101
|
Singh N, Huprikar S, Burdette SD, Morris MI, Blair JE, Wheat LJ. Donor-derived fungal infections in organ transplant recipients: guidelines of the American Society of Transplantation, infectious diseases community of practice. Am J Transplant 2012; 12:2414-28. [PMID: 22694672 DOI: 10.1111/j.1600-6143.2012.04100.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Donor-derived fungal infections can be associated with serious complications in transplant recipients. Most cases of donor-derived candidiasis have occurred in kidney transplant recipients in whom contaminated preservation fluid is a commonly proposed source. Donors with cryptococcal disease, including those with unrecognized cryptococcal meningoencephalitis may transmit the infection with the allograft. Active histoplasmosis or undiagnosed and presumably asymptomatic infection in the donor that had not resolved by the time of death can result in donor-derived histoplasmosis in the recipient. Potential donors from an endemic area with either active or occult infection can also transmit coccidioidomycosis. Rare instances of aspergillosis and other mycoses, including agents of mucormycosis may also be transmitted from infected donors. Appropriate diagnostic evaluation and prompt initiation of appropriate antifungal therapy are warranted if donor-derived fungal infections are a consideration. This document discusses the characteristics, evaluation and approach to the management of donor-derived fungal infections in organ transplant recipients.
Collapse
Affiliation(s)
- N Singh
- University of Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
102
|
Brandt ME, Lockhart SR. Recent Taxonomic Developments with Candida and Other Opportunistic Yeasts. CURRENT FUNGAL INFECTION REPORTS 2012; 6:170-177. [PMID: 26526658 DOI: 10.1007/s12281-012-0094-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increases in susceptible patient populations and advances in identification methods have resulted in the continued recognition of novel yeasts as agents of human infection. Most of these agents are members of the well-recognized genera Candida, Cryptococcus, Trichosporon, and Rhodotorula. Some of these agents are "cryptic species," members of species complexes, and may not be detectable using classical carbohydrate assimilation-based methods of yeast identification. Such species require DNA- or MALDI-based methods for correct identification, although sporadic isolates may not routinely require delineation to the individual species level. The coming end of the fungal taxonomy rules requiring separate names for sexual and asexual forms of the same fungus will hopefully allow greater clarity, as names for medically important yeast can now be based on the needs of the medical mycology community and the common goal of better communication between laboratory and clinician.
Collapse
Affiliation(s)
- Mary E Brandt
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road; Mailstop G-11, Atlanta, GA 30333, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road; Mailstop G-11, Atlanta, GA 30333, USA
| |
Collapse
|
103
|
Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:1042-54. [PMID: 22707485 DOI: 10.1128/ec.00128-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An understanding of the connections between metabolism and elaboration of virulence factors during host colonization by the human-pathogenic fungus Cryptococcus neoformans is important for developing antifungal therapies. Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. In this report, we demonstrate that defects in the peroxisomal and mitochondrial β-oxidation pathways influence the growth of C. neoformans on fatty acids as well as the virulence of the fungus in a mouse inhalation model of cryptococcosis. Disease attenuation may be due to the cumulative influence of altered carbon source acquisition or processing, interference with secretion, changes in cell wall integrity, and an observed defect in capsule production for the peroxisomal mutant. Altered capsule elaboration in the context of a β-oxidation defect was unexpected but is particularly important because this trait is a major virulence factor for C. neoformans. Additionally, analysis of mutants in the peroxisomal pathway revealed a growth-promoting activity for C. neoformans, and subsequent work identified oleic acid and biotin as candidates for such factors. Overall, this study reveals that β-oxidation influences virulence in C. neoformans by multiple mechanisms that likely include contributions to carbon source acquisition and virulence factor elaboration.
