101
|
Novel 11β-hydroxysteroid dehydrogenase 1 inhibitors reduce cortisol levels in keratinocytes and improve dermal collagen content in human ex vivo skin after exposure to cortisone and UV. PLoS One 2017; 12:e0171079. [PMID: 28152550 PMCID: PMC5289826 DOI: 10.1371/journal.pone.0171079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Activity and selectivity assessment of new bi-aryl amide 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors, prepared in a modular manner via Suzuki cross-coupling, are described. Several compounds inhibiting 11β-HSD1 at nanomolar concentrations were identified. Compounds 2b, 3e, 7b and 12e were shown to selectively inhibit 11β-HSD1 over 11β-HSD2, 17β-HSD1 and 17β-HSD2. These inhibitors also potently inhibited 11β-HSD1 activity in intact HEK-293 cells expressing the recombinant enzyme and in intact primary human keratinocytes expressing endogenous 11β-HSD1. Moreover, compounds 2b, 3e and 12e were tested for their activity in human skin biopsies. They were able to prevent, at least in part, both the cortisone- and the UV-mediated decreases in collagen content. Thus, inhibition of 11β-HSD1 by these compounds can be further investigated to delay or prevent UV-mediated skin damage and skin aging.
Collapse
|
102
|
Berger M, Rehwinkel H, Schmees N, Schäcke H, Edman K, Wissler L, Reichel A, Jaroch S. Discovery of new selective glucocorticoid receptor agonist leads. Bioorg Med Chem Lett 2017; 27:437-442. [DOI: 10.1016/j.bmcl.2016.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
103
|
Strehl C, van der Goes MC, Bijlsma JW, Jacobs JWG, Buttgereit F. Glucocorticoid-targeted therapies for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2017; 26:187-195. [DOI: 10.1080/13543784.2017.1276562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Marlies C. van der Goes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes W.J. Bijlsma
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes W. G. Jacobs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Berlin, Germany
| |
Collapse
|
104
|
Scheschowitsch K, Leite JA, Assreuy J. New Insights in Glucocorticoid Receptor Signaling-More Than Just a Ligand-Binding Receptor. Front Endocrinol (Lausanne) 2017; 8:16. [PMID: 28220107 PMCID: PMC5292432 DOI: 10.3389/fendo.2017.00016] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
The clinical use of classical glucocorticoids (GC) is narrowed by the many side effects it causes and the resistance to GC observed in some diseases. Since the great majority of GC effects depend on the activation of a glucocorticoid receptor (GR), many research groups had focused to better understand the signaling pathways involving those receptors. Transgenic animal models and genetic modifications of the receptor brought a huge insight into GR mechanisms of action. This in turn opened a new window for the search of selective GR modulators that ideally may have agonistic and antagonistic combined effects and activate one specific signaling pathway, inducing mostly transrepression or transactivation mechanisms. Another important research field concerns to posttranslational modifications that affect the GR and consequently also affect its signaling and function. In this mini review, we discuss many of those aspects of GR signaling, as well as findings like the ligand-independent activation of GR, which add another layer of complexity in GR signaling pathways. Although several recent data have been added to the GR field, much work has yet to be done, especially to find out the biological relevance of those alternative GR signaling pathways. Improving the knowledge about alternative GR signaling pathways and understanding how these pathways intercommunicate and in which situations they are relevant might help to develop new strategies to take benefit of it and to improve GC or other compounds efficacy causing minimal side effects.
Collapse
Affiliation(s)
- Karin Scheschowitsch
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- *Correspondence: Jamil Assreuy,
| |
Collapse
|
105
|
Role of oxidative stress in disrupting the function of negative glucocorticoid response element in daily amphetamine-treated rats. Psychoneuroendocrinology 2016; 71:1-11. [PMID: 27235634 DOI: 10.1016/j.psyneuen.2016.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Abstract
Amphetamine (AMPH)-induced appetite suppression is associated with changes in hypothalamic reactive oxygen species (ROS), antioxidants, neuropeptides, and plasma glucocorticoid. This study explored whether ROS and glucocorticoid response element (GRE), which is the promoter site of corticotropin-releasing hormone (CRH) gene, participated in neuropeptides-mediated appetite control. Rats were treated daily with AMPH for four days, and changes in food intake, plasma glucocorticoid and expression levels of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), superoxide dismutase (SOD), CRH, and glucocorticoid receptor (GR) were examined and compared. Results showed that food intake decreased and NPY gene down-regulated, while POMC, SOD, and CRH gene up-regulated during AMPH treatment. GR and GRE-DNA bindings were disrupted on Day 1 and Day 2 when glucocorticoid levels were still high. Pretreatment with GR inhibitor or ROS scavenger modulated mRNA levels in NPY, POMC, SOD and CRH in AMPH-treated rats. We suggest that disruptions of negative GRE (nGRE) on Day 1 and Day 2 are associated with an increase in oxidative stress during the regulation of NPY/POMC-mediated appetite control in AMPH-treated rats. These results advance the understanding of molecular mechanism in regulating AMPH-mediated appetite suppression.
