101
|
Fernández-Díez C, González-Rojo S, Lombó M, Herráez MP. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish ( Danio rerio). Biol Open 2018; 7:7/5/bio030130. [PMID: 29712649 PMCID: PMC5992526 DOI: 10.1242/bio.030130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatozoa carry DNA damage that must be repaired by the oocyte machinery upon fertilization. Different strategies could be adopted by different vertebrates to face the paternal genotoxic damage. Mammals have strong sperm selection mechanisms and activate a zygotic DNA damage response (DDR) (including cell cycle arrest, DNA repair and alternative apoptosis) in order to guarantee the genomic conformity of the reduced progeny. However, external fertilizers, with different reproductive strategies, seem to proceed distinctively. Previous results from our group showed a downregulation of apoptotic activity in trout embryos with a defective DNA repairing ability, suggesting that mechanisms of tolerance to damaged DNA could be activated in fish to maintain cell survival and to progress with development. In this work, zebrafish embryos were obtained from control or UV-irradiated sperm (carrying more than 10% of fragmented DNA but still preserving fertilization ability). DNA repair (γH2AX and 53BP1 foci), apoptotic activity, expression of genes related to DDR and malformation rates were analyzed throughout development. Results showed in the progeny from damaged sperm, an enhanced repairing activity at the mid-blastula transition stage that returned to its basal level at later stages, rendering at hatching a very high rate of multimalformed larvae. The study of transcriptional and post-translational activity of tp53 (ZDF-GENE-990415-270) revealed the activation of an intense DDR in those progenies. However, the downstream pro-apoptotic factor noxa (ZDF-GENE-070119-3) showed a significant downregulation, whereas the anti-apoptotic gene bcl2 (ZDF-GENE-051015-1) was upregulated, triggering a repressive apoptotic scenario in spite of a clear genomic instability. This repression can be explained by the observed upregulation of p53 isoform Δ113p53, which is known to enhance bcl2 transcription. Our results showed that tp53 is involved in DNA damage tolerance (DDT) pathways, allowing the embryo survival regardless of the paternal DNA damage. DDT could be an evolutionary mechanism in fish: tolerance to unrepaired sperm DNA could introduce new mutations, some of them potentially advantageous to face a changing environment. Summary: In fish embryos, genomic instability generated by fertilization with DNA damaged sperm activates mechanisms of DNA damage tolerance, which seems to be mediated by Δ113p53 expression, promoting survival.
Collapse
Affiliation(s)
- Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Marta Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - M Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| |
Collapse
|
102
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
103
|
Yu C, Fan X, Sha QQ, Wang HH, Li BT, Dai XX, Shen L, Liu J, Wang L, Liu K, Tang F, Fan HY. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes. Cell Rep 2018; 20:1161-1172. [PMID: 28768200 DOI: 10.1016/j.celrep.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Trimethylation of histone H3 at lysine-4 (H3K4me3) is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1), the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.
Collapse
Affiliation(s)
- Chao Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Chemistry and Molecular Biology, Goteborg University, Goteborg SE405 30, Sweden
| | - Xiaoying Fan
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Qian-Qian Sha
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hui-Han Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bo-Tai Li
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Dai
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Kui Liu
- Department of Chemistry and Molecular Biology, Goteborg University, Goteborg SE405 30, Sweden
| | - Fuchou Tang
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
104
|
Treen N, Heist T, Wang W, Levine M. Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo. Curr Biol 2018; 28:1150-1156.e4. [PMID: 29576477 PMCID: PMC5996753 DOI: 10.1016/j.cub.2018.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/18/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
Most animal embryos display a delay in the activation of zygotic transcription during early embryogenesis [1]. This process is thought to help coordinate rapid increases in cell number during early development [2]. The timing of zygotic genome activation (ZGA) during the maternal-to-zygotic transition (MZT) remains uncertain despite extensive efforts. We explore ZGA in the simple protovertebrate, Ciona intestinalis. Single-cell RNA sequencing (RNA-seq) assays identified Cyclin B3 (Ccnb3) as a putative mediator of ZGA. Maternal Ccnb3 transcripts rapidly diminish in abundance during the onset of zygotic transcription at the 8-cell and 16-cell stages. Disruption of Ccnb3 activity results in precocious activation of zygotic transcription, while overexpression abolishes normal activation. These observations suggest that the depletion of maternal Cyclin B3 products is a critical component of the MZT and ZGA. We discuss evidence that this mechanism might play a conserved role in the MZT of other metazoans, including mice and humans.
Collapse
Affiliation(s)
- Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
105
|
Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 2018; 7:74120-74131. [PMID: 27705919 PMCID: PMC5342040 DOI: 10.18632/oncotarget.12339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM).
Collapse
|
106
|
Transcriptional Regulation and Genes Involved in First Lineage Specification During Preimplantation Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:31-46. [PMID: 29177763 DOI: 10.1007/978-3-319-63187-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The successful development from a single-cell zygote into a complex multicellular organism requires precise coordination of multiple cell-fate decisions. The very first of these is lineage specification into the inner cell mass (ICM) and trophectoderm (TE) during mammalian preimplantation development. In mouse embryos, transcription factors (TFs) such as Oct4, Sox2, and Nanog are enriched in cells of ICM, which gives rise to the fetus and yolk sac. Conversely, TFs such as Cdx2 and Eomes become highly upregulated in TE, which contribute to the placenta. Here, we review the current understanding of key transcriptional control mechanisms and genes responsible for these distinct differences during the first cell lineage specification. In particular, we highlight recent insights gained through advances in genome manipulation, live imaging, single-cell transcriptomics, and loss-of-function studies.
