduction, and (3) direct photolysis of dye. Several experimental parameters like initial concentration of dyes, pH, and catalyst dosage significantly affect the photocatalytic degradation of dyes. The photocatalytic materials can be categorized into three generations. The single-component (e.g., ZnO, TiO2) and multiple component semiconductor metal oxides (e.g., ZnO-TiO2, Bi2O3-ZnO) are categorized as first-generation and second-generation photocatalysts, respectively. The photocatalysts dispersed on an inert solid substrate (e.g., Ag-Al2O3, ZnO-C) are classified as third-generation photocatalysts. Finally, we reviewed the challenges that affect the photocatalytic degradation of dyes.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Majid Muneer
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
105
|
Desalination and Detoxification of Textile Wastewater by Novel Photocatalytic Electrolysis Membrane Reactor for Ecosafe Hydroponic Farming. MEMBRANES 2021; 12:membranes12010010. [PMID: 35054537 PMCID: PMC8777688 DOI: 10.3390/membranes12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023]
Abstract
In this study, a novel photoelectrocatalytic membrane (PECM) reactor was tested as an option for the desalination, disinfection, and detoxification of biologically treated textile wastewater (BTTWW), with the aim to reuse it in hydroponic farming. The anionic ion exchange (IEX) process was used before PECM treatment to remove toxic residual dyes. The toxicity evaluation for every effluent was carried out using the Vibrio fischeri, Microtox® test protocol. The disinfection effect of the PECM reactor was studied against E. coli. After PECM treatment, the 78.7% toxicity level of the BTTWW was reduced to 14.6%. However, photocatalytic desalination during treatment was found to be slow (2.5 mg L-1 min-1 at 1 V potential). The reactor demonstrated approximately 52% COD and 63% TOC removal efficiency. The effects of wastewater reuse on hydroponic production were comparatively investigated by following the growth of the lettuce plant. A detrimental effect was observed on the lettuce plant by the reuse of BTTWW, while no negative impact was reported using the PECM treated textile wastewater. In addition, all macro/micronutrient elements in the PECM treated textile wastewater were recovered by hydroponic farming, and the PECM treatment may be an eco-safe wastewater reuse method for crop irrigation.
Collapse
|
106
|
Kushare SS, Bobade VD, Tope DR, Borhade AV. CoCr2O4@GeO2@ZnO core-shell nanoparticle as a novel recoverable catalyst: Preparation, characterization and photocatalytic degradation of basic fuchsin dye. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
107
|
Photodegradation of Carbol Fuchsin Dye Using an Fe2−xCuxZr2−xWxO7 Photocatalyst under Visible-Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal11121473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fe2−xCuxZr2−xWxO7 (x: 0, 0.05, 0.015) nanoparticles were synthesized following the Pechini method and characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) measurements to be used as photocatalysts in colored water remediation. All of the prepared materials were crystallized in a cubic fluorite phase as the major phase. The band gap was reduced upon doping with W6+ and Cu2+ from 1.96 eV to 1.47 eV for Fe1.85Cu0.15Zr1.85W0.15O7. Carbol fuchsin (CF) dye was used to determine the photocatalytic degradation efficiency of the prepared catalysts. Degradation efficiency was directly proportional to the dopant’s concentration. Complete removal of 20 mg/L CF was achieved under optimal conditions (pH 9, and catalyst loading of 1.5 g/L) using Fe1.85Cu0.15Zr1.85W0.15O7. The degradation rate followed pseudo-first-order kinetics. The reusability for photocatalysts was tested five times, decreasing its efficiency by 4% after the fifth cycle, which indicates that the prepared Fe1.85Cu0.15Zr1.85W0.15O7 photocatalyst is a promising novel photocatalyst due to its superior efficiency in dye photodegradation.
Collapse
|
108
|
Cuong LM, Duc BH, Thang PV, Mai NTT, Chinh HD, Tu NC, Anh LTL. Kinetics and Adsorption Model of Methylene Blue on g-C 3N 4@WO 3.H 2O Nanoplate Composite. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
g-C3N4@WO3.H2O nanoplate composite adsorbents were prepared in a simple acid precipitation method at room temperature. The g-C3N4@WO3.H2O nanoplate composite adsorbents were characterized by X-ray powder diffraction, micro-Raman spectroscopy, Fourier transform infrared spectra, scanning electron microscopy and UV-vis diffuse reflectance spectroscopy. The results show that the orthorhombic-phase WO3.H2O nanoplates with dimensions of [Formula: see text][Formula: see text]nm3 were successfully composited with g-C3N4. The methylene blue dye generation activity of these adsorbents was evaluated. The kinetics and absorption model of g-C3N4@WO3.H2O nanoplate composite adsorbents were further studied.
Collapse
Affiliation(s)
- Le Manh Cuong
- Faculty Building Material, National University Civil Engineering, Ha Noi 100000, Vietnam
| | - Bui Hoang Duc
- School of Engineering Physics, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| | - Pham Van Thang
- School of Engineering Physics, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| | - Nguyen Thi Tuyet Mai
- School of Chemical Engineering, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| | - Huynh Dang Chinh
- School of Chemical Engineering, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| | - Nguyen Cong Tu
- School of Engineering Physics, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| | - Luu Thi Lan Anh
- School of Engineering Physics, Hanoi University of Science and Technology, Ha Noi 100000, Vietnam
| |
Collapse
|
109
|
Brombilla VDL, Sarmento Lazarotto J, Silvestri S, Anschau KF, Dotto GL, Foletto EL. Biochar derived from yerba-mate (Ilex paraguariensis) as an alternative TiO2 support for enhancement of photocatalytic activity toward Rhodamine-B degradation in water. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1966423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Siara Silvestri
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Guilherme Luiz Dotto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Edson Luiz Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
110
|
Han D, Zhao H, Gao L, Qin Z, Ma J, Han Y, Jiao T. Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
111
|
Zhang H, He Q, Zhao W, Guo F, Han L, Wang W. Superior dyes removal by a recyclable magnetic silicate@Fe3O4 adsorbent synthesized from abundant natural mixed clay. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
112
|
Cordin M, Bechtold T, Pham T. Quantification of aniline and N-methylaniline in indigo. Sci Rep 2021; 11:21135. [PMID: 34702925 PMCID: PMC8548543 DOI: 10.1038/s41598-021-00634-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aniline and N-methylaniline are common contaminants in commercially produced indigo. It is known, that commercially produced indigo contains up to 0.6% aniline and 0.4% N-methylaniline by weight and indigo dye shows a small mutagenic effect, most probably due to the presence of these contaminants. The present work describes a new and powerful analytical method to determine the concentration of these contaminants in indigo. This method is based on the transformation of water insoluble indigo into soluble leucoindigo and allows therefore the acidic extraction of the aromatic contaminants. This transformation step is essential, because the main part of these contaminants are strongly included in the indigo crystals. The amount of extracted aniline and N-methylaniline from the leucoindigo solution was quantified with high performance liquid chromatography (HPLC, combined with a photo diode array detector). A possible accumulation of the aromatic amines at the indigo crystal surface was investigated using FTIR and by adsorption studies. Therefore this method allows an accurate monitoring of these toxic by-products in the indigo dye, which is important for an economic and environmental assessment of the denim production.
