101
|
Abstract
The use of recombinant adeno-associated virus (rAAV) vectors in gene therapy for preclinical studies in animal models and human clinical trials is increasing, as these vectors have been shown to be safe and to mediate persistent transgene expression in vivo. Constant improvement in rAAV manufacturing processes (upstream production and downstream purification) has paralleled this evolution to meet the needs for larger vector batches, higher vector titer, and improved vector quality and safety. This chapter provides an overview of existing production and purification systems used for adeno-associated virus (AAV) vectors, and the advantages and disadvantages of each system are outlined. Regulatory guidelines that apply to the use of these systems for clinical trials are also presented. The methods described are examples of protocols that have been utilized for establishing rAAV packaging cell lines, production of rAAV vectors using recombinant HSV infection, and for chromatographic purification of various AAV vector serotypes. A protocol for the production of clinical-grade rAAV type 2 vectors using transient transfection and centrifugation-based purification is also described.
Collapse
|
102
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
103
|
He C, Yang Z, Tong K. Downstream processing of Vero cell-derived human influenza A virus (H1N1) grown in serum-free medium. J Chromatogr A 2011; 1218:5279-85. [DOI: 10.1016/j.chroma.2011.06.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
|
104
|
Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM. Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 2011; 21:1259-71. [PMID: 20497038 DOI: 10.1089/hum.2010.055] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adeno-associated viral (AAV) manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. Although scalable systems based on AAV-adenovirus, AAV-herpesvirus, and AAV-baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate-scale preclinical studies in large animals, in which several combinations of serotype and genome may need to be tested. We observed that during production of many AAV serotypes, large amounts of vector are found in the culture supernatant, a relatively pure source of vector in comparison with cell-derived material. Here we describe a high-yielding, recombinant AAV production process based on polyethylenimine (PEI)-mediated transfection of HEK293 cells and iodixanol gradient centrifugation of concentrated culture supernatant. The entire process can be completed in 1 week and the steps involved are universal for a number of different AAV serotypes. Process conditions have been optimized such that final purified yields are routinely greater than 1 x 10(14) genome copies per run, with capsid protein purity exceeding 90%. Initial experiments with vectors produced by the new process demonstrate equivalent or better transduction both in vitro and in vivo when compared with small-scale, CsCl gradient-purified vectors. In addition, the iodixanol gradient purification process described effectively separates infectious particles from empty capsids, a desirable property for reducing toxicity and unwanted immune responses during preclinical studies.
Collapse
Affiliation(s)
- Martin Lock
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Zhou J, Yang X, Wright JF, High KA, Couto L, Qu G. PEG-modulated column chromatography for purification of recombinant adeno-associated virus serotype 9. J Virol Methods 2011; 173:99-107. [PMID: 21295608 DOI: 10.1016/j.jviromet.2011.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/19/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
Column chromatography has been described for purification of recombinant adeno-associated viral vectors (rAAV) serotypes 1, 2, 5, 6 and 8. Some of these purification processes have been used in manufacturing pre-clinical grade and clinical grade rAAV vectors. Recently, recombinant AAV9 has been reported to be highly efficient in transducing cardiac muscle in animal models. Systemic or cardiac gene delivery and other applications may require large quantities of rAAV9 vectors, thus a scalable method supporting large scale purification of rAAV9 is needed for clinical development. However, column chromatography-based purification has not been reported to date for rAAV9. This study reports a polyethylene glycol (PEG) modulated chromatography process for purification of AAV9 vectors. Inclusion of PEG in chromatography buffers modulated rAAV9 elution profiles in a manner that resulted in significantly improved resin binding capacity, vector purity and yield. PEG-modulated methods were developed and optimized for hydroxyapatite and ion exchange chromatography, and shown to result in vectors of high purity and functional activity.