Collapse
|
107
|
Cordova A, King WA, Mastromonaco GF. Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:24. [PMID: 29152322 PMCID: PMC5680814 DOI: 10.1186/s40781-017-0149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.
Collapse
Affiliation(s)
- A Cordova
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - G F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| |
Collapse
|
108
|
Adamkova K, Yi YJ, Petr J, Zalmanova T, Hoskova K, Jelinkova P, Moravec J, Kralickova M, Sutovsky M, Sutovsky P, Nevoral J. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J Anim Sci Biotechnol 2017; 8:83. [PMID: 29118980 PMCID: PMC5664433 DOI: 10.1186/s40104-017-0214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Background The histone code is an established epigenetic regulator of early embryonic development in mammals. The lysine residue K9 of histone H3 (H3K9) is a prime target of SIRT1, a member of NAD+-dependent histone deacetylase family of enzymes targeting both histone and non-histone substrates. At present, little is known about SIRT1-modulation of H3K9 in zygotic pronuclei and its association with the success of preimplantation embryo development. Therefore, we evaluated the effect of SIRT1 activity on H3K9 methylation and acetylation in porcine zygotes and the significance of H3K9 modifications for early embryonic development. Results Our results show that SIRT1 activators resveratrol and BML-278 increased H3K9 methylation and suppressed H3K9 acetylation in both the paternal and maternal pronucleus. Inversely, SIRT1 inhibitors nicotinamide and sirtinol suppressed methylation and increased acetylation of pronuclear H3K9. Evaluation of early embryonic development confirmed positive effect of selective SIRT1 activation on blastocyst formation rate (5.2 ± 2.9% versus 32.9 ± 8.1% in vehicle control and BML-278 group, respectively; P ≤ 0.05). Stimulation of SIRT1 activity coincided with fluorometric signal intensity of ooplasmic ubiquitin ligase MDM2, a known substrate of SIRT1 and known limiting factor of epigenome remodeling. Conclusions We conclude that SIRT1 modulates zygotic histone code, obviously through direct deacetylation and via non-histone targets resulting in increased H3K9me3. These changes in zygotes lead to more successful pre-implantation embryonic development and, indeed, the specific SIRT1 activation due to BML-278 is beneficial for in vitro embryo production and blastocyst achievement.
Collapse
Affiliation(s)
- Katerina Adamkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Young-Joo Yi
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596 South Korea
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Tereza Zalmanova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Kristyna Hoskova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Pavla Jelinkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Biomedical Center of Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA.,Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO USA
| | - Jan Nevoral
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
109
|
The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Rev Rep 2017; 12:276-84. [PMID: 26892267 DOI: 10.1007/s12015-016-9648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essential contribution of multiple maternal factors to early mammalian development is rapidly altering the view that mammals have a unique pattern of development compared to other species. Currently, over 60 maternal-effect mutations have been described in mammalian systems, including critical determinants of pluripotency. This data, combined with the evidence for lineage bias and differential gene expression in early blastomeres, strongly suggests that mammalian development is to some extent mosaic from the four-cell stage onward.
Collapse
|
110
|
Milewski R, Szpila M, Ajduk A. Dynamics of cytoplasm and cleavage divisions correlates with preimplantation embryo development. Reproduction 2017; 155:1-14. [PMID: 28993454 DOI: 10.1530/rep-17-0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 01/27/2023]
Abstract
In vitro fertilization has become increasingly popular as an infertility treatment. In order to improve efficiency of this procedure, there is a strong need for a refinement of existing embryo assessment methods and development of novel, robust and non-invasive selection protocols. Studies conducted on animal models can be extremely helpful here, as they allow for more extensive research on the potential biomarkers of embryo quality. In the present paper, we subjected mouse embryos to non-invasive time-lapse imaging and combined the Particle Image Velocimetry analysis of cytoplasmic dynamics in freshly fertilized oocytes with the morphokinetic analysis of recordings covering 5 days of preimplantation development. Our results indicate that parameters describing cytoplasmic dynamics and cleavage divisions independently correspond to mouse embryo's capacity to form a high-quality blastocyst. We also showed for the first time that these parameters are associated with the percentage of abnormal embryonic cells with fragmented nuclei and with embryo's ability to form primitive endoderm, one of the cell lineages differentiated during preimplantation development. Finally, we present a model that links selected cytoplasmic and morphokinetic parameters reflecting frequency of fertilization-induced Ca2+-oscillations and timing of 4-cell stage and compaction with viability of the embryo assessed as the total number of cells at the end of its preimplantation development. Our results indicate that a combined analysis of cytoplasmic dynamics and morphokinetics may facilitate the assessment of embryo's ability to form high-quality blastocysts.