Collapse
|
106
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
107
|
Sasse SK, Altonsy MO, Kadiyala V, Cao G, Panettieri RA, Gerber AN. Glucocorticoid and TNF signaling converge at A20 (TNFAIP3) to repress airway smooth muscle cytokine expression. Am J Physiol Lung Cell Mol Physiol 2016; 311:L421-32. [PMID: 27371733 DOI: 10.1152/ajplung.00179.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022] Open
Abstract
Airway smooth muscle is a major target tissue for glucocorticoid (GC)-based asthma therapies, however, molecular mechanisms through which the GC receptor (GR) exerts therapeutic effects in this key airway cell type have not been fully elucidated. We previously identified the nuclear factor-κB (NF-κB) inhibitor, A20 (TNFAIP3), as a mediator of cytokine repression by glucocorticoids (GCs) in airway epithelial cells and defined cooperative regulation of anti-inflammatory genes by GR and NF-κB as a key mechanistic underpinning of airway epithelial GR function. Here, we expand on these findings to determine whether a similar mechanism is operational in human airway smooth muscle (HASM). Using HASM cells derived from normal and fatal asthma samples as an in vitro model, we demonstrate that GCs spare or augment TNF-mediated induction of A20 (TNFAIP3), TNIP1, and NFKBIA, all implicated in negative feedback control of NF-κB-driven inflammatory processes. We applied chromatin immunoprecipitation and reporter analysis to show that GR and NF-κB directly regulate A20 expression in HASM through cooperative induction of an intronic enhancer. Using overexpression, we show for the first time that A20 and its interacting partner, TNIP1, repress TNF signaling in HASM cells. Moreover, we applied small interfering RNA-based gene knockdown to demonstrate that A20 is required for maximal cytokine repression by GCs in HASM. Taken together, our data suggest that inductive regulation of A20 by GR and NF-κB contributes to cytokine repression in HASM.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado
| | | | - Vineela Kadiyala
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine & Science, Rutgers University, New Brunswick, New Jersey; and
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers University, New Brunswick, New Jersey; and
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
108
|
Wall SK, Hernández-Castellano LE, Ahmadpour A, Bruckmaier RM, Wellnitz O. Differential glucocorticoid-induced closure of the blood-milk barrier during lipopolysaccharide- and lipoteichoic acid-induced mastitis in dairy cows. J Dairy Sci 2016; 99:7544-7553. [PMID: 27372589 DOI: 10.3168/jds.2016-11093] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022]
Abstract
Bacteria invading the mammary gland can cause pathogen-dependent differences in the permeability of the blood-milk barrier leading to the differential paracellular transfer of blood and milk components. Glucocorticoids such as prednisolone (PRED) are known to increase the integrity of the blood-milk barrier and quickly restore the decreased milk quality associated with mastitis. The objective of this study was to examine the effect of intramammary PRED on the differential permeability of the blood-milk barrier during mastitis induced by lipopolysaccharide (LPS) from Escherichia coli or lipoteichoic acid (LTA) from Staphylococcus aureus. Thirty-one dairy cows, divided into 6 groups, were injected via a teat canal with LPS, LTA, LPS and PRED, LTA and PRED, saline (control), or PRED. Milk and blood samples were collected 0 to 8h after challenge and analyzed for somatic cell count, IgG, serum albumin, and lactate dehydrogenase in milk, or α-lactalbumin in plasma. Somatic cell count was similarly elevated in LPS- and LTA-challenged quarters and was reduced to control quarter levels only in LTA-challenged quarters with PRED administration. Lactate dehydrogenase activity was highly elevated in LPS quarters and only slightly elevated in LTA quarters, but decreased to control quarter levels with PRED administration. For serum albumin and IgG, only LPS quarters showed an elevation in concentration and PRED treatment reduced the concentration to control quarter level. We found no differences in α-lactalbumin concentrations in plasma in PRED-treated cows compared with cows that only received LPS or LTA. In conclusion, the pathogen-specific appearance of blood constituents in milk during mastitis demonstrates a differential activation of the blood-milk barrier that, in turn, can be manipulated by intramammary glucocorticoids. The results show that the administration of PRED during mastitis increases the blood-milk barrier integrity but has implications in reducing the transfer of IgG that specifically occurs during E. coli mastitis. In addition, it can also reduce the number of migrating immune cells dependent on the mastitis-inducing pathogen. Potential effects of PRED on the cure of naturally occurring mastitis have to be taken into consideration.
Collapse
Affiliation(s)
- Samantha K Wall
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Science, University of Bern, 3012 Bern, Switzerland
| | | | - Amir Ahmadpour
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Olga Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
109
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
110
|
Hua F, Li Y, Zhao X, Zhang D, Zhan Y, Ji L, Gao S, Meng Y, Li F, Zou S, Cheng Y. The expression profile of toll-like receptor signaling molecules in CD19(+) B cells from patients with primary immune thrombocytopenia. Immunol Lett 2016; 176:28-35. [PMID: 27210424 DOI: 10.1016/j.imlet.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND B cells play a critical role in the pathogenesis of immune thrombocytopenia (ITP), and toll-like receptor (TLR) signaling is essential for the activation of autoreactive B cells. The objective of this study was to investigate the expression profile of TLR signaling molecules in circulating and splenic CD19(+) B cells isolated from ITP patients. METHODS CD19(+) B cells were magnetically isolated from peripheral blood and splenocytes. Human Toll-Like Receptor Signaling Pathway RT(2) Profiler™ PCR Array was used to determine the differences in mRNA expression of 84 TLR signaling pathway genes between ITP patients and controls. Flow cytometry was used to investigate intracellular expression of cytokines (IL-1β and IL-10). RESULTS A total of 31 genes involving TLR signaling pathways were differentially transcribed in circulating CD19(+) B cells, among which 27 were up-regulated in ITP. By comparison, differentially transcribed genes amounted to 39 in splenic B cells in ITP, among which only two were down-regulated. Up to 18 TLR signaling molecules exhibited up-regulated transcriptional levels both in splenic B cells and in circulating B cells in ITP. However, Only IL-10 and IL-1β were significantly upregulated in both the circulating and splenic B cells of patients with ITP. Intracellular staining of IL-10 and IL-1β confirmed the results of PCR Array. CONCLUSIONS The expression of TLRs and downstream cytokines, including IL-10 and IL-1β, is up-regulated in circulating and splenic B cells in ITP patients, suggesting that activated TLR signaling pathways in B cells may play dual roles in the pathophysiology of primary ITP.
Collapse
Affiliation(s)
- Fanli Hua
- Department of Haematology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Li
- Department of Haematology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xin Zhao
- Department of Haematology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Dawei Zhang
- Department of Surgery, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Song Gao
- Department of Haematology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuesheng Meng
- Department of Haematology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanhua Zou
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Haematology, Zhongshan Hospital, Fudan University, Shanghai, China; Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Haematology, Qingpu Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
111
|
Conlon DA, Natalie KJ, Cuniere N, Razler TM, Zhu J, de Mas N, Tymonko S, Fraunhoffer KJ, Sortore E, Rosso VW, Xu Z, Adams ML, Patel A, Huang J, Gong H, Weinstein DS, Quiroz F, Chen DC. Development of a Practical Synthesis of Functionalized Azaxanthene-Derived Nonsteroidal Glucocorticoid Receptor Modulators. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hua Gong
- Research
and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - David S. Weinstein
- Research
and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | | | | |
Collapse
|
112
|
Zhang S, Ermann J, Succi MD, Zhou A, Hamilton MJ, Cao B, Korzenik JR, Glickman JN, Vemula PK, Glimcher LH, Traverso G, Langer R, Karp JM. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med 2016; 7:300ra128. [PMID: 26268315 DOI: 10.1126/scitranslmed.aaa5657] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD.
Collapse
Affiliation(s)
- Sufeng Zhang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Regenerative Therapeutics, Biomedical Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joerg Ermann
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA
| | - Marc D Succi
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Center for Regenerative Therapeutics, Biomedical Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA
| | - Allen Zhou
- Center for Regenerative Therapeutics, Biomedical Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Matthew J Hamilton
- Harvard Medical School, Boston, MA 02115, USA. Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie Cao
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joshua R Korzenik
- Harvard Medical School, Boston, MA 02115, USA. Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan N Glickman
- Harvard Medical School, Boston, MA 02115, USA. Miraca Life Sciences, Newton, MA 02464, USA
| | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore 560065, India
| | | | - Giovanni Traverso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Harvard Medical School, Boston, MA 02115, USA. Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | - Jeffrey M Karp
- Center for Regenerative Therapeutics, Biomedical Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139, USA. Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
113
|
Sauer S. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma. Trends Pharmacol Sci 2016; 36:688-704. [PMID: 26435213 DOI: 10.1016/j.tips.2015.06.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/09/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases.