Collapse
Affiliation(s)
- Michael Cordin
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850, Dornbirn, Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850, Dornbirn, Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850, Dornbirn, Austria.
| |
Collapse
|
113
|
Panneerselvam A, Velayutham J, Ramasamy S. Green synthesis of TiO 2 nanoparticles prepared from Phyllanthus niruri leaf extract for dye adsorption and their isotherm and kinetic studies. IET Nanobiotechnol 2021; 15:164-172. [PMID: 34694700 PMCID: PMC8675815 DOI: 10.1049/nbt2.12033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Herein, the green synthesis of TiO2 nanoparticles using Phyllanthus niruri leaf extract was accomplished by the sol-gel method. The structure and particle size of the synthesised TiO2 nanoparticles were characterised by X-ray diffraction (XRD) analysis and the size was found to be 20 nm. The Fourier-transform infrared spectra determined the existence of carboxyl and hydroxyl functional groups. The images from SEM analysis recommended a porous and heterogeneous surface. The methyl orange (MO) dye removal was examined using different parameters such as pH, time, dose, temperature and dye concentration. Maximum dye elimination percentage was achieved at pH 6.0 and 0.02 g as the optimum adsorbent dose. The kinetic analysis suggested that the pseudo-second-order kinetic model finely defines adsorption dynamics. Langmuir adsorption isotherm studies revealed endothermic monolayer adsorption of the methyl Orange dye. The negative value of ∆G° and positive value of ∆H° showed the spontaneous and endothermic adsorption method.
Collapse
Affiliation(s)
- Anitha Panneerselvam
- Department of Chemistry, Government College of Engineering, Salem, Tamilnadu, India
| | - Jeevanantham Velayutham
- Department of Chemistry, Vivekanandha College of Arts and Sciences for Women, Namakkal, Tamilnadu, India
| | - Sudha Ramasamy
- Department of Chemistry, Gnanamani College of Technology, Namakkal, Tamilnadu, India
| |
Collapse
|
114
|
de Assis Filho RB, Baptisttella AMS, de Araujo CMB, Fraga TJM, de Paiva TMN, de Abreu CAM, da Motta Sobrinho MA. Removal of textile dyes by benefited marine shells wastes: From circular economy to multi-phenomenological modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113222. [PMID: 34246908 DOI: 10.1016/j.jenvman.2021.113222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Marine shell wastes were thermally activated and characterized as aragonite and calcite phases and were used in the removal of synthetic anionic dyes, Bright Blue Acid (NB180) and Reactive Red 133 (RR133). Benefited marine shells were classified as low-cost (USD 0.33/g of adsorbent) in comparison with other reported materials. Furthermore, the absence of chemicals in the adsorbent preparation allows its further employment in economic activities. The coexistence of adsorption and exchange-precipitation reaction was responsible for up to 93% of dye removal, whilst the maximum adsorption capacities were 225 mg g-1 for NB180 and 36 mg g-1 for RR133. The observed kinetic behavior of the dye removal by the adsorbent allowed the proposal of a mechanism for dye-adsorbent interaction in liquid-solid interface considering both adsorption and exchange-precipitation reaction. Contribution of the exchange-precipitation reaction in the removal process was quantified as being approximately 75% for NB180 and 25% for RR133. The mathematical model that phenomenologically described the kinetic behavior of the dye removals gave the magnitude order of the kinetic parameters as kads = 8.67-9.49 min-1 and kp = 1.18-2.84 min-1, due to the adsorption and the (exchange-reaction)-precipitation, respectively. This work indicates the step (exchange reaction)-precipitation as an additional contribution to improve the dye removal from aqueous effluents, achieving in the evolution of the process up to 24% in terms of kinetic selectivity of removal.
Collapse
Affiliation(s)
- Romero Barbosa de Assis Filho
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil; Academic Department of Systems, Projects and Industrial Controls, Pernambuco Federal Institute of Education, Science and Technology, 500 Prof. Luís Freire Av., Cidade Universitária, 50740-545, Recife, Pernambuco, Brazil
| | - Ana Maria Salgueiro Baptisttella
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil
| | - Caroline Maria Bezerra de Araujo
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil; Department of Chemical Engineering, Faculty of Engineering, University of Porto, Dr. Roberto Frias St., W/n, 4200-465, Porto, Portugal
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil.
| | - Tarsila Maíra Nogueira de Paiva
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil
| | - Cesar Augusto Moraes de Abreu
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil
| | - Mauricio Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Av., Cidade Universitária, 50740-520, Recife, Pernambuco, Brazil.
| |
Collapse
|
115
|
Oyarce E, Roa K, Boulett A, Sotelo S, Cantero-López P, Sánchez J, Rivas BL. Removal of Dyes by Polymer-Enhanced Ultrafiltration: An Overview. Polymers (Basel) 2021; 13:3450. [PMID: 34641265 PMCID: PMC8512745 DOI: 10.3390/polym13193450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
The current problem of contamination caused by colored industrial effluents has led to the development of different techniques to remove these species from water. One of them, polymer-enhanced ultrafiltration (PEUF), has been systematically studied in this mini review, in which research works from 1971 to date were found and analyzed. Dye retention rates of up to 99% were obtained in several cases. In addition, a brief discussion of different parameters, such as pH, interfering salts, type of polymer, dye concentration, and membrane type, and their influence in dye removal is presented. It was concluded from the above that these factors can be adapted depending on the pollutant to be remediated, in order to optimize the process. Finally, theoretical approaches have been used to understand the intermolecular interactions, and development of the studied technique. In this revision, it is possible to observe that molecular docking, molecular dynamics simulations, density functional theory calculations, and hybrid neural-genetic algorithms based on an evolutionary approach are the most usual approximations used for this purpose. Herein, there is a detailed discussion about what was carried out in order to contribute to the research development of this important science field.