Collapse
Affiliation(s)
- Robert Milewski
- Department of Statistics and Medical InformaticsMedical University of Bialystok, Bialystok, Poland
| | - Marcin Szpila
- Department of EmbryologyFaculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Ajduk
- Department of EmbryologyFaculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
111
|
Long and small noncoding RNAs during oocyte-to-embryo transition in mammals. Biochem Soc Trans 2017; 45:1117-1124. [PMID: 28939692 DOI: 10.1042/bst20170033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
Oocyte-to-embryo transition is a process during which an oocyte ovulates, is fertilized, and becomes a developing embryo. It involves the first major genome reprogramming event in life of an organism where gene expression, which gave rise to a differentiated oocyte, is remodeled in order to establish totipotency in blastomeres of an early embryo. This remodeling involves replacement of maternal RNAs with zygotic RNAs through maternal RNA degradation and zygotic genome activation. This review is focused on expression and function of long noncoding RNAs (lncRNAs) and small RNAs during oocyte-to-embryo transition in mammals. LncRNAs are an assorted rapidly evolving collection of RNAs, which have no apparent protein-coding capacity. Their biogenesis is similar to mRNAs including transcriptional control and post-transcriptional processing. Diverse molecular and biological roles were assigned to lncRNAs although most of them probably did not acquire a detectable biological role. Since some lncRNAs serve as precursors for small noncoding regulatory RNAs in RNA silencing pathways, both types of noncoding RNA are reviewed together.
Collapse
|
112
|
Gao Z, Zhang X, Yu X, Qin D, Xiao Y, Yu Y, Xiang Y, Nie X, Lu X, Liu W, Yi Z, Li L. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol 2017; 10:74-88. [DOI: 10.1093/jmcb/mjx035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/29/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenbo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
113
|
Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca 2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017; 144:2914-2924. [PMID: 28694258 DOI: 10.1242/dev.150227] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Collapse
Affiliation(s)
- Alaa Hachem
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Minerva Ferrer Buitrago
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Andrew Bassett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sebastian Fox
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Petra de Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
114
|
Abstract
Chromatin structure is intimately connected with gene expression and cell identity. Here we review recent advances in the field and discuss how establishment of cell identity during development is accompanied by large-scale remodeling of the epigenetic landscape and how this remodeling drives and supports lineage specification and maintenance. We discuss maternal control of the early embryonic epigenetic landscape, selective usage of enhancer clusters via 3D chromatin contacts leading to activation of transcription factor networks, and conserved regulation of developmental pathways by specific DNA demethylation of key regulatory regions. Together, these processes establish an epigenetic framework regulating different phases of embryonic development.
Collapse
Affiliation(s)
- Matteo Perino
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
115
|
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell 2017; 169:1187-1200. [PMID: 28622506 PMCID: PMC5657247 DOI: 10.1016/j.cell.2017.05.045] [Citation(s) in RCA: 2123] [Impact Index Per Article: 303.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N6-methyladenosine (m6A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information.
Collapse
Affiliation(s)
- Ian A Roundtree
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, 924 East 57(th) Street, Chicago, IL 60637, USA
| | - Molly E Evans
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Department of Chemistry, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
116
|
Protective Effect of Icariin on the Development of Preimplantation Mouse Embryos against Hydrogen Peroxide-Induced Oxidative Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2704532. [PMID: 28680528 PMCID: PMC5478867 DOI: 10.1155/2017/2704532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/04/2022]
Abstract
During in vitro cultivation of preimplantation embryos, the balance between ROS production and clearance is disturbed and may lead to incompetent embryos, which might be a main reason of IVF-ET failure. Icariin (ICA) is reported to be active in clearing ROS. The present study aimed to investigate whether ICA could reverse H2O2 pretreatment-induced mouse preimplantation embryo development arrest and, furthermore, to study the underlying mechanisms by detecting ROS levels, mitochondrial membrane potential (ΔΨm), and zygotic gene expression. The results showed that, after pretreating mouse 1-cell embryos with 40 μM or 60 μM H2O2 for 30 min, the developmental rate of each stage embryos decreased obviously. And by adding 40 μM ICA, the developmental arrest of 60 μM H2O2 pretreated preimplantation embryos was significantly reversed. Immunostaining results showed that, comparing with the control group, ROS levels of H2O2 pretreated 1-cell embryos were elevated and ΔΨm levels decreased. By adding ICA, the ROS levels of H2O2 pretreated 1-cell embryos were decreased and ΔΨm levels were elevated. Furthermore, RT-qPCR results showed that the addition of ICA reversed the H2O2-induced downregulation of eIF-1A mRNA expression levels. These results indicate that ICA, when used in appropriate concentration, could decrease ROS levels, increase ΔΨm levels, and modulate the expression of zygotic gene activation (ZGA) marker gene eIF-1A, and thus promote the development of H2O2-pretreated mouse preimplantation embryos.
Collapse
|
117
|
Detection of RNA Polymerase II in Mouse Embryos During Zygotic Genome Activation Using Immunocytochemistry. Methods Mol Biol 2017. [PMID: 28456963 DOI: 10.1007/978-1-4939-6988-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mammalian pre-implantation embryos represent a highly dynamic experimental model for comparative studies of nuclear structure and functions in the context of gradual reactivation of transcription. Here, we present details of the methods that allow localizing RNA polymerase II in mouse pre-implantation embryos with specific antibodies, using fluorescent/confocal and electron microscopy. We stress the special aspects of immunolabeling protocols in respect to the embryonic material. We made a special emphasis on the essential steps preceding the immunocytochemical experiments. In particular, we consider the procedures of female hormonal stimulation and embryo collection. The described approaches are also applicable to study other nuclear proteins.