Collapse
Affiliation(s)
- Sascha Sauer
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany; University of Würzburg, CU Systems Medicine, Josef-Schneider-Straße 2, Building D15, 97070 Wuerzburg, Germany.
| |
Collapse
|
114
|
Abstract
Immunomodulatory and immunosuppressive treatments for multiple sclerosis (MS) are associated with an increased risk of infection, which makes treatment of this condition challenging in daily clinical practice. Use of the expanding range of available drugs to treat MS requires extensive knowledge of treatment-associated infections, risk-minimizing strategies and approaches to monitoring and treatment of such adverse events. An interdisciplinary approach to evaluate the infectious events associated with available MS treatments has become increasingly relevant. In addition, individual stratification of treatment-related infectious risks is necessary when choosing therapies for patients with MS, as well as during and after therapy. Determination of the individual risk of infection following serial administration of different immunotherapies is also crucial. Here, we review the modes of action of the available MS drugs, and relate this information to the current knowledge of drug-specific infectious risks and risk-minimizing strategies.
Collapse
|
115
|
Cuming RS, Groover ES, Wooldridge AA, Caldwell FJ. Review of glucocorticoid therapy in horses. Part 1: Pharmacology. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R. S. Cuming
- J. T. Vaughan Large Animal Teaching Hospital Auburn University Alabama USA
| | - E. S. Groover
- J. T. Vaughan Large Animal Teaching Hospital Auburn University Alabama USA
| | - A. A. Wooldridge
- J. T. Vaughan Large Animal Teaching Hospital Auburn University Alabama USA
| | - F. J. Caldwell
- J. T. Vaughan Large Animal Teaching Hospital Auburn University Alabama USA
| |
Collapse
|
116
|
Lattin CR, Breuner CW, Michael Romero L. Does corticosterone regulate the onset of breeding in free-living birds?: The CORT-Flexibility Hypothesis and six potential mechanisms for priming corticosteroid function. Horm Behav 2016; 78:107-20. [PMID: 26524719 DOI: 10.1016/j.yhbeh.2015.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/19/2015] [Accepted: 10/29/2015] [Indexed: 02/04/2023]
Abstract
For many avian species, the decision to initiate breeding is based on information from a variety of environmental cues, including photoperiod, temperature, food availability, and social interactions. There is evidence that the hormone corticosterone may be involved in delaying the onset of breeding in cases where supplemental cues, such as low food availability and inclement weather, indicate that the environment is not suitable. However, not all studies have found the expected relationships between breeding delays and corticosterone titers. In this review, we present the hypothesis that corticosterone physiology mediates flexibility in breeding initiation (the "CORT-Flexibility Hypothesis"), and propose six possible corticosterone-driven mechanisms in pre-breeding birds that may delay breeding initiation: altering hormone titers, negative feedback regulation, plasma binding globulin concentrations, intracellular receptor concentrations, enzyme activity and interacting hormone systems. Based on the length of the breeding season and species-specific natural history, we also predict variation in corticosterone-regulated pre-breeding flexibility. Although few studies thus far have examined mechanisms beyond plasma hormone titers, the CORT-Flexibility Hypothesis is grounded on a solid foundation of research showing seasonal variation in the physiological stress response and knowledge of physiological mechanisms modulating corticosteroid effects. We propose six possible mechanisms as testable and falsifiable predictions to help clarify the extent of HPA axis regulation of the initiation of breeding.
Collapse
Affiliation(s)
| | - Creagh W Breuner
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | |
Collapse
|
117
|
Pautz A. Antiallergische und antientzündliche Pharmakotherapie. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Bowers ME, Yehuda R. Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology 2016; 41:232-44. [PMID: 26279078 PMCID: PMC4677138 DOI: 10.1038/npp.2015.247] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
The hypothesis that offspring are affected by parental trauma or stress exposure, first noted anecdotally, is now supported empirically by data from Holocaust survivor offspring cohorts and other populations. These findings have been extended to less extreme forms of stress, where differential physical, behavioral, and cognitive outcomes are observed in affected offspring. Parental stress-mediated effects in offspring could be explained by genetics or social learning theory. Alternatively, biological variations stemming from stress exposure in parents could more directly have an impact on offspring, a concept we refer to here as 'intergenerational transmission', via changes to gametes and the gestational uterine environment. We further extend this definition to include the transmission of stress to offspring via early postnatal care, as animal studies demonstrate the importance of early maternal care of pups in affecting offsprings' long-term behavioral changes. Here, we review clinical observations in offspring, noting that offspring of stress- or trauma-exposed parents may be at greater risk for physical, behavioral, and cognitive problems, as well as psychopathology. Furthermore, we review findings concerning offspring biological correlates of parental stress, in particular, offspring neuroendocrine, epigenetic, and neuroanatomical changes, in an attempt to determine the extent of parental stress effects. Although understanding the etiology of effects in offspring is currently impeded by methodological constraints, and limitations in our knowledge, we summarize current information and conclude by presenting hypotheses that have been prompted by recent studies in the field.
Collapse
Affiliation(s)
- Mallory E Bowers
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA,Mental Health Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount, NY, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, James J. Peters Veterans Affairs Medical Center, 526 OOMH PTSD 116/A, JJP VAMC, 130 W Kingsbridge Road, Bronx, NY 10468, USA, Tel: +718 741 4000, ext. 6964, Fax: +718 741 4703, E-mail:
| |
Collapse
|
119
|
Español L, Larrea A, Andreu V, Mendoza G, Arruebo M, Sebastian V, Aurora-Prado MS, Kedor-Hackmann ERM, Santoro MIRM, Santamaria J. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays. RSC Adv 2016. [DOI: 10.1039/c6ra23620k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual drug encapsulation in biodegradable nanoparticles is always challenging and often requires strenuous optimization of the synthesis–encapsulation processes.