Collapse
|
104
|
Albuquerque PC, Rodrigues ML. Research trends on pathogenic Cryptococcus species in the last 20 years: a global analysis with focus on Brazil. Future Microbiol 2012; 7:319-29. [PMID: 22393887 DOI: 10.2217/fmb.11.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS Recent data demonstrates that cryptococcosis caused by Cryptococcus neoformans or Cryptococcus gattii kills approximately 600,000 people per year in the world. In Brazil, cryptococcosis has recently been identified as the most fatal mycosis in AIDS patients. In this study, we aimed to map research into C. neoformans and C. gattii in the world, with a focus on the Brazilian contribution to this area. METHODS The parameters used for this analysis were based on publication records, including number of articles published, citation indices, journal impact factor and distribution of authorship in the last two decades. RESULTS Our global analysis of publications demonstrated that, in the last 20 years, the USA was the country that produced the highest number of scientific articles in the Cryptococcus field, while Brazil occupied the third position. Brazilian productivity, however, showed a steady tendency to increase, in contrast to the USA and other countries. The average impact factor of journals at which articles authored by Brazilians were published was 2.58, which represented approximately half the value found for papers of American authorship. Studies authored by Brazilian scientists showed relatively low averages of citations per article, in comparison to papers published by researchers from the USA, France, Australia, The Netherlands and Germany, among others. CONCLUSION This study demonstrates that the contribution of Brazilian scientists to the Cryptococcus field is continually growing, although papers produced in Brazil apparently have poor repercussion in comparison to those generated in developed countries.
Collapse
Affiliation(s)
- Priscila C Albuquerque
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Brazil
| | | |
Collapse
|
105
|
Sellers B, Hall P, Cine-Gowdie S, Hays AL, Patel K, Lockhart SR, Franco-Paredes C. Cryptococcus gattii: an emerging fungal pathogen in the Southeastern United States. Am J Med Sci 2012; 343:510-1. [PMID: 22314106 PMCID: PMC11904609 DOI: 10.1097/maj.0b013e3182464bc7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The authors present a case of severe meningoencephalitis with cryptococcomas and hydrocephalus due to Cryptococcus gattii of the molecular type VGI in an otherwise healthy man native to Southwest Georgia without any history of travel. Clinicians need to be aware of this fungal emerging pathogen in the Southern United States.
Collapse
Affiliation(s)
- Brenda Sellers
- Microbiology Laboratory, Phoebe Putney Memorial Hospital, Albany, GA 31701, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Del Poeta M, Casadevall A. Ten challenges on Cryptococcus and cryptococcosis. Mycopathologia 2012; 173:303-10. [PMID: 21948062 PMCID: PMC4294698 DOI: 10.1007/s11046-011-9473-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/05/2011] [Indexed: 01/07/2023]
Abstract
Cryptococcosis has become a significant public global health problem worldwide. Caused by two species, Cryptococcus neoformans or Cryptococcus gattii, this life-threatening infection afflicts not only immunocompromised individuals but also apparently immunocompetent subjects. Hence, cryptococcosis should no longer be considered merely an opportunistic infection. In this article, we focus on ten unanswered questions/topics in this field with the hope to stimulate discussion and research on these topics that would lead not only to a better understanding of the physiopathology of this disease but also to a better diagnosis and prognosis.
Collapse
Affiliation(s)
- Maurizio Del Poeta
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 512A, Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Craniofacial Biology, Medical University of South Carolina, Charleston, SC, USA
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC, USA
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 411, Bronx, NY 10461, USA
| |
Collapse
|
107
|
Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 2012; 7:e37566. [PMID: 22666368 PMCID: PMC3362595 DOI: 10.1371/journal.pone.0037566] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
Background The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. Methodology Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. Results The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. Conclusions MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the clinical laboratory. The obtained mass spectra provide further evidence that the major molecular types warrant variety or even species status.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luciana Trilles
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Laboratório de Micologia, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- * E-mail:
| |
Collapse
|
108
|
LeibundGut-Landmann S, Wüthrich M, Hohl TM. Immunity to fungi. Curr Opin Immunol 2012; 24:449-58. [PMID: 22613091 DOI: 10.1016/j.coi.2012.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/30/2012] [Indexed: 01/21/2023]
Abstract
The global increase in fungal disease burden, the emergence of novel pathogenic fungi, and the lack of fungal vaccines have focused intense interest in elucidating immune defense mechanisms against fungi. Recent studies in animal models and in humans identify an integrated role for C-type lectin and Toll-like receptor signaling in activating innate and adaptive responses that control medically relevant fungi. Beyond the critical role of phagocytes in host defense, the generation and balance of specific T helper subsets contributes to sterilizing immunity. These advances form a basis for the development of fungal vaccines and immune-based therapeutic adjuncts.