Collapse
|
118
|
Effects of MG132 on the in vitro development and epigenetic modification of Debao porcine somatic cell nuclear transfer embryos. Theriogenology 2017; 94:48-58. [DOI: 10.1016/j.theriogenology.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/30/2016] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
|
119
|
Elahi F, Lee H, Lee J, Lee ST, Park CK, Hyun SH, Lee E. Effect of rapamycin treatment during post-activation and/or in vitro culture on embryonic development after parthenogenesis and in vitro fertilization in pigs. Reprod Domest Anim 2017; 52:741-748. [PMID: 28397300 DOI: 10.1111/rda.12974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/26/2017] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of early induction of autophagy on embryonic development in pigs. For this, oocytes or embryos were treated with an autophagy inducer, rapamycin (RP), during post-activation (Pa), in vitro fertilization (IVF) and/or in vitro culture (IVC). When parthenogenesis (PA) embryos were untreated (control) or treated with various concentrations of RP for 4 hr during Pa, 100 nm RP showed a higher blastocyst formation (48.8 ± 2.7%) than the control (34.6 ± 3.0%). When PA embryos were treated during the first 24 hr of IVC, blastocyst formation was increased (p < .05) by 1 and 10 nm RP (61.9 ± 3.0 and 59.6 ± 3.0%, respectively) compared to the control (43.2 ± 1.8%) and 100 nm RP (47.8 ± 3.2%), with a higher embryo cleavage in response to 10 nm RP (87.3 ± 2.4%) than the control (74.1 ± 3.2%). RP treatment during IVC and Pa + IVC showed increased blastocyst formation (44.7 ± 2.5 and 44.1 ± 2.0%, respectively) compared to the control (33.2 ± 2.0%). In addition, RP treatment during Pa and/or IVC increased glutathione content and inversely reduced reactive oxygen species. In IVF, RP treatment for 6 hr during IVF significantly increased embryonic development (34.0 ± 2.6%) compared to the control (24.8 ± 1.6%), but treatment during IVC for 24 hr with RP did not (23.0 ± 3.8%). Autophagy was significantly increased in PA oocytes by the RP treatment during Pa but not altered by the treatment during the first 24 hr of IVC. Overall, RP treatment positively regulated the pre-implantation development of pig embryos, probably by regulating cellular redox state and stimulating autophagy.
Collapse
Affiliation(s)
- F Elahi
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - H Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - J Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea.,Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - S T Lee
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - C K Park
- Division of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - S-H Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - E Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea.,Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
120
|
Huang Y, Kim JK, Do DV, Lee C, Penfold CA, Zylicz JJ, Marioni JC, Hackett JA, Surani MA. Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. eLife 2017; 6:e22345. [PMID: 28323615 PMCID: PMC5404928 DOI: 10.7554/elife.22345] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 01/22/2023] Open
Abstract
The maternal-to-zygotic transition (MZT) marks the period when the embryonic genome is activated and acquires control of development. Maternally inherited factors play a key role in this critical developmental process, which occurs at the 2-cell stage in mice. We investigated the function of the maternally inherited factor Stella (encoded by Dppa3) using single-cell/embryo approaches. We show that loss of maternal Stella results in widespread transcriptional mis-regulation and a partial failure of MZT. Strikingly, activation of endogenous retroviruses (ERVs) is significantly impaired in Stella maternal/zygotic knockout embryos, which in turn leads to a failure to upregulate chimeric transcripts. Amongst ERVs, MuERV-L activation is particularly affected by the absence of Stella, and direct in vivo knockdown of MuERV-L impacts the developmental potential of the embryo. We propose that Stella is involved in ensuring activation of ERVs, which themselves play a potentially key role during early development, either directly or through influencing embryonic gene expression.
Collapse
Affiliation(s)
- Yun Huang
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jong Kyoung Kim
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Dang Vinh Do
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Lee
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan J Zylicz
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jamie A Hackett
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- European Molecular Biology Laboratory - Monterotondo, Rome, Italy
| | - M Azim Surani
- Wellcome Trust/Cancer Research United Kingdom Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
121
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
122
|
Uh K, Lee K. Use of Chemicals to Inhibit DNA Replication, Transcription, and Protein Synthesis to Study Zygotic Genome Activation. Methods Mol Biol 2017; 1605:191-205. [PMID: 28456966 DOI: 10.1007/978-1-4939-6988-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maternal-to-zygotic transition is an event that developmental control of early embryos is switched from oocyte-derived factors to the zygotic genome. Ability to inhibit DNA replication, transcription, and translation is an important tool in studying events, such as zygotic genome activation, during embyogenesis. Here, we describe approaches to block DNA replication, transcription, and translation using chemical inhibitors. Then we also demonstrate how the transcript level of a maternally inherited gene, ten-eleven translocation methylcytosine dioxygenase 3, responses to the chemical treatments.