Collapse
Affiliation(s)
- Laura Español
- Faculty of Pharmaceutical Sciences
- University of Sao Paulo
- 05508-000 Sao Paulo
- Brazil
| | - Ane Larrea
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| | - Vanesa Andreu
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| | - Gracia Mendoza
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| | - Manuel Arruebo
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| | - Victor Sebastian
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| | | | | | | | - Jesus Santamaria
- Department of Chemical Engineering
- Aragon Institute of Nanoscience (INA)
- University of Zaragoza
- 50018 Zaragoza
- Spain
| |
Collapse
|
120
|
Kirkby Shaw K, Rausch-Derra LC, Rhodes L. Grapiprant: an EP4 prostaglandin receptor antagonist and novel therapy for pain and inflammation. Vet Med Sci 2015; 2:3-9. [PMID: 29067176 PMCID: PMC5645826 DOI: 10.1002/vms3.13] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023] Open
Abstract
There are five active prostanoid metabolites of arachidonic acid (AA) that have widespread and varied physiologic functions throughout the body, including regulation of gastrointestinal mucosal blood flow, renal haemodynamics and primary haemostasis. Each prostanoid has at least one distinct receptor that mediates its action. Prostaglandin E2 (PGE 2) is a prostanoid that serves important homeostatic functions, yet is also responsible for regulating pain and inflammation. PGE 2 binds to four receptors, of which one, the EP4 receptor, is primarily responsible for the pain and inflammation associated with osteoarthritis (OA). The deleterious and pathologic actions of PGE 2 are inhibited in varying degrees by steroids, aspirin and cyclo-oxygenase inhibiting NSAIDs; however, administration of these drugs causes decreased production of PGE 2, thereby decreasing or eliminating the homeostatic functions of the molecule. By inhibiting just the EP4 receptor, the homeostatic function of PGE 2 is better maintained. This manuscript will introduce a new class of pharmaceuticals known as the piprant class. Piprants are prostaglandin receptor antagonists (PRA). This article will include basic physiology of AA, prostanoids and piprants, will review available evidence for the relevance of EP4 PRAs in rodent models of pain and inflammation, and will reference available data for an EP4 PRA in dogs and cats. Piprants are currently in development for veterinary patients and the purpose of this manuscript is to introduce veterinarians to the class of drugs, with emphasis on an EP4 PRA and its potential role in the control of pain and inflammation associated with OA in dogs and cats.
Collapse
|
121
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
122
|
Albaum JM, Lévesque LE, Gershon AS, Liu G, Cadarette SM. Glucocorticoid-induced osteoporosis management among seniors, by year, sex, and indication, 1996-2012. Osteoporos Int 2015; 26:2845-52. [PMID: 26138581 DOI: 10.1007/s00198-015-3200-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 01/30/2023]
Abstract
UNLABELLED We identified that glucocorticoid-induced osteoporosis management (bone mineral density testing or osteoporosis treatment) among seniors improved among men (2 to 23 %) and women (10 to 48 %) between 1996 and 2007, and then remained relatively stable through to 2012. Differences were also noted by indication (from a low of 21 % for respiratory conditions to a high of 41 % for rheumatic conditions). PURPOSE The aim of our study was to describe the proportion of chronic oral glucocorticoid (GC) users that receive osteoporosis management (bone mineral density test or osteoporosis treatment) by sex and over time. METHODS We identified community-dwelling older adults initiating chronic oral GC therapy in Ontario using pharmacy data from 1996 to 2012. Chronic GC use was defined as greater than or equal to two oral GC prescriptions dispensed and ≥450 mg prednisone equivalent over a 6-month period. Osteoporosis management within 6 months of starting chronic GC therapy was examined by sex, year, indication for therapy, and osteoporosis management history. Results were summarized using descriptive statistics. RESULTS We identified 72,099 men and 95,975 women starting chronic oral GC therapy (mean age = 74.9 years, SD = 6.5). Approximately two thirds of patients (65 %) received ≥900 mg within the 6-month chronic use window. GC-induced osteoporosis management increased from 2 to 23 % (men) and 10 to 48 % (women) between 1996 and 2007, and then remained relatively stable through to 2012. A higher proportion of patients with prior osteoporosis management were managed within 6 months (56 % men, 67 % women) of chronic GC use, compared to patients without prior management (12 % men, 23 % women). Patients with rheumatic disease were managed most commonly (41 %), and patients with respiratory conditions were managed least commonly (21 %). CONCLUSIONS GC-induced osteoporosis management improved significantly over time for both sexes yet remains low. Significant care gaps by sex and between clinical areas represent a missed opportunity for fracture prevention among patients requiring chronic GC therapy.
Collapse
Affiliation(s)
- J M Albaum
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - L E Lévesque
- Queen's University, Kingston, ON, Canada
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - A S Gershon
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - G Liu
- Queen's University, Kingston, ON, Canada
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
| | - S M Cadarette
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada.
| |
Collapse
|
123
|
Quetglas EG, Mujagic Z, Wigge S, Keszthelyi D, Wachten S, Masclee A, Reinisch W. Update on pathogenesis and predictors of response of therapeutic strategies used in inflammatory bowel disease. World J Gastroenterol 2015; 21:12519-12543. [PMID: 26640330 PMCID: PMC4658608 DOI: 10.3748/wjg.v21.i44.12519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The search for biomarkers that characterize specific aspects of inflammatory bowel disease (IBD), has received substantial interest in the past years and is moving forward rapidly with the help of modern technologies. Nevertheless, there is a direct demand to identify adequate biomarkers for predicting and evaluating therapeutic response to different therapies. In this subset, pharmacogenetics deserves more attention as part of the endeavor to provide personalized medicine. The ultimate goal in this area is the adjustment of medication for a patient’s specific genetic background and thereby to improve drug efficacy and safety rates. The aim of the following review is to utilize the latest knowledge on immunopathogenesis of IBD and update the findings on the field of Immunology and Genetics, to evaluate the response to the different therapies. In the present article, more than 400 publications were reviewed but finally 287 included based on design, reproducibility (or expectancy to be reproducible and translationable into humans) or already measured in humans. A few tests have shown clinical applicability. Other, i.e., genetic associations for the different therapies in IBD have not yet shown consistent or robust results. In the close future it is anticipated that this, cellular and genetic material, as well as the determination of biomarkers will be implemented in an integrated molecular diagnostic and prognostic approach to manage IBD patients.
Collapse
|
124
|
Bouguen G, Dubuquoy L, Desreumaux P, Brunner T, Bertin B. Intestinal steroidogenesis. Steroids 2015; 103:64-71. [PMID: 25560486 DOI: 10.1016/j.steroids.2014.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022]
Abstract
Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Guillaume Bouguen
- Service des Maladies de l'Appareil digestif, CHU Pontchaillou, Rennes, France; UMR991, Liver Metabolism and Cancer, France; Université de Rennes 1, France
| | - Laurent Dubuquoy
- Université de Lille, F-59000 Lille, France; Inserm U995, F-59045 Lille, France
| | - Pierre Desreumaux
- Université de Lille, F-59000 Lille, France; Inserm U995, F-59045 Lille, France; CHU Lille, Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, F-59037 Lille, France
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Benjamin Bertin
- Université de Lille, F-59000 Lille, France; Inserm U995, F-59045 Lille, France; Faculté des Sciences Pharmaceutiques et Biologiques, F-59006 Lille, France.
| |
Collapse
|
125
|
Caratti G, Matthews L, Poolman T, Kershaw S, Baxter M, Ray D. Glucocorticoid receptor function in health and disease. Clin Endocrinol (Oxf) 2015; 83:441-8. [PMID: 25627931 DOI: 10.1111/cen.12728] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Glucocorticoid hormones are essential for life in vertebrates. They act through the glucocorticoid receptor (GR), which is expressed in virtually all cells of the human body. Yet the actions of glucocorticoids (GCs) are specific to particular cell types. Broadly GCs regulate carbohydrate metabolism, inflammation, stress and cell fate. Synthetic GCs are widely used in medicine and are by far the most frequent cause of Cushing's syndrome in routine practice. The advent of novel drugs targeting the GR offers new opportunities to treat patients with immune, or malignant disease, and may also offer new opportunities to manage patients with adrenal insufficiency also. This review covers the latest understanding of how GCs work, how their actions are affected by disease, and where the new drugs may take us.