Collapse
Affiliation(s)
- Estefanía Oyarce
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Karina Roa
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Andrés Boulett
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Sebastián Sotelo
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Plinio Cantero-López
- Relativistic Molecular Physics Group (ReMoPh), PhD Program in Molecular Physical Chemistry, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago 8370143, Chile;
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 330, Santiago 8370186, Chile
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (E.O.); (K.R.); (A.B.); (S.S.)
| | - Bernabé L. Rivas
- Polymer Department, Faculty of Chemistry, University of Concepción, Concepción 4030000, Chile;
| |
Collapse
|
116
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. CHEMOSPHERE 2021; 280:130595. [PMID: 33940449 DOI: 10.1016/j.chemosphere.2021.130595] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/16/2023]
Abstract
Release of pollutants due to inflating anthropogenic activities has a conspicuous effect on the environment. As water is uniquely vulnerable to pollution, water pollution control has received a considerable attention among the most critical environmental challenges. Diverse sources such as heavy metals, dyes, pathogenic and organic compounds lead to deterioration in water quality. Demand for the pollutant free water has created a greater concern in water treatment technologies. The pollutants can be mitigated through physical, chemical and biological methodologies thereby alleviating the health and environmental effects caused. Diverse technologies for wastewater treatment with an accentuation on pre-treatment of feedstock and post treatment are concisely summed up. Pollutants present in the water can be removed by processes some of which include filtration, reverse osmosis, degasification, sedimentation, flocculation, precipitation and adsorption. Membrane separation and adsorption methodologies utilized to control water pollution and are found to be more effective than conventional methods and established recovery processes. This audit relatively features different methodologies that show remarkable power of eliminating pollutants from wastewater. This review describes recent research development on wastewater treatment and its respective benefits/applications in field scale were discussed. Finally, the difficulties in the enhancement of treatment methodologies for pragmatic commercial application are recognized and the future viewpoints are introduced.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Tajsabreen
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - B Reshma
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
117
|
Custom-tailoring tight nanocomposite membranes for advanced reclamation of hairwork dyeing effluent. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
118
|
Gembo RO, Aoyi O, Majoni S, Etale A, Odisitse S, King'ondu CK. Synthesis of bismuth oxyhalide (BiOBr zI (1- z)) solid solutions for photodegradation of methylene dye. AAS Open Res 2021; 4:43. [PMID: 34557643 DOI: 10.12688/aasopenres.13249.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The removal of textile wastes is a priority due to their mutagenic and carcinogenic properties. In this study, bismuth oxyhalide was used in the removal of methylene blue (MB) which is a textile waste. The main objective of this study was to develop and investigate the applicability of a bismuth oxyhalide (BiOBr zI (1-z)) solid solutions in the photodegradation of MB under solar and ultraviolet (UV) light irradiation. Methods: Bismuth oxyhalide (BiOBr zI (1-z)) (0 ≤ z ≤ 1) materials were successfully prepared through the hydrothermal method. Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray diffractometer (XRD), and scanning electron microscope (SEM) were used to determine the surface area, microstructure, crystal structure, and morphology of the resultant products. The photocatalytic performance of BiOBr zI (1-z) materials was examined through methylene blue (MB) degradation under UV light and solar irradiation. Results: The XRD showed that BiOBr zI (1-z) materials crystallized into a tetragonal crystal structure with (102) peak slightly shifting to lower diffraction angle with an increase in the amount of iodide (I -). BiOBr 0.6I 0.4 materials showed a point of zero charge of 5.29 and presented the highest photocatalytic activity in the removal of MB with 99% and 88% efficiency under solar and UV irradiation, respectively. The kinetics studies of MB removal by BiOBr zI (1-z) materials showed that the degradation process followed nonlinear pseudo-first-order model indicating that the removal of MB depends on the population of the adsorption sites. Trapping experiments confirmed that photogenerated holes (h +) and superoxide radicals ( •O 2 -) are the key species responsible for the degradation of MB. Conclusions : This study shows that bismuth oxyhalide materials are very active in the degradation of methylene blue dye using sunlight and thus they have great potential in safeguarding public health and the environment from the dye's degradation standpoint. Moreover, the experimental results agree with nonlinear fitting.
Collapse
Affiliation(s)
- Robert O Gembo
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ochieng Aoyi
- Department of Chemical, Materials, and Metallurgical Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| | - Stephen Majoni
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Anita Etale
- Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sebusi Odisitse
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Cecil K King'ondu
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Palapye, Botswana.,Department of Physical Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
119
|
Bera SP, Godhaniya M, Kothari C. Emerging and advanced membrane technology for wastewater treatment: A review. J Basic Microbiol 2021; 62:245-259. [PMID: 34496068 DOI: 10.1002/jobm.202100259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 02/01/2023]
Abstract
Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as an ideal technology for treating wastewater from different wastewater streams. Membrane technology is one of the most up-to-date advancements discovered to be successful in fundamentally lessening impurities to desired levels. In spite of having certain impediments, membrane bioreactors (MBRs) for biological wastewater treatment provide many advantages over conventional treatment. This review article covers all the aspects of membrane technology that are widely used in wastewater treatment process such as the principle of membrane technology, the classification of membrane technology processes in accordance to pressure, concentration, electrical and thermal-driven processes, its application in different industries, advantages, disadvantages and the future prospective.
Collapse
Affiliation(s)
| | - Manoj Godhaniya
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Charmy Kothari
- Department of Biotechnology, Christ Campus, Rajkot, Gujarat, India
| |
Collapse
|
120
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
121
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
122
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
123
|
Polysulfone/Polyetherimide Ultrafiltration composite membranes constructed on a three-component Nylon-fiberglass-Nylon support for azo dyes removal: Experimental and molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
124
|
Tarhan T. Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1789-1803. [PMID: 33931914 DOI: 10.1002/wer.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, a three-dimensional (3D) porous polydimethylsiloxane (PDMS) was prepared using a cheap material with a highly simple and different method. PDMS was firstly applied for the removal of carbol fuchsin (CF) cationic organic dye pollution in this study. Besides, the adsorption capacity of 3D PDMS for removal of the CF was found quite high compared to other materials in already published results. The synthesized PDMS was characterized using several spectroscopic and imaging techniques such as FTIR, Raman, SEM, stereomicroscope, EDX, UV/Vis, and TGA. The optimal conditions were found as 10 mg L-1 initial concentration, 20 mg of adsorbent dose, 2 h contact time, pH 10, and 25°C temperature. The removal % of CF and the maximum adsorption capacity were calculated at approximately 89% and 88.8 mg g-1 , respectively. Furthermore, the equilibrium studies showed that the Langmuir isotherm model fitted well with the removal of CF. Moreover, according to the kinetic results, the second-order kinetic model was found suitable (qe,cal 89.3 mg g-1 and qe,exp 88.8 mg g-1 close to each other) for the adsorption of CF. Also, the thermodynamic studies indicated that adsorption occurs spontaneously, and the adsorption process was physical adsorption. Besides, the reusability of the adsorbent was studied. PRACTITIONER POINTS: Water treatment technology should be low cost, economically viable and in the meantime, eco-friendly. The 3D porous PDMS was prepared by using cheap material with a highly simple method and eco-friendly This unique material was firstly applied for the removal of organic dye in water in this study.