Collapse
Affiliation(s)
- Kyungjun Uh
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
123
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
124
|
The Role of Maternal Nutrition During the Periconceptional Period and Its Effect on Offspring Phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:87-105. [DOI: 10.1007/978-3-319-62414-3_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
125
|
Peptidylarginine deiminase 1-catalyzed histone citrullination is essential for early embryo development. Sci Rep 2016; 6:38727. [PMID: 27929094 PMCID: PMC5144008 DOI: 10.1038/srep38727] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 11/08/2022] Open
Abstract
Peptidylarginine deiminase (PADI) enzymes are increasingly being associated with the regulation of chromatin structure and gene activity via histone citrullination. As one of the PADI family members, PADI1 has been mainly reported to be expressed in the epidermis and uterus, where the protein in keratinocytes is thought to promote differentiation by citrullinating filament proteins. However, the roles of PADI1 in preimplantation development have not been addressed. Using a PADI1-specific inhibitor and Padi1-morpholino knockdown, we found that citrullination of histone tails at H4R3 and H3R2/8/17 were markedly reduced in the 2- and 4-cell embryos. Consistent with this observation, early embryo development was also arrested at the 4-cell stage upon depletion of PADI1 or inhibition of PADI1 enzyme activity. Additionally, by employing 5-ethynyl uridine (EU) incorporation analysis, ablation of PADI1 function led to a dramatic decrease in overall transcriptional activity, correlating well with the reduced levels of phosphorylation of RNA Pol II at Ser2 observed at 2- or 4-cell stage of embryos under Padi1 knockdown or inhibiting PADI1. Thus, our data reveal a novel function of PADI1 during early embryo development transitions by catalyzing histone tail citrullination, which facilitates early embryo genome transactivation.
Collapse
|
126
|
Liu X, Morency E, Li T, Qin H, Zhang X, Zhang X, Coonrod S. Role for PADI6 in securing the mRNA-MSY2 complex to the oocyte cytoplasmic lattices. Cell Cycle 2016; 16:360-366. [PMID: 27929740 DOI: 10.1080/15384101.2016.1261225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The oocyte cytoplasmic lattices (CPLs) have long been predicted to function as a storage form for the maternal contribution of ribosomes to the early embryo. Our previous studies have demonstrated that ribosomal component S6 is stored in the oocyte CPLs and peptidylarginine deiminase 6 (PADI6) is critical for CPLs formation. Additionally, we found that depletion of PADI6 reduced de novo protein synthesis prior to the maternal-to-embryonic transition, therefore causing embryos to arrest at the 2-cell stage. Here, we present evidence further supporting the association of ribosomes with the CPLs by demonstrating that rRNAs are dramatically decreased in Padi6 KO oocytes. We also show that the abundance and localization of mRNAs is affected upon PADI6 depletion, suggesting that mRNAs are very possibly associated with CPLs. Consistent with this observation, the amount of the major RNA binding protein, MSY2, that is associated with the insoluble fraction of the oocytes after Triton X-100 extraction is also markedly decreased in the Padi6 KO oocytes. Furthermore, treatment of the oocytes with RNase A followed by Triton X-100 extraction severely impairs the localization of PADI6 and MSY2 in oocytes. These results indicate that mRNAs, possibly in a complex with MSY2 and PADI6, are bound in the CPLs and may play a role in securing the mRNA-MSY2 complex to the CPLs.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- a Key Laboratory of Pathogen Biology of Jiangsu Province , Nanjing Medical University , Nanjing , China.,b Department of Microbiology , Nanjing Medical University , Nanjing , China
| | - Eric Morency
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| | - Tingting Li
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Hao Qin
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xiaoqian Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Xuesen Zhang
- d State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Scott Coonrod
- c Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca , NY USA
| |
Collapse
|
127
|
Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos. Sci Rep 2016; 6:37396. [PMID: 27869233 PMCID: PMC5116644 DOI: 10.1038/srep37396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
With readily available transcriptome-wide data, understanding the role of each expressed gene is an essential next step. Although RNAi technologies allow for genome-wide screens in cell culture, these approaches cannot replace strategies for discovery in the embryo. Here we present, for the first time, a knockdown screen in mouse preimplantation embryos. Early mammalian development encompasses dynamic cellular, molecular and epigenetic events that are largely conserved from mouse to man. We assayed 712 genes for requirements during preimplantation. We identified 59 genes required for successful development or outgrowth and implantation. We have characterized each phenotype and revealed cellular, molecular, and lineage specific defects following knockdown of transcript. Induced network analyses demonstrate this as a valid approach to identify networks of genes that play important roles during preimplantation. Our approach provides a robust and efficient strategy towards identification of novel phenotypes during mouse preimplantation and facilitates functional annotation of the mammalian transcriptome.