Collapse
Affiliation(s)
- Giorgio Caratti
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - Laura Matthews
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - Toryn Poolman
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | | | - Matthew Baxter
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| | - David Ray
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, UK
| |
Collapse
|
126
|
Cuzzoni E, De Iudicibus S, Franca R, Stocco G, Lucafò M, Pelin M, Favretto D, Pasini A, Montini G, Decorti G. Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics 2015; 16:1631-48. [PMID: 26419298 DOI: 10.2217/pgs.15.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic nephrotic syndrome represents the most common type of primary glomerular disease in children: glucocorticoids (GCs) are the first-line therapy, even if considerable interindividual differences in their efficacy and side effects have been reported. Immunosuppressive and anti-inflammatory effects of these drugs are mainly due to the GC-mediated transcription regulation of pro- and anti-inflammatory genes. This mechanism of action is the result of a complex multistep pathway that involves the glucocorticoid receptor and several other proteins, encoded by polymorphic genes. Aim of this review is to highlight the current knowledge on genetic variants that could affect GC response, particularly focusing on children with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Eva Cuzzoni
- Graduate School in Reproduction & Developmental Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Raffaella Franca
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Marianna Lucafò
- Department of Medical, Surgical and Health Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Diego Favretto
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Andrea Pasini
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliera Universitaria Sant'Orsola-Malpighi, I-40138 Bologna, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, I-20122 Milano, Italy
| | - Giuliana Decorti
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
127
|
Gomes P, Slocum C, Smith LM, Abelson MB. Challenges faced in clinical trials for chronic allergic conjunctivitis. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1081563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
128
|
Cazzola M, Coppola A, Rogliani P, Matera MG. Novel glucocorticoid receptor agonists in the treatment of asthma. Expert Opin Investig Drugs 2015; 24:1473-82. [PMID: 26293110 DOI: 10.1517/13543784.2015.1078310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inhaled corticosteroids are the only drugs that effectively suppress the airway inflammation, but they can induce considerable systemic and adverse effects when they are administered chronically at high doses. Consequently, the pharmaceutical industry is still searching for newer entities with an improved therapeutic index. AREAS COVERED Herein, the authors review the research in the glucocorticoid field to identify ligands of the glucocorticoid receptor (GR). These ligands preferentially induce transrepression with little or no transactivating activity, in order to have a potent anti-inflammatory action and a low side-effects profile. EXPERT OPINION Several agents have been synthesized, but few have been tested in experimental models of asthma. Furthermore, only three (BI-54903, GW870086X and AZD5423) have entered clinical development, although the development of at least one of them (BI-54903) was discontinued. The reason for the limited success so far obtained is that the model of transactivation versus transrepression is a too simplistic representation of GR activity. It is difficult to uncouple the therapeutic and harmful effects mediated by GR, but some useful information that might change the current perspective is appearing in the literature. The generation of gene expression 'fingerprints' produced by different GR agonists in target and off-target human tissues could be useful in identifying drug candidates with an improved therapeutic ratio.
Collapse
Affiliation(s)
- Mario Cazzola
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,b 2 University of Rome Tor Vergata, Respiratory Pharmacology Research Unit, Department of Systems Medicine , Rome, Italy .,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Angelo Coppola
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Paola Rogliani
- a 1 University of Rome Tor Vergata, Department of Systems Medicine , Rome, Italy.,c 3 University Hospital Tor Vergata, Division of Respiratory Medicine , Rome, Italy
| | - Maria Gabriella Matera
- d 4 Second University of Naples, Unit of Pharmacology, Department of Experimental Medicine , Naples, Italy
| |
Collapse
|
129
|
Liu YL, Jang S, Wang SM, Chen CH, Li FY. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1074113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
130
|
Winkelmann A, Löbermann M, Reisinger EC, Hartung HP, Zettl UK. [Immunotherapy and infectious issues in multiple sclerosis. Self-injectable and oral drugs for immunotherapy]. DER NERVENARZT 2015; 86:960-970. [PMID: 26187544 DOI: 10.1007/s00115-015-4369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Immunotherapy is generally associated with an increased risk for the development of infections. Due to the continuously expanding spectrum of new and potent immunotherapy treatment options for multiple sclerosis (MS), this article describes the currently known risks for treatment-related infections and the current recommendations for prevention of corresponding problems with drugs used in treatment strategies for MS and their mechanisms of action. The new treatment options in particular are linked to specific and severe infections; therefore, intensive and long-lasting monitoring is required before, during and after treatment and multidisciplinary surveillance of patients is needed. This article gives a detailed review of drug-specific red flags and current recommendations for the prophylaxis of infections associated with treatment of relapsing-remitting MS and when using self-injectable and oral disease-modifying immunotherapeutic drugs.
Collapse
Affiliation(s)
- A Winkelmann
- Klinik und Poliklinik für Neurologie, Universitätsmedizin Rostock, Gehlsheimer Str. 20, 18147, Rostock, Deutschland,
| | | | | | | | | |
Collapse
|
131
|
Bouguen G, Langlois A, Djouina M, Branche J, Koriche D, Dewaeles E, Mongy A, Auwerx J, Colombel JF, Desreumaux P, Dubuquoy L, Bertin B. Intestinal steroidogenesis controls PPARγ expression in the colon and is impaired during ulcerative colitis. Gut 2015; 64:901-10. [PMID: 25053717 DOI: 10.1136/gutjnl-2014-307618] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Immune tolerance breakdown during UC involves the peroxisome proliferator-activated receptor-γ (PPARγ), a key factor in mucosal homoeostasis and the therapeutic target of 5-aminosalycilates, which expression is impaired during UC. Here we assess the impact of glucocorticoids (GCs) on PPARγ expression, focusing especially on extra-adrenal cortisol production by colonic epithelial cells (CECs). METHODS Activation of PPARγ in the colon was evaluated using transgenic mice for the luciferase gene under PPAR control (peroxisome proliferator response element-luciferase mice). Protein and mRNA expression of PPARγ were evaluated with colon fragments and purified CEC from mice. Cortisol production and steroidogenic factor expression were quantified in human CEC of patients with UC and those of controls. Gene expression knockdown by short hairpin RNA in Caco-2 cells was used for functional studies. RESULTS GCs were able to raise luciferase activity in peroxisome proliferator response element-luciferase mice. In the mice colons and Caco-2 cells, PPARγ expression was increased either with GCs or with an inducer of steroidogenesis and then decreased after treatment with a steroidogenesis inhibitor. Cortisol production and steroidogenic factor expression, such as liver receptor homologue-1 (LRH-1), were decreased in CEC isolated from patients with UC, directly correlating with PPARγ impairment. Experiments on Caco-2 cells lacking LRH-1 expression confirmed that LRH-1 controls PPARγ expression by regulating GC synthesis in CEC. CONCLUSIONS These results demonstrate cortisol control of PPARγ expression in CEC, highlighting cortisol production deficiency in colonocytes as a key molecular event in the pathophysiology of UC.