Collapse
Affiliation(s)
- Tuba Tarhan
- Vocational High School of Health Services, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
125
|
Rajendran S, Pachaiappan R, Hoang TKA, Karthikeyan S, Gnanasekaran L, Vadivel S, Soto-Moscoso M, Gracia-Pinilla MA. CuO-ZnO-PANI a lethal p-n-p combination in degradation of 4-chlorophenol under visible light. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125989. [PMID: 34492886 DOI: 10.1016/j.jhazmat.2021.125989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile.
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai 600086, Tamilnadu, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | - Sekar Karthikeyan
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Lalitha Gnanasekaran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile
| | - S Vadivel
- Department of Chemistry, PSG College of Technology, Coimbatore 641004, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; Universidad Autónoma de Nuevo León, Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, PIIT, Apodaca, NL, Mexico
| |
Collapse
|
126
|
Zhou W, Chen X, Ismail M, Wei L, Hu B. Simulating the synergy of electron donors and different redox mediators on the anaerobic decolorization of azo dyes: Can AQDS-chitosan globules replace the traditional redox mediators? CHEMOSPHERE 2021; 275:130025. [PMID: 33677275 DOI: 10.1016/j.chemosphere.2021.130025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
During anaerobic treatment of azo dye wastewater, the decolorization efficiency is low and dissolved redox mediators (RMs) added to the system are easy lost. In order to solve these issues, immobilized RMs have been a hot area of research. In this study a novel immobilized RM material, disodium anthraquinone-2,6-disulfonate (AQDS)-chitosan globules, which is natural, highly efficient and environmentally friendly, was prepared. Compared with natural immobilized RMs (activated carbon) and dissolved RMs (AQDS), it can be considered that it has a significant strengthening effect on the anaerobic biological degradation and decolorization of azo dye wastewater. An electron donor (ED, glucose) or RM (AQDS solution) was dosed into an anaerobic reactor to determine the enhancing effect and appropriate concentration for the decolorization treatment. The results indicate that a certain concentration of ED or RM [300 mg/L (1.667 mmol/L) glucose or 200 μmol/L AQDS solution] can improve effectively the anaerobic biological degradation and decolorization effect of azo dye wastewater. While by adding both 300 mg/L (1.667 mmol/L) glucose and 300 μmol/L AQDS (the concentrations were the initial reactive concentrations) together the decolorization efficiency was improved further. At the same time, the synergy of ED (glucose) and RM (AQDS solution) on the anaerobic decolorization of azo dye was simulated by the central combination design. A mathematical model for the decolorization efficiency has been established. According to this model, the hydraulic retention time of the best decolorization speed and efficiency has been obtained.
Collapse
Affiliation(s)
- Weizhu Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoguang Chen
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; School of Mechanical Engineering, Sichuan University of Science & Engineering, Sichuan Provincial Key Lab of Process Equipment and Control, Zigong, 643000, China.
| | - Muhammad Ismail
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wei
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baolan Hu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
127
|
Benkhaya S, Lgaz H, Alrashdi AA, M'rabet S, El Bachiri A, Assouag M, Chung IM, El Harfi A. Upgrading the performances of polysulfone/polyetherimide ultrafiltration composite membranes for dyes removal: Experimental and molecular dynamics studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
128
|
One-Step Construction of Multi-Walled CNTs Loaded with Alpha-Fe 2O 3 Nanoparticles for Efficient Photocatalytic Properties. MATERIALS 2021; 14:ma14112820. [PMID: 34070510 PMCID: PMC8199084 DOI: 10.3390/ma14112820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
The aggregation and the rapid restructuring of the photoinduced electron−hole pairs restructuring in the process of photoelectric response remains a great challenge. In this study, a kind of Multi-walled carbon nanotubes loaded Alpha-Fe2O3 (CNTs/α-Fe2O3) heterostructure composite is successfully prepared via the one-step method. Due to the synergistic effect in the as-prepared CNTs/α-Fe2O3, the defect sites and oxygen-containing functional groups of CNTs can dramatically improve the interface charge separation efficiency and prevent the aggregation of α-Fe2O3. The improved photocurrent and enhanced hole–electron separation rate in the CNTs/α-Fe2O3 is obtained, and the narrower band gap is measured to be 2.8 ev with intensive visible-light absorption performance. Thus, the CNTs/α-Fe2O3 composite serves as an excellent visible light photocatalyst and exhibits an outstanding photocatalytic activity for the cationic dye degradation of rhodamine B (RhB). This research supplies a fresh application area forα-Fe2O3 photocatalyst and initiates a new approach for design of high efficiency photocatalytic materials.
Collapse
|
129
|
Xing J, Song M, Yang M, Tan X, Li F, Wang X, Zhao J. Facile Preparation of Granular Copper Films as Cathode for Enhanced Electrochemical Degradation of Methyl Orange. MATERIALS 2021; 14:ma14112697. [PMID: 34063737 PMCID: PMC8196555 DOI: 10.3390/ma14112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
In this paper, granular copper films (GCFs) were prepared through electrodeposition in CuSO4 solution containing triethanolamine, and the films were used as electro-Fenton-like cathodes for degradation of methyl orange (MO). The effects of triethanolamine concentration, pH value, current intensity and temperature on the morphology of the films, as well as the MO decolorization ratio (DR), were investigated in detail. Results show that when the concentration of triethanolamine is 0.2 wt%, the prepared GCF exhibits the best performance. Under room temperature and neutral conditions, no external O2 or catalyst, MO is completely decolorized after 240 min. Compared with the commonly used carbon cathode, the GCF cathode can increase the MO decolorization rate by approximately 70.9%. The kinetics of the electrochemical degradation reaction is also discussed.