Collapse
|
128
|
Sauvegarde C, Paul D, Bridoux L, Jouneau A, Degrelle S, Hue I, Rezsohazy R, Donnay I. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals. PLoS One 2016; 11:e0165898. [PMID: 27798681 PMCID: PMC5087947 DOI: 10.1371/journal.pone.0165898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/01/2016] [Indexed: 02/06/2023] Open
Abstract
Background We previously showed that the homeodomain transcription factor HOXB9 is expressed in mammalian oocytes and early embryos. However, a systematic and exhaustive study of the localization of the HOXB9 protein, and HOX proteins in general, during mammalian early embryonic development has so far never been performed. Results The distribution of HOXB9 proteins in oocytes and the early embryo was characterized by immunofluorescence from the immature oocyte stage to the peri-gastrulation period in both the mouse and the bovine. HOXB9 was detected at all studied stages with a dynamic expression pattern. Its distribution was well conserved between the two species until the blastocyst stage and was mainly nuclear. From that stage on, trophoblastic cells always showed a strong nuclear staining, while the inner cell mass and the derived cell lines showed important dynamic variations both in staining intensity and in intra-cellular localization. Indeed, HOXB9 appeared to be progressively downregulated in epiblast cells and only reappeared after gastrulation had well progressed. The protein was also detected in the primitive endoderm and its derivatives with a distinctive presence in apical vacuoles of mouse visceral endoderm cells. Conclusions Together, these results could suggest the existence of unsuspected functions for HOXB9 during early embryonic development in mammals.
Collapse
Affiliation(s)
- Caroline Sauvegarde
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Delphine Paul
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Séverine Degrelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S1139, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - René Rezsohazy
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Donnay
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
129
|
Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS One 2016; 11:e0162722. [PMID: 27611906 PMCID: PMC5017692 DOI: 10.1371/journal.pone.0162722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
Delayed ovulation and delayed fertilization can lead to reduced developmental competence of the oocyte. In contrast to the consequences of postovulatory aging of the oocyte, hardly anything is known about the molecular processes occurring during oocyte maturation if ovulation is delayed (preovulatory aging). We investigated several aspects of oocyte maturation in two models of preovulatory aging: an in vitro follicle culture and an in vivo mouse model in which ovulation was postponed using the GnRH antagonist cetrorelix. Both models showed significantly reduced oocyte maturation rates after aging. Furthermore, in vitro preovulatory aging deregulated the protein abundance of the maternal effect genes Smarca4 and Nlrp5, decreased the levels of histone H3K9 trimethylation and caused major deterioration of chromosome alignment and spindle conformation. Protein abundance of YBX2, an important regulator of mRNA stability, storage and recruitment in the oocyte, was not affected by in vitro aging. In contrast, in vivo preovulatory aging led to reduction in Ybx2 transcript and YBX2 protein abundance. Taken together, preovulatory aging seems to affect various processes in the oocyte, which could explain the low maturation rates and the previously described failures in fertilization and embryonic development.
Collapse
Affiliation(s)
- Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Deborah Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- * E-mail:
| | | |
Collapse
|
130
|
Xu Y, Shi Y, Fu J, Yu M, Feng R, Sang Q, Liang B, Chen B, Qu R, Li B, Yan Z, Mao X, Kuang Y, Jin L, He L, Sun X, Wang L. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. Am J Hum Genet 2016; 99:744-752. [PMID: 27545678 DOI: 10.1016/j.ajhg.2016.06.024] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022] Open
Abstract
Early embryonic arrest is one of the major causes of female infertility. However, because of difficulties in phenotypic evaluation, genetic determinants of human early embryonic arrest are largely unknown. With the development of assisted reproductive technology, the phenotype of early human embryonic arrest can now be carefully evaluated. Here, we describe a consanguineous family with a recessive inheritance pattern of female infertility characterized by recurrent early embryonic arrest in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We have identified a homozygous PADI6 nonsense mutation (c.1141C>T [p.Gln381(∗)]) that is responsible for the phenotype. Mutational analysis of PADI6 in a cohort of 36 individuals whose embryos displayed developmental arrest identified two affected individuals with compound-heterozygous mutations (c.2009_2010del [p.Glu670Glyfs(∗)48] and c.633T>A [p.His211Gln]; c.1618G>A [p.Gly540Arg] and c.970C>T [p.Gln324(∗)]). Immunostaining indicated a lack of PADI6 in affected individuals' oocytes. In addition, the amount of phosphorylated RNA polymerase II and expression levels of seven genes involved in zygotic genome activation were reduced in the affected individuals' embryos. This phenotype is consistent with Padi6 knockout mice. These findings deepen our understanding of the genetic basis of human early embryonic arrest, which has been a largely ignored Mendelian phenotype. Our findings lay the foundation for uncovering other genetic causes of infertility resulting from early embryonic arrest.
Collapse
Affiliation(s)
- Yao Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingli Shi
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Jing Fu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Min Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China
| | - Ruizhi Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biaobang Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ronggui Qu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai Ji Ai Genetics and IVF Institute, Shanghai 200011, China.
| | - Lei Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
131
|
Yang L, Song LS, Liu XF, Xia Q, Bai LG, Gao L, Gao GQ, Wang Y, Wei ZY, Bai CL, Li GP. The Maternal Effect Genes UTX and JMJD3 Play Contrasting Roles in Mus musculus Preimplantation Embryo Development. Sci Rep 2016; 6:26711. [PMID: 27384759 PMCID: PMC4935995 DOI: 10.1038/srep26711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
During the process of embryonic development in mammals, epigenetic modifications must be erased and reconstructed. In particular, the trimethylation of histone 3 lysine 27 (H3K27me3) is associated with gene-specific transcriptional repression and contributes to the maintenance of the pluripotent embryos. In this study, we determined that the global levels of the H3K27me3 marker were elevated in MII oocyte chromatin and decrease to minimal levels at the 8-cell and morula stages. When the blastocyst hatched, H3K27me3 was re-established in the inner cell mass. We also determined that H3K27me3-specific demethylases, UTX and JMJD3, were observed at high transcript and protein levels in mouse preimplantation embryos. In the activated oocytes, when the H3K27me3 disappeared at the 8-cell stage, the UTX (but not JMJD3) protein levels were undetectable. Using RNA interference, we suppressed UTX and JMJD3 gene expression in the embryos and determined that the functions of UTX and JMJD3 were complementary. When JMJD3 levels were decreased by RNA interference, the embryo development rate and quality were improved, but the knockdown of UTX produced the opposite results. Understanding the epigenetic mechanisms controlling preimplantation development is critical to comprehending the basis of embryonic development and to devise methods and approaches to treat infertility.