Collapse
Affiliation(s)
- Guillaume Bouguen
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France Service des Maladies de l'Appareil digestif, University Hospital of Rennes, Pontchaillou, France Inserm, UMR991, Liver Metabolism and Cancer, Rennes, France Université de Rennes 1, Rennes, France
| | - Audrey Langlois
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France
| | - Madjid Djouina
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France
| | - Julien Branche
- Université Lille Nord de France, Lille, France CHU Lille, Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, Lille, France
| | - Dine Koriche
- Université Lille Nord de France, Lille, France CHU Lille, Service de Chirurgie Digestive et Transplantations, Hôpital Claude Huriez, Lille, France
| | - Edmone Dewaeles
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France
| | - Alice Mongy
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France
| | - Johan Auwerx
- Institut Clinique de la souris, Illkirch, France Laboratory of Integrative and Systems Physiology, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Frederic Colombel
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France CHU Lille, Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, Lille, France Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Pierre Desreumaux
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France CHU Lille, Service des Maladies de l'Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, Lille, France
| | - Laurent Dubuquoy
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France
| | - Benjamin Bertin
- Université Lille Nord de France, Lille, France Inserm U995, Lille, France UDSL, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| |
Collapse
|
132
|
Costa A, Sellon RK, Court M, Burke NS, Mealey KL. Polymorphisms in the canine glucocorticoid receptor alpha gene (NR3C1α). J Vet Pharmacol Ther 2015; 39:16-21. [PMID: 25989385 DOI: 10.1111/jvp.12241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Corticosteroids are one of the most extensively used class of therapeutic agents in dogs. In human patients, response to corticosteroid therapy has been correlated with the presence of certain polymorphisms of the glucocorticoid receptor gene (NR3C1). Depending on the polymorphism present, patients may show either increased sensitivity to glucocorticoid-induced adverse effects or resistance to their therapeutic effects. Because response to corticosteroid therapy in dogs can also be variable and unpredictable, we hypothesized that genetic variability exists in the canine NR3C1 gene. The aim of this study was to sequence the coding regions of the canine NR3C1 gene in a representative sample of dogs. Samples from 97 dogs from four previously identified genetic groupings of domestic breeds (Asian/Ancient, Herding, Hunting, and Mastiff) were sequenced and evaluated. Four exons contained polymorphisms and four exons showed no variation from the reference sequence. A total of six single nucleotide polymorphisms (SNPs) were identified including four synonymous SNPs and two nonsynonymous SNPs (c.811A>T and c.2111T>C). No dogs were homozygous for either variant allele, while 23 dogs were heterozygous for the c.811A>T allele and 2 were heterozygous for c.2111T>C allele. The amino acid changes caused by c.811A>T (serine to cysteine) and c.2111T>C (isoleucine to threonine) were both predicted by in silico analysis to be 'probably damaging' to structure and function of the resulting protein. We conclude that NR3C1 polymorphisms occur in dogs and may cause individual variation in response to corticosteroid therapy.
Collapse
Affiliation(s)
- A Costa
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - R K Sellon
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - M Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - N S Burke
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - K L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
133
|
Abelson MB, Shetty S, Korchak M, Butrus SI, Smith LM. Advances in pharmacotherapy for allergic conjunctivitis. Expert Opin Pharmacother 2015; 16:1219-31. [PMID: 25943976 DOI: 10.1517/14656566.2015.1040760] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Allergy is the fifth leading group of chronic diseases, affecting as much as 40% of the first-world population. Its pathophysiology has a genetic component, and is driven by the immune system's sensitized response to antigens and environmental factors. As research continues to uncover the mediators responsible for ocular allergy, the development of novel drugs should progress. AREAS COVERED A literature review of allergic conjunctivitis, ocular allergy and their treatment was performed using PubMed and Medline. Additional information is also included from clinicaltrials.gov and associated web sites for drugs currently in clinical trials. EXPERT OPINION The initial step of therapy remains identification and avoidance of allergic triggers. The mainstay of treatment is the new generation of dual-acting antihistamines. Drugs that improve the magnitude and duration of relief, with greater subject responder rates, are gradually making their way into the clinic. Allergic conjunctivitis is a relatively easy disease to study because of the availability of models such as the conjunctival allergen challenge. New classes of drugs that target inflammatory pathways or mediators involved in the early and late-phase allergic response are being screened in these models and we are making progress in identifying the next generation of anti-allergic therapy.
Collapse
Affiliation(s)
- Mark B Abelson
- Harvard University, Department of Ophthalmology, Ora, Inc. , 300 Brickstone Square, Andover MA 01810 , USA
| | | | | | | | | |
Collapse
|
134
|
Eftekharian A, Amizadeh M. Pulse steroid therapy in idiopathic sudden sensorineural hearing loss: A randomized controlled clinical trial. Laryngoscope 2015; 126:150-5. [DOI: 10.1002/lary.25244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/08/2015] [Accepted: 02/10/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Ali Eftekharian
- Department of Otorhinolaryngology; Shahid-Beheshti University of Medical Sciences; Tehran Iran
| | - Maryam Amizadeh
- Department of Otorhinolaryngology; Shahid-Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
135
|
Abstract
The interface of multiple sclerosis (MS) and infection occurs on several levels. First, infectious disease has been postulated as a potential trigger, if not cause, of MS. Second, exacerbation of MS has been well-documented as a consequence of infection, and, lastly, infectious diseases have been recognized as a complication of the therapies currently employed in the treatment of MS. MS is a disease in which immune dysregulation is a key component. Examination of central nervous system (CNS) tissue of people affected by MS demonstrates immune cell infiltration, activation and inflammation. Therapies that alter the immune response have demonstrated efficacy in reducing relapse rates and evidence of brain inflammation on magnetic resonance imaging (MRI). Despite the altered immune response in MS, there is a lack of evidence that these patients are at increased risk of infectious disease in the absence of treatment or debility. Links between infections and disease-modifying therapies (DMTs) used in MS will be discussed in this review, as well as estimates of occurrence and ways to potentially minimize these risks. We address infection in MS in a comprehensive fashion, including (1) the impact of infections on relapse rates in patients with MS; (2) a review of available infection data from pivotal trials and postmarketing studies for the approved and experimental DMTs, including frequency, types and severity of infections; and (3) relevant risk minimization strategies, particularly as they pertain to progressive multifocal leukoencephalopathy (PML).