Collapse
|
109
|
Desalermos A, Kourkoumpetis TK, Mylonakis E. Update on the epidemiology and management of cryptococcal meningitis. Expert Opin Pharmacother 2012; 13:783-9. [PMID: 22424297 DOI: 10.1517/14656566.2012.658773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite recent improvements in the diagnosis and treatment of cryptococcosis, cryptococcal meningitis is responsible for > 600,000 deaths/year worldwide. The aim of this work is to provide an update on the developments in its epidemiology and management. Understanding the pathogenesis of Cryptococcus has improved, and new insights for the virulence of the fungus and the host response have enabled scientists to design new ways to confront this infection. Additionally, invertebrate model hosts have greatly facilitated the research in this field. Importantly, the epidemiology of Cryptococcus gattii has continued to evolve, and the emergence of this highly virulent species in immunocompetent populations, especially in Northwestern America and British Columbia, warrants increased awareness because delayed diagnosis and inappropriate antifungal therapy is associated with high mortality. Diagnosis remains a challenge, but new techniques for early and inexpensive identification of the pathogen are under development. Management can vary, based on the patient population (HIV-seropositive, organ transplant recipients or non-transplant/non-HIV). In most patients, amphotericin B with flucytosine continues to be the most appropriate induction therapy. However, in organ transplant recipients the use of liposomal amphotericin B improves mortality compared with deoxycholate amphotericin B. Also, the combination of amphotericin B with fluconazole seems to be a reasonable alternative, while fluconazole with flucytosine is superior to fluconazole monotherapy.
Collapse
|
110
|
|
111
|
Silva DC, Martins MA, Szeszs MW, Bonfietti LX, Matos D, Melhem MSC. Susceptibility to antifungal agents and genotypes of Brazilian clinical and environmental Cryptococcus gattii strains. Diagn Microbiol Infect Dis 2012; 72:332-9. [PMID: 22341512 DOI: 10.1016/j.diagmicrobio.2011.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022]
Abstract
There are few reports concerning the in vitro antifungal susceptibility of clinical and environmental Cryptococcus gattii isolates. In this study, we performed polymerase chain reaction-restriction fragment length polymorphism to investigate the molecular subtypes of 50 clinical and 4 environmental Brazilian isolates of C. gattii and assessed their antifungal susceptibility for fluconazole (FLU) and amphotericin B (Amb) according to recent recommendations proposed for antifungal susceptibility testing of nonfermentative yeasts. Time-kill curve studies were performed using RPMI 1640 medium to analyze the fungicidal effect of AmB. We found 47 VGII (94%) molecular types and 3 VGI (6%) types among the clinical isolates. The environmental isolates were VGII (75%) subtype and VGI (25%) subtype. The FLU-MIC ranged from 1 to 64 mg L(-1), and MIC(50)/MIC(90) values were, respectively, 8/16 mg L(-1). For AmB, the MICs were low and homogeneous, ranging from 0.12 to 0.5 mg L(-1), for VGI or VGII. The time required to reach the fungicidal end point (99.9% killing) was 6 h for the majority of strains (64%), but viable cells of VGII were still present after 48 h of exposition. We pointed out the occurrence of high FLU-MICs for C. gattii isolates with highest values for VGII. Our data also suggest that the rate of killing of C. gattii by AmB is strain dependent, and viable cells of VGII genotype strains were still observed after an extended incubation time, addressing future studies to determine whether the in vitro fungicidal activity could be clinically relevant.
Collapse
Affiliation(s)
- Dayane C Silva
- Mycology Unit of Adolfo Lutz Institute, Public Health Reference Laboratory, Secretary of Health, São Paulo-SP, 01246-902, Brazil
| | | | | | | | | | | |
Collapse
|
112
|
Dynamic interaction between fluconazole and amphotericin B against Cryptococcus gattii. Antimicrob Agents Chemother 2012; 56:2553-8. [PMID: 22290956 DOI: 10.1128/aac.06098-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cryptococcus gattii is the main pathogen of cryptococcosis in healthy patients and is treated mainly with fluconazole and amphotericin B. The combination of these drugs has been questioned because the mechanisms of action could lead to a theoretical antagonistic interaction. We evaluated distinct parameters involved in the in vitro combination of fluconazole and amphotericin B against Cryptococcus gattii. Fourteen strains of C. gattii were used for the determination of MIC, fractional inhibitory concentration, time-kill curve, and postantifungal effect (PAFE). Ergosterol quantification was performed to evaluate the influence of ergosterol content on the interaction between these antifungals. Interaction between the drugs varied from synergistic to antagonistic depending on the strain and concentration tested. Increasing fluconazole levels were correlated with an antagonistic interaction. A total of 48 h was necessary for reducing the fungal viability in the presence of fluconazole, while 12 h were required for amphotericin B. When these antifungals were tested in combination, fluconazole impaired the amphotericin B activity. The ergosterol content decreased with the increase of fluconazole levels and it was correlated with the lower activity of amphotericin B. The PAFE found varied from 1 to 4 h for fluconazole and from 1 to 3 h for amphotericin B. The interaction of fluconazole and amphotericin B was concentration-dependent and special attention should be directed when these drugs are used in combination against C. gattii.