Collapse
Affiliation(s)
- Jingmin Zhou
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
106
|
Segura MM, Kamen AA, Garnier A. Overview of current scalable methods for purification of viral vectors. Methods Mol Biol 2011; 737:89-116. [PMID: 21590394 DOI: 10.1007/978-1-61779-095-9_4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a result of the growing interest in the use of viruses for gene therapy and vaccines, many virus-based products are being developed. The manufacturing of viruses poses new challenges for process developers and regulating authorities that need to be addressed to ensure quality, efficacy, and safety of the final product. The design of suitable purification strategies will depend on a multitude of variables including the vector production system and the nature of the virus. In this chapter, we provide an overview of the most commonly used purification methods for viral gene therapy vectors. Current chromatography options available for large-scale purification of γ-retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus, baculovirus, and poxvirus vectors are presented.
Collapse
Affiliation(s)
- María Mercedes Segura
- Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
107
|
Zeltner N, Kohlbrenner E, Clément N, Weber T, Linden RM. Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Ther 2010; 17:872-9. [PMID: 20336156 PMCID: PMC2900506 DOI: 10.1038/gt.2010.27] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 11/09/2009] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
Abstract
Viral vectors derived from adeno-associated viruses (AAVs) are widely used for gene transfer both in vitro and in vivo. The increasing use of AAV as a gene transfer vector, as well as recently shown immunological complications in clinical trials, highlight the necessity to define the specific activity of vector preparations beyond current standards. In this report, we determined the infectious, physical and genome-containing particle titers of several wild-type AAV type 2 (wtAAV2) and recombinant AAV type 2 (rAAV2) preparations that were produced and purified by standard methods. We found that the infectivity of wtAAV2 approaches a physical-to-infectious particle ratio of one. This near-perfect physical-to-infectious particle ratio defines a 'ceiling' for the theoretically achievable quality of recombinant AAV vectors. In comparison, for rAAV2, only approximately 50 out of 100 viral particles contained a genome and, more strikingly, only approximately 1 of the 100 viral particles was infectious. Our findings suggest that current strategies for rAAV vector design, production and/or purification should be amenable to improvements. Ultimately, this could result in the generation of near-perfect vector particles, a prospect with significant implications for gene therapy.
Collapse
Affiliation(s)
- N Zeltner
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
108
|
Parrish CR. Structures and functions of parvovirus capsids and the process of cell infection. Curr Top Microbiol Immunol 2010; 343:149-76. [PMID: 20397069 DOI: 10.1007/82_2010_33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To infect a cell, the parvovirus or adeno-associated virus (AAV) genome must be delivered from outside the plasma membrane to the nucleus, and in the process, the capsid must follow a series of binding and trafficking steps and also undergo necessary changes that result in exposure or release the ssDNA genome at the appropriate time and place within the cell. The 25 nm parvovirus capsid is comprised of two or three forms of a single protein, and although it is robust and stable, it is still sufficiently flexible to allow the exposure of several internal components at appropriate times during cell infection. The capsid can also accommodate insertion of peptides into surface loops, and capsid proteins from different viral serotypes can be shuffled to create novel functional variants. The capsids of the different viruses bind to one or more cell receptors, and for at least some viruses, the insertion of additional or alternative receptor binding sequences or structures into the capsid can expand or redirect its tropism. The infection process after cell binding involves receptor-mediated endocytosis followed by viral trafficking through the endosomal systems. That endosomal trafficking may be complex and prolonged for hours or be relatively brief. Generally only a small proportion of the particles taken up enter the cytoplasm after altering the endosomal membrane through the activity of a VP1-encoded phospholipase A2 domain that becomes released to the outside of the viral particle. Modifications to the capsid that can occur within the endosome or cytoplasm include structural changes to expose internal components, ubiquination and proteosomal processing, and possible trafficking of particles on molecular motors. It is still not clear how the genomes enter the nucleus, but nuclear pore-dependent entry of particles or permeabilization of nuclear membranes have been proposed. Those processes control the infection, pathogenesis, and host ranges of the autonomous viruses and determine the effectiveness of gene therapy using AAV capsids.