Collapse
|
130
|
Biodegradation of azo dye-containing wastewater by activated sludge: a critical review. World J Microbiol Biotechnol 2021; 37:101. [PMID: 33983510 DOI: 10.1007/s11274-021-03067-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
The effluent from the textile industry is a complex mixture of recalcitrant molecules that can harm the environment and human health. Biological treatments are usually applied for this wastewater, particularly activated sludge, due to its high efficiency, and low implementation and operation costs. However, the activated sludge microbiome is rarely well-known. In general, activated sludges are composed of Acidobacteria, Bacillus, Clostridium, Pseudomonas, Proteobacteria, and Streptococcus, in which Bacillus and Pseudomonas are highlighted for bacterial dye degradation. Consequently, the process is not carried out under optimum conditions (treatment yield). Therefore, this review aims to contextualize the potential environmental impacts of azo dye-containing wastewater from the textile industry, including toxicity, activated sludge microbiome identification, in particular using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a novel, rapid and accurate strategy for the identification of activated sludge microbiome (potential to enhance treatment yield).
Collapse
|
131
|
Rathi BS, Kumar PS, Show PL. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124413. [PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 05/17/2023]
Abstract
Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia
| |
Collapse
|
132
|
Xiang HF, Xu JK, Liu J, Yang XZ, Gao SQ, Wen GB, Lin YW. Efficient biodegradation of malachite green by an artificial enzyme designed in myoglobin. RSC Adv 2021; 11:16090-16095. [PMID: 35481174 PMCID: PMC9029994 DOI: 10.1039/d1ra02202d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/26/2022] Open
Abstract
Synthetic dyes such as malachite green (MG) have a wide range of applications. Meanwhile, they bring great challenges for environmental security and cause potential damages to human health. Compared with traditional approaches, enzymatic catalysis is an emerging technique for wastewater treatment. As alternatives to natural enzymes, artificial enzymes have received much attention for potential applications. In previous studies, we have rationally designed artificial enzymes based on myoglobin (Mb), such as by introducing a distal histidine (F43H mutation) and creating a channel to the heme pocket (H64A mutation). We herein show that the artificial enzyme of F43H/H64A Mb can be successfully applied for efficient biodegradation of MG under weak acid conditions. The degradation efficiency is much higher than those of natural enzymes, such as dye-decolorizing peroxidase and laccase (13-18-fold). The interaction of MG and F43H/H64A Mb was investigated by using both experimental and molecular docking studies, and the biodegradation products of MG were also revealed by UPLC-ESI-MS analysis. Based on these results, we proposed a plausible biodegradation mechanism of MG. With the high-yield of overexpression in E. coli cells, this study suggests that the artificial enzyme has potential applications in the biodegradation of MG in fisheries and textile industries.
Collapse
Affiliation(s)
- Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology Qingdao 266071 China
| | - Jiao Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xin-Zhi Yang
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| |
Collapse
|
133
|
Oyarce E, Santander P, Butter B, Pizarro GDC, Sánchez J. Use of sodium alginate biopolymer as an extracting agent of methylene blue in the polymer‐enhanced ultrafiltration technique. J Appl Polym Sci 2021. [DOI: 10.1002/app.50844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Estefanía Oyarce
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
- Departamento de Química Universidad Tecnológica Metropolitana Santiago Chile
| | - Paola Santander
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Bryan Butter
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | | | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| |
Collapse
|
134
|
Hong SG, Im E, Kim DI, Jeong EJ, Kim J, Moon GD, Hyun DC. Magnetic polymer bowl for enhanced catalytic activity and recyclability. RSC Adv 2021; 11:13545-13555. [PMID: 35423839 PMCID: PMC8697504 DOI: 10.1039/d1ra00453k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
This work introduces the fabrication of a magnetic polymer bowl for enhanced catalytic activity and recyclability, which involves the synthesis of silica-coated Fe3O4 magnetic clusters, seeded dispersion polymerization using the magnetic clusters, and transformation into a bowl-like structure via a phase separation route. The additional treatment with tannic acid (TA) on the bowls allows the in situ formation of silver nanoparticles (AgNPs) on their surfaces. The openness and larger surface area of the bowls, as compared with those of other structured particles, such as spheres and flowers, enable a considerably higher immobilization of AgNPs, thus leading to an excellent catalytic reduction for 4-nitrophenol (4-NP), methylene blue (MB), and rhodamine B. Furthermore, the strong magnetic response originating from the magnetic clusters inside the bowls endows a good magnetic recovery and an excellent reusability for the repeated reduction of the organic dyes without loss of catalytic activity.
Collapse
Affiliation(s)
- Sang Gi Hong
- Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Polymeric Nano-materials Laboratory, Kyungpook National University Daegu 41566 South Korea
| | - Eunmi Im
- Dongnam Division, Korea Institute of Industrial Technology Busan 46938 Korea
| | - Da In Kim
- Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Polymeric Nano-materials Laboratory, Kyungpook National University Daegu 41566 South Korea
| | - Eun Jin Jeong
- Dongnam Division, Korea Institute of Industrial Technology Busan 46938 Korea
| | - Jongbok Kim
- Department of Materials Science and Engineering, Kumoh National Institute of Technology Gumi Gyeongbuk 39177 Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology Gumi 39177 Korea
| | - Geon Dae Moon
- Dongnam Division, Korea Institute of Industrial Technology Busan 46938 Korea
| | - Dong Choon Hyun
- Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Polymeric Nano-materials Laboratory, Kyungpook National University Daegu 41566 South Korea
| |
Collapse
|
135
|
Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
136
|
Benjelloun M, Miyah Y, Akdemir Evrendilek G, Zerrouq F, Lairini S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
137
|
Ren Y, Ma Y, Min G, Zhang W, Lv L, Zhang W. A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: Additional functions of adsorption and catalytic oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143083. [PMID: 33162134 DOI: 10.1016/j.scitotenv.2020.143083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 05/25/2023]
Abstract
Multifunctional ultrafiltration membranes, which achieve ultrafiltration and additional functions in one unit, are a new strategy developed in recent years for wastewater treatment. In this mini review, we summarized and commented on the development of adsorptive and catalytically oxidative multifunctional ultrafiltration membranes, as well as pointed out possible further trends. The main methods for membrane preparation, i.e., blending, surface coating, reverse filtration, etc., were summarized, and the advantages and disadvantages of each method were discussed. In addition, the key criteria which influence the performance of membranes, including the efficiency of additional functions, original ultrafiltration, permeance, and stability, were analyzed. Furthermore, we introduced the applications of different classes of multifunctional ultrafiltration membranes, and tried to further analyzed some examples of multifunctional ultrafiltration membranes used for adsorption and catalytic oxidation. The most significant advantage of this technology is the high efficiency for the simultaneous removal of different kinds of pollutants or for the removal of one kind of pollutant during the deep treatment of multicomponent wastewater. However, some challenges still oppose the practical application of multifunctional ultrafiltration. We believe that breaking the trade-off between the high efficiency of additional functions and high flux, strengthening the stability of the membranes, achieving synergistic effects between multi-effect functions, and investigating the interaction mechanisms between active materials and the membrane are key points for further research.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yulong Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guangyu Min
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenbin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210046, China.