Collapse
|
113
|
Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. EUKARYOTIC CELL 2011; 11:109-18. [PMID: 22140231 DOI: 10.1128/ec.05273-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The basidiomycete fungus Cryptococcus neoformans infects humans via inhalation of desiccated yeast cells or spores from the environment. In the absence of effective immune containment, the initial pulmonary infection often spreads to the central nervous system to result in meningoencephalitis. The fungus must therefore make the transition from the environment to different mammalian niches that include the intracellular locale of phagocytic cells and extracellular sites in the lung, bloodstream, and central nervous system. Recent studies provide insights into mechanisms of adaptation during this transition that include the expression of antiphagocytic functions, the remodeling of central carbon metabolism, the expression of specific nutrient acquisition systems, and the response to hypoxia. Specific transcription factors regulate these functions as well as the expression of one or more of the major known virulence factors of C. neoformans. Therefore, virulence factor expression is to a large extent embedded in the regulation of a variety of functions needed for growth in mammalian hosts. In this regard, the complex integration of these processes is reminiscent of the master regulators of virulence in bacterial pathogens.
Collapse
|
114
|
Chowdhary A, Rhandhawa HS, Prakash A, Meis JF. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: an update. Crit Rev Microbiol 2011; 38:1-16. [PMID: 22133016 DOI: 10.3109/1040841x.2011.606426] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An overview of work done to-date in India on environmental prevalence, population structure, seasonal variations and antifungal susceptibility of Cryptococcus neoformans and Cryptococcus gattii is presented. The primary ecologic niche of both pathogens is decayed wood in trunk hollows of a wide spectrum of host trees, representing 18 species. Overall, C. neoformans showed a higher environmental prevalence than that of C. gattii which was not found in the avian habitats. Apart from their arboreal habitat, both species were demonstrated in soil and air in close vicinity of their tree hosts. In addition, C. neoformans showed a strong association with desiccated avian excreta. An overwhelming number of C. neoformans strains belonged to genotype AFLP1/VNI, var. grubii (serotype A), whereas C. gattii strains were genotype AFLP4/VGI, serotype B. All of the environmental strains of C. neoformans and C. gattii were mating type α (MATα). Contrary to the Australian experience, Eucalyptus trees were among the epidemiologically least important and, therefore, the hypothesis of global spread of C. gattii through Australian export of infected Eucalyptus seeds is rebutted. Reference is made to long-term colonization of an abandoned, old timber beam of sal wood (Shorea robusta) by a melanin positive (Mel(+)) variant of Cryptococcus laurentii that was pathogenic to laboratory mice.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, India
| | | | | | | |
Collapse
|
115
|
Rodrigues ML, Nimrichter L, Cordero RJB, Casadevall A. Fungal polysaccharides: biological activity beyond the usual structural properties. Front Microbiol 2011; 2:171. [PMID: 21886639 PMCID: PMC3155879 DOI: 10.3389/fmicb.2011.00171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022] Open
Abstract
Studies on structure and function of polysaccharides in biological systems classically involve sequence and compositional analyses, anomeric configuration, type of glycosidic linkage, and presence of substituents. Recent studies, however, indicates that other structural parameters, so far little explored, can directly influence the biological activity of microbial polysaccharides. Among these parameters, we highlight the molecular dimensions of Cryptococcus neoformans polysaccharides, which appear to be inversely correlated with their immunobiological activity. These recent observations raise new concepts about the structure and function of polysaccharides, which stimulates the design of new experimental approaches and suggests previously unknown applications.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|