Collapse
Affiliation(s)
- Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
109
|
Ayuso E, Mingozzi F, Montane J, Leon X, Anguela XM, Haurigot V, Edmonson SA, Africa L, Zhou S, High KA, Bosch F, Wright JF. High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther 2009; 17:503-10. [PMID: 19956269 DOI: 10.1038/gt.2009.157] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purity of adeno-associated virus (AAV) vector preparations has important implications for both safety and efficacy of clinical gene transfer. Early-stage screening of candidates for AAV-based therapeutics ideally requires a purification method that is flexible and also provides vectors comparable in purity and potency to the prospective investigational product manufactured for clinical studies. The use of cesium chloride (CsCl) gradient-based protocols provides the flexibility for purification of different serotypes; however, a commonly used first-generation CsCl-based protocol was found to result in AAV vectors containing large amounts of protein and DNA impurities and low transduction efficiency in vitro and in vivo. Here, we describe and characterize an optimized, second-generation CsCl protocol that incorporates differential precipitation of AAV particles by polyethylene glycol, resulting in higher yield and markedly higher vector purity that correlated with better transduction efficiency observed with several AAV serotypes in multiple tissues and species. Vectors purified by the optimized CsCl protocol were found to be comparable in purity and functional activity to those prepared by more scalable, but less flexible serotype-specific purification processes developed for manufacture of clinical vectors, and are therefore ideally suited for pre-clinical studies supporting translational research.
Collapse
Affiliation(s)
- E Ayuso
- Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
111
|
Wright JF. Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 2009; 20:698-706. [PMID: 19438300 PMCID: PMC2829280 DOI: 10.1089/hum.2009.064] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/13/2009] [Indexed: 02/03/2023] Open
Abstract
Recombinant adeno-associated virus (AAV)-based vectors expressing therapeutic gene products have shown great potential for human gene therapy. One major challenge for translation of promising research to clinical development is the manufacture of sufficient quantities of AAV vectors that meet stringent standards for purity, potency, and safety required for human parenteral administration. Several methods have been developed to generate recombinant AAV in cell culture, each offering distinct advantages. Transient transfection-based methods for vector production are reviewed here, with a focus on specific considerations for development of AAV vectors as clinical products.
Collapse
Affiliation(s)
- J Fraser Wright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
112
|
Pien GC, Basner-Tschakarjan E, Hui DJ, Mentlik AN, Finn JD, Hasbrouck NC, Zhou S, Murphy SL, Maus MV, Mingozzi F, Orange JS, High KA. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J Clin Invest 2009; 119:1688-95. [PMID: 19436115 PMCID: PMC2689109 DOI: 10.1172/jci36891] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 03/23/2009] [Indexed: 01/25/2023] Open
Abstract
Adeno-associated virus (AAV) vectors are effective gene delivery vehicles mediating long-lasting transgene expression. Data from a clinical trial of AAV2-mediated hepatic transfer of the Factor IX gene (F9) into hemophilia B subjects suggests that CTL responses against AAV capsid can eliminate transduced hepatocytes and prevent long-term F9 expression. However, the capacity of hepatocytes to present AAV capsid-derived antigens has not been formally demonstrated, nor whether transduction by AAV sensitizes hepatocytes for CTL-mediated destruction. To investigate the fate of capsids after transduction, we engineered a soluble TCR for the detection of capsid-derived peptide:MHC I (pMHC) complexes. TCR multimers exhibited antigen and HLA specificity and possessed high binding affinity for cognate pMHC complexes. With this reagent, capsid pMHC complexes were detectable by confocal microscopy following AAV-mediated transduction of human hepatocytes. Although antigen presentation was modest, it was sufficient to flag transduced cells for CTL-mediated lysis in an in vitro killing assay. Destruction of hepatocytes was inhibited by soluble TCR, demonstrating a possible application for this reagent in blocking undesirable CTL responses. Together, these studies provide a mechanism for the loss of transgene expression and transient elevations in aminotransferases following AAV-mediated hepatic gene transfer in humans and a potential therapeutic intervention to abrogate these limitations imposed by the host T cell response.