Collapse
Affiliation(s)
- Lei Yang
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Li-Shuang Song
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xue-Fei Liu
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Ge Bai
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Li Gao
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Guang-Qi Gao
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, People's Republic of China
| | - Zhu-Ying Wei
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Chun-Ling Bai
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| | - Guang-Peng Li
- The Key Laboratory of the National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, People's Republic of China
| |
Collapse
|
132
|
Barton C, Iliopoulos CS, Pissis SP, Arhondakis S. Transcriptome activity of isochores during preimplantation process in human and mouse. FEBS Lett 2016; 590:2297-306. [PMID: 27279593 DOI: 10.1002/1873-3468.12245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
This work investigates the role of isochores during preimplantation process. Using RNA-seq data from human and mouse preimplantation stages, we created the spatio-temporal transcriptional profiles of the isochores during preimplantation. We found that from early to late stages, GC-rich isochores increase their expression while GC-poor ones decrease it. Network analysis revealed that modules with few coexpressed isochores are GC-poorer than medium-large ones, characterized by an opposite expression as preimplantation advances, decreasing and increasing respectively. Our results reveal a functional contribution of the isochores, supporting the presence of structural-functional interactions during maturation and early-embryonic development.
Collapse
Affiliation(s)
- Carl Barton
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | | - Stilianos Arhondakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| |
Collapse
|
133
|
Liu Y, Lu X, Shi J, Yu X, Zhang X, Zhu K, Yi Z, Duan E, Li L. BTG4 is a key regulator for maternal mRNA clearance during mouse early embryogenesis. J Mol Cell Biol 2016; 8:366-8. [PMID: 27190313 DOI: 10.1093/jmcb/mjw023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yusheng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohong Yi
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
134
|
Are We Eating Our Way to Prostate Cancer-A Hypothesis Based on the Evolution, Bioaccumulation, and Interspecific Transfer of miR-150. Noncoding RNA 2016; 2:ncrna2020002. [PMID: 29657260 PMCID: PMC5831905 DOI: 10.3390/ncrna2020002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are well established epigenetic modifiers. There is a lot of work being done to identify the evolutionary transfer of miRNAs both at intra- and interspecific levels. In this hypothesis-driven review, we have suggested a possible reason as to why miR-150 can be a promising diagnostic biomarker for prostate cancer using theories of evolution, bio-accumulation, and interspecific transfer of miRNAs.
Collapse
|
135
|
BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol 2016; 23:387-94. [PMID: 27065194 DOI: 10.1038/nsmb.3204] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
Abstract
The mRNAs stored in oocytes undergo general decay during the maternal-zygotic transition (MZT), and their stability is tightly interconnected with meiotic cell-cycle progression. However, the factors that trigger decay of maternal mRNA and couple this event to oocyte meiotic maturation remain elusive. Here, we identified B-cell translocation gene-4 (BTG4) as an MZT licensing factor in mice. BTG4 bridged CNOT7, a catalytic subunit of the CCR4-NOT deadenylase, to eIF4E, a key translation initiation factor, and facilitated decay of maternal mRNA. Btg4-null females produced morphologically normal oocytes but were infertile, owing to early developmental arrest. The intrinsic MAP kinase cascade in oocytes triggered translation of Btg4 mRNA stored in fully grown oocytes by targeting the 3' untranslated region, thereby coupling CCR4-NOT deadenylase-mediated decay of maternal mRNA with oocyte maturation and fertilization. This is a key step in oocyte cytoplasmic maturation that determines the developmental potential of mammalian embryos.
Collapse
|
136
|
Xie B, Qin Z, Liu S, Nong S, Ma Q, Chen B, Liu M, Pan T, Liao DJ. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos. PLoS One 2016; 11:e0153189. [PMID: 27058238 PMCID: PMC4825983 DOI: 10.1371/journal.pone.0153189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/24/2016] [Indexed: 11/30/2022] Open
Abstract
The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| | - Zhaoxian Qin
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Shuai Liu
- Hebei Research Institute for Family Planning, Shijiazhang, Hebei, P. R. China
| | - Suqun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Qingyan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Mingjun Liu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Tianbiao Pan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| |
Collapse
|
137
|
Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology 2016; 86:1081-1091. [PMID: 27157390 DOI: 10.1016/j.theriogenology.2016.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
Abstract
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos.