Collapse
|
136
|
Dölle S, Hielscher N, Bareille PJ, Hardes K, Robertson J, Worm M. Clinical efficacy and tolerability of a novel selective corticosteroid in atopic dermatitis--two randomised controlled trials. Skin Pharmacol Physiol 2015; 28:159-66. [PMID: 25614148 DOI: 10.1159/000367696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
Abstract
Topical corticosteroids remain the first-line therapy for atopic dermatitis (AD). Hence, we investigated the efficacy and safety profile of a novel selective corticosteroid, GW870086. We performed 2 randomised, double-blind, controlled studies with 25 AD patients and 20 healthy subjects. The changes in the Three-Item Severity (TIS) score and the skin thickness were the primary end points, respectively. The adjusted TIS score (day 22) shows that the novel corticosteroid resulted in a non-significant, but dose-dependent reduction compared to placebo (GW870086 0.2% vs. placebo = -0.38, GW870086 2% vs. placebo = -0.89). Significant skin thinning was observed in the second study on days 14 and 21 when patients were treated with the comparator but not with the novel corticosteroid compared to placebo. The clinical efficacy of the new selective corticosteroid was not superior to placebo, although a dose-dependent improvement upon treatment was noticed without the onset of skin thinning.
Collapse
Affiliation(s)
- Sabine Dölle
- Department of Dermatology and Allergology, Allergy-Centre-Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
137
|
Donnenfeld ED. Current trends in postsurgical management of ocular inflammation following cataract surgery. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.996548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
138
|
|
139
|
Albert R, Kristóf E, Zahuczky G, Szatmári-Tóth M, Veréb Z, Oláh B, Moe MC, Facskó A, Fésüs L, Petrovski G. Triamcinolone regulated apopto-phagocytic gene expression patterns in the clearance of dying retinal pigment epithelial cells. A key role of Mertk in the enhanced phagocytosis. Biochim Biophys Acta Gen Subj 2014; 1850:435-46. [PMID: 25450174 DOI: 10.1016/j.bbagen.2014.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The apopto-phagocytic gene expression patterns during clearance of dying cells in the retina and the effect of triamcinolone (TC) upon these processes have relevance to development of age-related macular degeneration (AMD). METHODS ARPE-19 cells and primary human retinal pigment epithelium (hRPE) were induced to undergo cell death by anoikis and the clearance of these cells by living hRPE/ARPE-19 or human monocyte-derived macrophages (HMDMs) in the presence or absence of TC was quantified by flow cytometry. TaqMan low-density gene expression array determining known markers of phagocytosis and loss-of-function studies on selected apopto-phagocytic genes was carried out in HMDM engulfing anoikic cells. RESULTS The glucocorticoid TC had a profound phagocytosis-enhancing effect on HMDM engulfing anoikic ARPE-19 or hRPE cells, causing a selective upregulation of the Mer tyrosine kinase (MERTK) receptor, while decreasing the expression of the AXL receptor tyrosine kinase and thrombospondin-1 (THSB-1). The key role of the MERTK could be demonstrated in HMDM engulfing dying cells using gene silencing as well as blocking antibodies. Similar pathways were found upregulated in living ARPE-19 engulfing anoikic ARPE-19 cells. Gas6 treatment enhanced phagocytosis in TC-treated HMDMs. CONCLUSIONS Specific agonists of the Mertk receptor may have a potential role as phagocytosis enhancers in the retina and serve as future targets for AMD therapy. GENERAL SIGNIFICANCE The use of Gas6 as enhancer of retinal phagocytosis via the MerTK receptor, alone or in combination with other specific ligands of the tyrosine kinase receptors' family may have a potential role in AMD therapy.
Collapse
Affiliation(s)
- Réka Albert
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | | | - Mária Szatmári-Tóth
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Brigitta Oláh
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Morten C Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andrea Facskó
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Fésüs
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Goran Petrovski
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
140
|
Eng JWL, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 2014; 63:1115-28. [PMID: 25307152 DOI: 10.1007/s00262-014-1617-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/27/2014] [Indexed: 02/06/2023]
Abstract
Long conserved mechanisms maintain homeostasis in living creatures in response to a variety of stresses. However, continuous exposure to stress can result in unabated production of stress hormones, especially catecholamines, which can have detrimental health effects. While the long-term effects of chronic stress have well-known physiological consequences, recent discoveries have revealed that stress may affect therapeutic efficacy in cancer. Growing epidemiological evidence reveals strong correlations between progression-free and long-term survival and β-blocker usage in cancer patients. In this review, we summarize the current understanding of how the catecholamines, epinephrine and norepinephrine, affect cancer cell survival and tumor progression. We also highlight new data exploring the potential contributions of stress to immunosuppression in the tumor microenvironment and the implications of these findings for the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | | | | | |
Collapse
|
141
|
Fardet L, Fève B. Systemic Glucocorticoid Therapy: a Review of its Metabolic and Cardiovascular Adverse Events. Drugs 2014; 74:1731-45. [DOI: 10.1007/s40265-014-0282-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
142
|
|
143
|
Varga G, Ehrchen J, Brockhausen A, Weinhage T, Nippe N, Belz M, Tsianakas A, Ross M, Bettenworth D, Spieker T, Wolf M, Lippe R, Tenbrock K, Leenen PJM, Roth J, Sunderkötter C. Immune Suppression via Glucocorticoid-Stimulated Monocytes: A Novel Mechanism To Cope with Inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1090-9. [DOI: 10.4049/jimmunol.1300891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
144
|
Zhan Y, Zou S, Hua F, Li F, Ji L, Wang W, Ye Y, Sun L, Chen H, Cheng Y. High-dose dexamethasone modulates serum cytokine profile in patients with primary immune thrombocytopenia. Immunol Lett 2014; 160:33-38. [DOI: 10.1016/j.imlet.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/19/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
145
|
Kurz T, Weiner M, Skoglund C, Basnet S, Eriksson P, Segelmark M. A myelopoiesis gene signature during remission in anti-neutrophil cytoplasm antibody-associated vasculitis does not predict relapses but seems to reflect ongoing prednisolone therapy. Clin Exp Immunol 2014; 175:215-26. [PMID: 24215168 DOI: 10.1111/cei.12236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2013] [Indexed: 11/28/2022] Open
Abstract
A myelopoiesis gene signature in circulating leucocytes, exemplified by increased myeloperoxidase (MPO) and proteinase 3 (PR3) mRNA levels, has been reported in patients with active anti-neutrophil cytoplasm antibody-associated vasculitis (AAV), and to a lesser extent during remission. We hypothesized that this signature could predict disease relapse. mRNA levels of PR3, MPO, selected myelopoiesis transcription factors [CCAAT/enhancer binding protein α (CEBP-α), CCAAT/enhancer binding protein β (CEBP-β), SPI1/PU.1-related transcription factor (SPIB), spleen focus forming virus proviral integration oncogene, PU.1 homologue (SPI1)] and microRNAs (miRNAs) from patient and control peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were analysed and associated with clinical data. Patients in stable remission had higher mRNA levels for PR3 (PBMC, PMN) and MPO (PBMC). PR3 and SPIB mRNA correlated positively in controls but negatively in patient PBMC. Statistically significant correlations existed between PR3 mRNA and several miRNAs in controls, but not in patients. PR3/MPO mRNA levels were not associated with previous or future relapses, but correlated with steroid treatment. Prednisolone doses were negatively linked to SPIB and miR-155-5p, miR-339-5p (PBMC) and to miR-221, miR-361 and miR-505 (PMN). PR3 mRNA in PBMC correlated with time since last flare, blood leucocyte count and estimated glomerular filtration rate. Our results show that elevated leucocyte PR3 mRNA levels in AAV patients in remission do not predict relapse. The origin seems multi-factorial, but to an important extent explainable by prednisolone action. Gene signatures in patients with AAV undergoing steroid treatment should therefore be interpreted accordingly.