Collapse
Affiliation(s)
- Gary C. Pien
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Etiena Basner-Tschakarjan
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Hui
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley N. Mentlik
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan D. Finn
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicole C. Hasbrouck
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shangzhen Zhou
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel L. Murphy
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcela V. Maus
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Federico Mingozzi
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordan S. Orange
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine A. High
- Division of Allergy and Immunology,
Division of Hematology, and
Howard Hughes Medical Institute, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
113
|
Undetectable transcription of cap in a clinical AAV vector: implications for preformed capsid in immune responses. Mol Ther 2008; 17:144-52. [PMID: 18941440 DOI: 10.1038/mt.2008.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid-specific CD8(+) T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription-PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual Amp(R), and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8(+) T cells that eliminated vector-transduced cells in the clinical study.
Collapse
|
114
|
Vervoordeldonk MJ, Aalbers CJ, Tak PP. Advances in local targeted gene therapy for arthritis: towards clinical reality. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460816.3.4.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Negrete A, Kotin RM. Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2008; 7:303-11. [PMID: 18632744 PMCID: PMC2562640 DOI: 10.1093/bfgp/eln034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of recombinant adeno-associated virus (rAAV) gene therapy applications is hampered by the inability to produce rAAV in sufficient quantities to support pre-clinical and clinical trials. Contrasting with adherent cell cultures, suspension cultures provide a straightforward means for expansion, however, transiently expressing the necessary, but cytotoxic virus proteins remains the challenge for rAAV production. Both the expansion and expression issues are resolved by using the baculovirus expression vector (bev) and insect cell culture system. This review addresses strategies for the production of rAAV exploiting baculovirus technology at different scales using different configurations of bioreactors as well as processing and product characterization issues. The yields obtained with these optimized processes exceed approximately 1 x 10(14) vector particles per liter of cell culture suitable for pre-clinical and clinical trials and possible commercialization.
Collapse
Affiliation(s)
- Alejandro Negrete
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Robert M. Kotin
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
116
|
Pedro L, Soares S, Ferreira G. Purification of Bionanoparticles. Chem Eng Technol 2008; 31:815-825. [PMID: 32313384 PMCID: PMC7162033 DOI: 10.1002/ceat.200800176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/11/2022]
Abstract
The recent demand for nanoparticulate products such as viruses, plasmids, protein nanoparticles, and drug delivery systems have resulted in the requirement for predictable and controllable production processes. Protein nanoparticles are an attractive candidate for gene and molecular therapy due to their relatively easy production and manipulation. These particles combine the advantages of both viral and non-viral vectors while minimizing the disadvantages. However, their successful application depends on the availability of selective and scalable methodologies for product recovery and purification. Downstream processing of nanoparticles depends on the production process, producer system, culture media and on the structural nature of the assembled nanoparticle, i.e., mainly size, shape and architecture. In this paper, the most common processes currently used for the purification of nanoparticles, are reviewed.
Collapse
Affiliation(s)
- L. Pedro
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - S. S. Soares
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - G. N. M. Ferreira
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| |
Collapse
|
117
|
Abstract
Recombinant adeno-associated virus (AAV)-based vectors expressing therapeutic gene products have shown great promise for human gene therapy. A major challenge for translation of promising research to clinical development is the manufacture and certification of AAV vectors for clinical use. This review summarizes relevant aspects of current Good Manufacturing Practice, focusing on considerations and challenges specific for recombinant AAV.
Collapse
|
118
|
Ulusoy A, Bjorklund T, Hermening S, Kirik D. In vivo gene delivery for development of mammalian models for Parkinson's disease. Exp Neurol 2008; 209:89-100. [DOI: 10.1016/j.expneurol.2007.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 12/21/2022]
|