| |
Collapse
|
138
|
Simonescu CM, Tătăruş A, Culiţă DC, Stănică N, Ionescu IA, Butoi B, Banici AM. Comparative Study of CoFe 2O 4 Nanoparticles and CoFe 2O 4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:711. [PMID: 33808975 PMCID: PMC8001270 DOI: 10.3390/nano11030711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
(1) Background: A comparative research study to remove Congo Red (CR) and Methyl Orange (MO) from single and binary solutions by adsorption onto cobalt ferrite (CoFe2O4) and cobalt ferrite-chitosan composite (CoFe2O4-Chit) prepared by a simple coprecipitation method has been performed. (2) Methods: Structural, textural, morphology, and magnetic properties of the obtained magnetic materials were examined by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption-desorption analysis, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and magnetic measurements. The optimal operating conditions of the CR and MO removal processes were established in batch experiments. The mathematical models used to describe the processes at equilibrium were Freundlich and Langmuir adsorption isotherms. (3) Results: Cobalt ferrite-chitosan composite has a lower specific surface area (SBET) and consequently a lower adsorption capacity than cobalt ferrite. CoFe2O4 and CoFe2O4-Chit particles exhibited a superparamagnetic behavior which enabled their efficient magnetic separation after the adsorption process. The research indicates that CR and MO adsorption onto prepared magnetic materials takes place as monolayer onto a homogeneous surface. According to Langmuir isotherm model that best fits the experimental data, the maximum CR/MO adsorption capacity is 162.68/94.46 mg/g for CoFe2O4 and 15.60/66.18 mg/g for CoFe2O4-Chit in single solutions. The results of the kinetics study revealed that in single-component solutions, both pseudo-first-order and pseudo-second-order kinetics models represent well the adsorption process of CR/MO on both magnetic adsorbents. In binary solutions, adsorption of CR/MO on CoFe2O4 better follows the pseudo-second-order kinetics model, while the kinetic of CR/MO adsorption on CoFe2O4-Chit is similar to that of the dyes in single-component solutions. Acetone and ethanol were successfully used as desorbing agents. (4) Conclusions: Our study revealed that CoFe2O4 and CoFe2O4-Chit particles are good candidates for dye-contaminated wastewater remediation.
Collapse
Affiliation(s)
- Claudia Maria Simonescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania;
| | - Alina Tătăruş
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania;
- National Research and Development Institute for Industrial Ecology, INCD ECOIND Bucuresti, 71-73 Drumul Podul Dambovitei Str., 060652 Bucharest, Romania;
| | - Daniela Cristina Culiţă
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Nicolae Stănică
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Ioana Alexandra Ionescu
- National Research and Development Institute for Industrial Ecology, INCD ECOIND Bucuresti, 71-73 Drumul Podul Dambovitei Str., 060652 Bucharest, Romania;
| | - Bogdan Butoi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (B.B.); (A.-M.B.)
| | - Ana-Maria Banici
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (B.B.); (A.-M.B.)
| |
Collapse
|
139
|
Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115986. [PMID: 33187841 DOI: 10.1016/j.envpol.2020.115986] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
This study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm. The optimum adsorbent dosage of wet-torrefied microalgal biochar for MB and CR dyes removal were determined at 1 g/L and 2 g/L, respectively, with their natural pHs as the optimum adsorption pHs. The determined equilibrium contact times for MB and CR were 120 h and 4 h, respectively. Based on the equilibrium modeling, the results revealed that Langmuir isotherm showed the best model fit, based on the highest R2 coefficient, for both the adsorption processes of MB and CR using the wet-torrefied microalgal biochar, indicating that the monolayer adsorption was the dominant process. From the modeling, the maximum adsorption capacities for MB and CR were 113.00 mg/g and 164.35 mg/g, respectively. The kinetic modeling indicated the adsorption rate and mechanism of the dyes adsorption processes, which could be crucial for future modeling and application of wet-torrefied microalgal biochar. From the results, it suggests that the valorization of microalgae by utilizing wet-torrefied microalgal biochar as the effective adsorbent for the removal of toxic dyes with an approach of microalgal biorefinery and value-added application to the environment is feasible.
Collapse
Affiliation(s)
- Kai Ling Yu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Xin Jiat Lee
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre of Research in Energy Sciences (ENERGY), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407, Taiwan.
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
140
|
Sodaitienė E, Gefenienė A, Kaušpėdienė D, Ragauskas R, Vaičiūnienė J, Selskienė A, Jasulaitienė V, Ramanauskas R. Sustainable removal of anodized aluminum dye by groundwater treatment waste: experimental and modeling. Heliyon 2021; 7:e05993. [PMID: 33537475 PMCID: PMC7841325 DOI: 10.1016/j.heliyon.2021.e05993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Groundwater treatment waste (GWTW), as an environmentally friendly renewable nanomaterial, was implemented for the removal of anodized aluminum dye Sanodure Green (SG) from aqueous solutions. The capability of the SG metal complex dye removal was assessed by measuring solution decoloration and chromium elimination degree. GWTW was characterized using FTIR, SEM, EDX, TEM, XPS and surface area measurements. Kinetic curves were obtained by changing initial dye concentration, pH, temperature and adsorbent dose. Kinetic studies showed that up to 90 % of SG dye was removed within a contact time of 20 min. The adsorption of the dye was favourable at 293 K temperature in the acidic pH region (pH 1.5-2.0) with maximum adsorption capacity 185 mg g-1. Langmuir-Freundlich isotherm model as well as hyperbolic tangent, diffusion-chemisorption and Elovich kinetic models accurately describe the dye removal process. The calculated thermodynamic parameters confirmed that SG dye removal occurred spontaneously and exothermically. The magnitude of enthalpy change (ΔH° = -35.80 kJ mol-1) was in agreement with the electrostatic interaction. The adsorption potential of GWTW for SG dye removal was also evaluated using a real wastewater produced after dyeing of anodized aluminum.