Collapse
|
138
|
Chen J, Lian X, Du J, Xu S, Wei J, Pang L, Song C, He L, Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev Growth Differ 2016; 58:280-92. [DOI: 10.1111/dgd.12273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Junming Chen
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lili Pang
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Chanchan Song
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lin He
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| |
Collapse
|
139
|
Dashti S, Zare Shahneh A, Kohram H, Zhandi M, Dadashpour Davachi N. Differential influence of ovine oviduct ampullary and isthmic derived epithelial cells on in vitro early embryo development and kinetic. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
140
|
Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse. Cell Res 2016; 26:275-87. [PMID: 26902285 PMCID: PMC4783469 DOI: 10.1038/cr.2016.20] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAP's effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology.
Collapse
|
141
|
|
142
|
Induction of autophagy improves embryo viability in cloned mouse embryos. Sci Rep 2015; 5:17829. [PMID: 26643778 PMCID: PMC4672298 DOI: 10.1038/srep17829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT.
Collapse
|
143
|
Kohn YY, Symonds JE, Kleffmann T, Nakagawa S, Lagisz M, Lokman PM. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1403-1417. [PMID: 26183261 DOI: 10.1007/s10695-015-0095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.
Collapse
Affiliation(s)
- Yair Y Kohn
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
- Arava Research and Development Station, Hatzeva, Israel
| | - Jane E Symonds
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand.
| |
Collapse
|
144
|
Alexander KA, Wang X, Shibata M, Clark AG, García-García MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep 2015; 13:1194-1205. [PMID: 26527006 DOI: 10.1016/j.celrep.2015.09.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Collapse
Affiliation(s)
- Katherine A Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
145
|
Shi J, Chen Q, Li X, Zheng X, Zhang Y, Qiao J, Tang F, Tao Y, Zhou Q, Duan E. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development 2015; 142:3468-77. [PMID: 26395495 DOI: 10.1242/dev.123950] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction.
Collapse
Affiliation(s)
- Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiudeng Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jie Qiao
- Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, 100871 Beijing, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center and Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, 100871 Beijing, China
| | - Yi Tao
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
146
|
Popken J, Koehler D, Brero A, Wuensch A, Guengoer T, Thormeyer T, Wolf E, Cremer T, Zakhartchenko V. Positional changes of a pluripotency marker gene during structural reorganization of fibroblast nuclei in cloned early bovine embryos. Nucleus 2015; 5:542-54. [PMID: 25495180 PMCID: PMC4615807 DOI: 10.4161/19491034.2014.970107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cloned bovine preimplantation embryos were generated by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts with a silent copy of the pluripotency reporter gene GOF, integrated at a single site of a chromosome 13. GOF combines the regulatory Oct4/Pou5f1 sequence with the coding sequence for EGFP. EGFP expression served as a marker for pluripotency gene activation and was consistently detected in preimplantation embryos with 9 and more cells. Three-dimensional radial nuclear positions of GOF, its carrier chromosome territory and non-carrier homolog were measured in nuclei of fibroblasts, and of day 2 and day 4 embryos, carrying 2 to 9 and 15 to 22 cells, respectively. We tested, whether transcriptional activation was correlated with repositioning of GOF toward the nuclear interior either with a corresponding movement of its carrier chromosome territory 13 or via the formation of a giant chromatin loop. A significant shift of GOF away from the nuclear periphery was observed in day 2 embryos together with both carrier and non-carrier chromosome territories. At day 4, GOF, its carrier chromosome territory 13 and the non-carrier homolog had moved back toward the nuclear periphery. Similar movements of both chromosome territories ruled out a specific GOF effect. Pluripotency gene activation was preceded by a transient, radial shift of GOF toward the nuclear interior. The persistent co-localization of GOF with its carrier chromosome territory rules out the formation of a giant chromatin loop during GOF activation.
Collapse
Key Words
- (bovine) preimplantation embryos, chromosome territories, nuclear architecture, nuclear reprogramming, pluripotency gene activation, somatic cell nuclear transfer
- BFF, bovine fetal fibroblasts; BTA, Bos taurus; CLSM, confocal laser scanning microscopy; CT, chromosome territory; eADS, enhanced absolute 3D distances to surfaces; IVF, in vitro fertilization; MGA, major embryonic genome activation; GOF, Oct4/Pou5f1-EGF
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics Biocenter ; LMU Munich ; Martinsried , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
149
|
Cui L, Fang L, Shi B, Qiu S, Ye Y. Spermatozoa micro ribonucleic acid–34c level is correlated with intracytoplasmic sperm injection outcomes. Fertil Steril 2015; 104:312-7.e1. [DOI: 10.1016/j.fertnstert.2015.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
|
150
|
Zhao P, Sun MX. The Maternal-to-Zygotic Transition in Higher Plants: Available Approaches, Critical Limitations, and Technical Requirements. Curr Top Dev Biol 2015; 113:373-98. [PMID: 26358879 DOI: 10.1016/bs.ctdb.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fertilization marks the turnover from the gametophyte to sporophyte generation in higher plants. After fertilization, sporophytic development undergoes genetic turnover from maternal to zygotic control: the maternal-to-zygotic transition (MZT). The MZT is thought to be critical for early embryogenesis; however, little is known about the time course or developmental impact of the MZT in higher plants. Here, we discuss what is known in the field and focus on techniques used in relevant studies and their limitations. Some significant questions and technical requirements for further investigations are also discussed.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China.
| |
Collapse
|