Collapse
Affiliation(s)
- T Kurz
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
146
|
Slominski AT, Manna PR, Tuckey RC. Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp Dermatol 2014; 23:369-374. [PMID: 24888781 PMCID: PMC4046116 DOI: 10.1111/exd.12376] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/15/2022]
Abstract
Human skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs. However, there are also significant differences determined by the close proximity of synthesis and action (even within the same cells) allowing para-, auto- or intracrine modes of regulation. We also propose that ultraviolet light B (UVB) can regulate the availability of 7-dehydrocholesterol for transformation to cholesterol with its further metabolism to steroids, oxysterols or ∆7 steroids, because of its transformation to vitamin D3. In addition, UVB can rearrange locally produced ∆7 steroids to the corresponding secosteroids with a short- or no-side chain. Thus, different mechanisms of regulation occur in the skin that can be either stochastic or structuralized. We propose that local glucocorticosteroidogenic systems and their regulators, in concert with cognate receptors operate to stabilize skin homeostasis and prevent or attenuate skin pathology.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Health Science Center, Memphis, TN, USA
- Department of Medicine, Division of Rheumatology and Connective Tissue Diseases, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
147
|
Blackford JA, Brimacombe KR, Dougherty EJ, Pradhan M, Shen M, Li Z, Auld DS, Chow CC, Austin CP, Simons SS. Research resource: modulators of glucocorticoid receptor activity identified by a new high-throughput screening assay. Mol Endocrinol 2014; 28:1194-206. [PMID: 24850414 DOI: 10.1210/me.2014-1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid steroids affect almost every type of tissue and thus are widely used to treat a variety of human pathological conditions. However, the severity of numerous side effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high-throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (A(max)) and EC(50) (the position of the dexamethasone dose-response curve). Upon screening 1280 chemicals, 10 with the greatest changes in the absolute value of A(max) or EC(50) were selected for further examination. Qualitatively identical behaviors for 60% to 90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the 10 chemicals in a recently described competition assay determined their kinetically defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of the GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.
Collapse
Affiliation(s)
- John A Blackford
- Steroid Hormones Section (J.A.B., E.J.D., M.P., S.S.S.), Laboratory of Endocrinology and Receptor Biology, and Laboratory of Biological Modeling (C.C.C.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and National Center for Advancing Translational Sciences (K.R.B., M.S., Z.L., D.S.A., C.P.A.), National Institutes of Health, Rockville, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Patel R, Williams-Dautovich J, Cummins CL. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol Endocrinol 2014; 28:999-1011. [PMID: 24766141 DOI: 10.1210/me.2014-1062] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid receptor (GR) was one of the first nuclear hormone receptors cloned and represents one of the most effective drug targets available today for the treatment of severe inflammation. The physiologic consequences of endogenous or exogenous glucocorticoid excess are well established and include hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting. However, at the molecular and tissue-specific level, there are still many unknown protein mediators of glucocorticoid response and thus, much remains to be uncovered that will help determine whether activation of the GR can be tailored to improve therapeutic efficacy while minimizing unwanted side effects. This review summarizes recent discoveries of tissue-selective modulators of glucocorticoid signaling that are important in mediating the unwanted side effects of therapeutic glucocorticoid use, emphasizing the downstream molecular effects of GR activation in the liver, adipose tissue, muscle, and pancreas.
Collapse
Affiliation(s)
- Rucha Patel
- Department of Pharmaceutical Sciences (R.P., J.W-D., C.L.C.), University of Toronto, Toronto, Ontario, M5S 3M2, Canada; and Banting and Best Diabetes Centre (C.L.C.), Toronto, Ontario M5G 2C4 Canada
| | | | | |
Collapse
|
149
|
Kavanaugh A, Wells AF. Benefits and risks of low-dose glucocorticoid treatment in the patient with rheumatoid arthritis. Rheumatology (Oxford) 2014; 53:1742-51. [PMID: 24729402 PMCID: PMC4165844 DOI: 10.1093/rheumatology/keu135] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticosteroids (GCs) have been employed extensively for the treatment of rheumatoid arthritis (RA) and other autoimmune and systemic inflammatory disorders. Their use is supported by extensive literature and their utility is reflected in their incorporation into current treatment guidelines for RA and other conditions. Nevertheless, there is still some concern regarding the long-term use of GCs because of their potential for clinically important adverse events, particularly with an extended duration of treatment and the use of high doses. This article systematically reviews the efficacy for radiological and clinical outcomes for low-dose GCs (defined as ≤10 mg/day prednisone equivalent) in the treatment of RA. Results reviewed indicated that low-dose GCs, usually administered in combination with synthetic DMARDs, most often MTX, significantly improve structural outcomes and decrease symptom severity in patients with RA. Safety data indicate that GC-associated adverse events are dose related, but still occur in patients receiving low doses of these agents. Concerns about side effects associated with GCs have prompted the development of new strategies aimed at improving safety without compromising efficacy. These include altering the structure of existing GCs and the development of delayed-release GC formulations so that drug delivery is timed to match greatest symptom severity. Optimal use of low-dose GCs has the potential to improve long-term outcomes for patients with RA.
Collapse
Affiliation(s)
- Arthur Kavanaugh
- Department of Medicine, University of California, San Diego, La Jolla, CA and Department of Rheumatology, Duke University Medical Center, Durham, NC, USA.
| | - Alvin F Wells
- Department of Medicine, University of California, San Diego, La Jolla, CA and Department of Rheumatology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
150
|
Winkelmann A, Loebermann M, Reisinger EC, Zettl UK. Multiple sclerosis treatment and infectious issues: update 2013. Clin Exp Immunol 2014; 175:425-38. [PMID: 24134716 DOI: 10.1111/cei.12226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 01/13/2023] Open
Abstract
Immunomodulation and immunosuppression are generally linked to an increased risk of infection. In the growing field of new and potent drugs for multiple sclerosis (MS), we review the current data concerning infections and prevention of infectious diseases. This is of importance for recently licensed and future MS treatment options, but also for long-term established therapies for MS. Some of the disease-modifying therapies (DMT) go along with threats of specific severe infections or complications, which require a more intensive long-term monitoring and multi-disciplinary surveillance. We update the existing warning notices and infectious issues which have to be considered using drugs for multiple sclerosis.
Collapse
Affiliation(s)
- A Winkelmann
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | |
Collapse
|