Collapse
|
141
|
Zhao X, Wang X, Lou T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124054. [PMID: 33265059 DOI: 10.1016/j.jhazmat.2020.124054] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 05/27/2023]
Abstract
Natural polysaccharide is attractive for preparing the environmentally friendly and highly efficient adsorbent. However, to obtain an efficient amphoteric absorbent for dealing with complex wastewater is still challenging. Herein, fibrous chitosan/sodium alginate composite foams were prepared by lyophilization with ternary acetic acid/water/tetrahydrofuran solvents, which had suitable morphology of interconnected pores and microscale fibers for dye adsorption. The amphoteric composite foams showed high adsorption capacities for both anionic Acid Black-172 (817.0 mg/g) and cationic Methylene Blue (1488.1 mg/g), which were far superior to those of the control samples prepared with traditional solvents of acetic acid/water. The adsorption kinetics and isotherm data showed that the adsorption followed the pseudo-second-order and Langmuir model. Further thermodynamics analysis revealed the adsorption was a spontaneous process. Meanwhile, the foams achieved effective adsorption capacity of AB-172 and MB dyes under a wide range of environmental pH, and maintained high adsorption efficiency even after four cycles. The adsorption mechanism is chemisorption, where the adsorption capacities for the anionic and cationic dyes were dependent on the mass ratio of chitosan to sodium alginate. As a novel amphoteric adsorbent, the fibrous chitosan/sodium alginate composite foam shows the potential to remove both cationic and anionic dyes from wastewaters.
Collapse
Affiliation(s)
- Xiaolin Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuejun Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Tao Lou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
142
|
Levard C, Hamdi-Alaoui K, Baudin I, Guillon A, Borschneck D, Campos A, Bizi M, Benoit F, Chaneac C, Labille J. Silica-clay nanocomposites for the removal of antibiotics in the water usage cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7564-7573. [PMID: 33033933 DOI: 10.1007/s11356-020-11076-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The increasingly frequent detection of resistant organic micropollutants in waters calls for better treatment of these molecules that are recognized to be dangerous for human health and the environment. As an alternative to conventional adsorbent material such as activated carbon, silica-clay nanocomposites were synthesized for the removal of pharmaceuticals in contaminated water. Their efficiency with respect to carbamazepine, ciprofloxacin, danofloxacin, doxycycline, and sulfamethoxazole was assessed in model water and real groundwater spiked with the five contaminants. Results showed that the efficacy of contaminant removal depends on the chemical properties of the micropollutants. Among the adsorbents tested, the nanocomposite made of 95% clay and 5% SiO2 NPs was the most efficient and was easily recovered from solution after treatment compared with pure clay, for example. The composite is thus a good candidate in terms of operating costs and environmental sustainability for the removal of organic contaminants.
Collapse
Affiliation(s)
- Clément Levard
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille Univ, Aix-en-Provence, France.
| | - Karima Hamdi-Alaoui
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille Univ, Aix-en-Provence, France
| | - Isabelle Baudin
- SUEZ-CIRSEE, 38, rue du président Wilson, 78230, Le Pecq, France
| | - Amélie Guillon
- SUEZ-CIRSEE, 38, rue du président Wilson, 78230, Le Pecq, France
| | - Daniel Borschneck
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille Univ, Aix-en-Provence, France
| | - Andrea Campos
- CNRS, Centrale Marseille, FSCM (FR1739), CP2M, Aix Marseille Univ, 13397, Marseille, France
| | - Mohamed Bizi
- BRGM, Water, Environment, Process Development and Analysis Division 3, Avenue C. Guillemin, 45060, Cedex 2, Orleans, France
| | - Florence Benoit
- CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, 4 Place Jussieu, F-75005, Paris, France
| | - Corinne Chaneac
- CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, 4 Place Jussieu, F-75005, Paris, France
| | - Jérôme Labille
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille Univ, Aix-en-Provence, France
| |
Collapse
|
143
|
Zamri NII, Zulmajdi SLN, Daud NZA, Mahadi AH, Kusrini E, Usman A. Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04245-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
In the present study, pectin-alginate-titania (PAT) composites were synthesized and the adsorptive removal behavior of methylene blue (MB) from aqueous solution, as a model of synthetic organic effluents, onto the prepared PAT composites were investigated by monitoring the effect of contact time, initial MB concentration, and temperature. The adsorption isotherm data were fitted well with the Freundlich isotherm model, suggesting the surface heterogeneity of the PAT composites and that the MB adsorption occurred on the active sites on multilayer surface of the composites. The adsorption kinetics of MB was demonstrated to be pseudo-second order, governed by two intraparticle diffusion rates, and the adsorption process was exothermic, spontaneous, and more disorder. The Langmuir isotherm model suggested that the maximum adsorption capacity of MB on the PAT composites was in the range of 435–637 mg g–1. In general, it increased with the TiO2 NPs content in the PAT composites, due most likely to the increase in surface area exposing more functional groups of the pectin and alginate to interact with the synthetic dye. The adsorptive removal of MB by the PAT composites was found to be more efficient compared with many other reported adsorbents, such as graphene oxide hybrids, pectin microspheres, magnetite-silica-pectin composites, clay-based materials, chemically treated minerals, and agricultural waste. The present study therefore demonstrated for the first time that PAT composites are not only promising to be utilized as an adsorbent in wastewater treatment, but also provide an insight into the adsorption mechanism of the synthetic dyes onto the biopolymers-titania composites.
Graphic abstract
Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles.
Collapse
|
144
|
Nour HF, E. Abdel Mageid R, Radwan EK, Khattab TA, Olson MA, El Malah T. Adsorption isotherms and kinetic studies for the removal of toxic reactive dyestuffs from contaminated water using a viologen-based covalent polymer. NEW J CHEM 2021. [DOI: 10.1039/d1nj02488d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A polyviologen-based adsorbent was prepared via polymerization of a viologen-dialdehyde with a hydroxyl-substituted aryl-dihydrazide in acidified water.
Collapse
Affiliation(s)
- Hany F. Nour
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Randa E. Abdel Mageid
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| | - Emad K. Radwan
- National Research Centre, Water Pollution Research Department, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Tawfik A. Khattab
- National Research Centre, Dyeing, Printing and Auxiliaries Department, Textile Industries Research Division, 33 El Buhouth Street, P. O. Box 12622, Cairo, Egypt
| | - Mark A. Olson
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, lL 60208, USA
| | - Tamer El Malah
- National Research Centre, Photochemistry Department, Chemical Industries Research Division, 33 El Buhouth Street, P.O. Box 12622, Cairo, Egypt
| |
Collapse
|
145
|
Insights into methyl orange adsorption behavior on a cadmium zeolitic-imidazolate framework Cd-ZIF-8: A joint experimental and theoretical study. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
146
|
El-Azazy M, El-Shafie AS, Al-Meer S, Al-Saad KA. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits' Biochar versus the Magnetic Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E30. [PMID: 33374367 PMCID: PMC7824686 DOI: 10.3390/nano11010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Non-magnetic and magnetic low-cost biochar (BC) from date pits (DP) were applied to remove tigecycline (TIGC) from TIGC-artificially contaminated water samples. Pristine biochar from DP (BCDP) and magnetite-decorated biochar (MBC-DP) were therefore prepared. Morphologies and surface chemistries of BCDP and MBC-DP were explored using FT-IR, Raman, SEM, EDX, TEM, and BET analyses. The obtained IR and Raman spectra confirmed the presence of magnetite on the surface of the MBC-DP. SEM results showed mesoporous surface for both adsorbents. BET analysis indicated higher amount of mesopores in MBC-DP. Box-Behnken (BB) design was utilized to optimize the treatment variables (pH, dose of the adsorbent (AD), concentration of TIGC [TIGC], and the contact time (CT)) and maximize the adsorptive power of both adsorbents. Higher % removal (%R), hitting 99.91%, was observed using MBC-DP compared to BCDP (77.31%). Maximum removal of TIGC (99.91%) was obtained using 120 mg/15 mL of MBC-DP for 10 min at pH 10. Equilibrium studies showed that Langmuir and Freundlich isotherms could best describe the adsorption of TIGC onto BCDP and MBC-DP, respectively, with a maximum adsorption capacity (qmax) of 57.14 mg/g using MBC-DP. Kinetics investigation showed that adsorption of TIGC onto both adsorbents could be best-fitted to a pseudo-second-order (PSO) model.
Collapse
Affiliation(s)
- Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (A.S.E.-S.); (S.A.-M.); (K.A.A.-S.)
| | | | | | | |
Collapse
|
147
|
Zhou B, Tang Y, Zhao L, Guo L, Zhou J. Novel Fe 3O 4-poly(methacryloxyethyltrimethyl ammonium chloride) adsorbent for the ultrafast and efficient removal of anionic dyes. RSC Adv 2020; 11:1172-1181. [PMID: 35423698 PMCID: PMC8693437 DOI: 10.1039/d0ra09296g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The removal of anionic dyes from wastewater has attracted global concern. In this work, a novel Fe3O4-poly(methacryloxyethyltrimethyl ammonium chloride) (Fe3O4-pDMC) adsorbent for the efficient removal of anionic dyes from wastewater was successfully synthesized by grafting methacryloxyethyltrimethyl ammonium chloride (DMC) on the surfaces of Fe3O4. Various characterization analyses confirmed that the obtained Fe3O4-pDMC possessed numerous functional groups on its surfaces and retained good magnetic separation properties. Fe3O4-pDMC showed ultrafast removal for acid orange 7 (AO7, 58.6%, 1 min) and direct blue 15 (DB15, 98.1%, 1 min), and the maximum adsorption capacity was high (266.8 and 336.5 mg g-1 for AO7 and DB15, respectively). In addition, the adsorption process was in accordance with pseudo-second-order kinetics and the Langmuir isotherm. The mechanism underlying the adsorption of Fe3O4-pDMC on anionic dyes was mainly dependent on electrostatic interaction. This study illustrated that Fe3O4-pDMC has great potential applications as an environmentally friendly, desirable adsorbent for the efficient removal of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Bo Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
| | - Yuling Tang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
| | - Liming Zhao
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
| | - Lijun Guo
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
| | - Jianfei Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education Chengdu 610065 P. R. China
| |
Collapse
|
148
|
Hussain Z, Zada A, Hussain K, Naz MY, AbdEl‐Salam NM, Ibrahim KA. Preparation of activated porous glass adsorbent through thermochemical reforming of ampoules and eggshells for remediation of direct blue dye pollution. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zahid Hussain
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Amir Zada
- Department of Chemistry Abdul Wali Khan University Mardan Mardan Pakistan
| | - Khadim Hussain
- Department of Chemistry Bacha Khan University, Charsadda Charsadda Pakistan
| | - Muhammad Y. Naz
- Department of Physics University of Agriculture, Faisalabad Faisalabad Pakistan
| | | | - Khalid A. Ibrahim
- College of Engineering, Muzahimiyah Branch King Saud University Riyadh Saudi Arabia
| |
Collapse
|
149
|
Modified Hydrothermal Route for Synthesis of Photoactive Anatase TiO2/g-CN Nanotubes from Sludge Generated TiO2. Catalysts 2020. [DOI: 10.3390/catal10111350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Titania nanotube was prepared from sludge generated TiO2 (S-TNT) through a modified hydrothermal route and successfully composited with graphitic carbon nitride (g-CN) through a simple calcination step. Advanced characterization techniques such as X-ray diffraction, scanning and transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, UV/visible diffuse reflectance spectroscopy, and photoluminescence analysis were utilized to characterize the prepared samples. A significant improvement in morphological and optical bandgap was observed. The effective surface area of the prepared composite increased threefold compared with sludge generated TiO2. The optical bandgap was narrowed to 3.00 eV from 3.18 in the pristine sludge generated TiO2 nanotubes. The extent of photoactivity of the prepared composites was investigated through photooxidation of NOx in a continuous flow reactor. Because of extended light absorption of the as-prepared composite, under visible light, 19.62% of NO removal was observed. On the other hand, under UV irradiation, owing to bandgap narrowing, although the light absorption was compromised, the impact on photoactivity was compensated by the increased effective surface area of 153.61 m2/g. Hence, under UV irradiance, the maximum NO removal was attained as 32.44% after 1 h of light irradiation. The proposed facile method in this study for the heterojunction of S-TNT and g-CN could significantly contribute to resource recovery from water treatment plants and photocatalytic atmospheric pollutant removal.
Collapse
|
150
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|