101
|
Duggan M, Torkzaban B, Ahooyi TM, Khalili K, Gordon J. Age-related neurodegenerative diseases. J Cell Physiol 2019; 235:3131-3141. [PMID: 31556109 DOI: 10.1002/jcp.29248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Converging evidence indicates the dysregulation of unique cytosolic compartments called stress granules (SGs) might facilitate the accumulation of toxic protein aggregates that underlie many age-related neurodegenerative pathologies (ANPs). SG dynamics are particularly susceptible to the cellular conditions that are commonly induced by aging, including the elevation in reactive oxygen species and increased concentration of aggregate-prone proteins. In turn, the persistent formation of these compartments is hypothesized to serve as a seed for subsequent protein aggregation. Notably, the protein quality control (PQC) machinery responsible for inhibiting persistent SGs (e.g., Hsc70-BAG3) can become compromised with age, suggesting that the modulation of such PQC mechanisms could reliably inhibit pathological processes of ANPs. As exemplified in the context of accelerated aging syndromes (i.e., Hutchinson-Gilford progeria), PQC enhancement is emerging as a potential therapeutic strategy, indicating similar techniques might be applied to ANPs. Collectively, these recent findings advance our understanding of how the processes that might facilitate protein aggregation are particularly susceptible to aging conditions, and present investigators with an opportunity to develop novel targets for ANPs.
Collapse
Affiliation(s)
- Michael Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
102
|
Alqahtani Y, Wang S, Najmi A, Huang Y, Guan X. Thiol-specific fluorogenic agent for live cell non-protein thiol imaging in lysosomes. Anal Bioanal Chem 2019; 411:6463-6473. [PMID: 31448387 DOI: 10.1007/s00216-019-02026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 07/09/2019] [Indexed: 02/03/2023]
Abstract
Thiol molecules play a significant role in cellular structures and functions. These molecules are distributed in cells unevenly at the subcellular level. Disturbance of cellular thiols has been associated with various diseases and disorders. Probes that are able to detect subcellular thiol density in live cells are valuable tools in determining thiols' roles at the subcellular level. Lysosomes are a subcellular organelle involved in the degradation of macromolecules through the action of proteolytic enzymes. The degradation not only serves as a way to dispose of unwanted macromolecules but also a way to regulate a variety of cellular functions such as autophagy, endocytosis, and phagocytosis to maintain cell homeostasis. A probe that can detect lysosomal thiols in live cells will be useful in unveiling the roles of thiols in lysosomes. Currently, limited probes are available to detect lysosomal thiols in live cells. We would like to report 4,4'-{[7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl)]bis(oxy))bis(naphthalene-2,7-disulfonicacid) (TBONES) as a thiol-specific fluorogenic agent for lysosomal thiol imaging in live cells through fluorescence microscopy. TBONES exhibits no fluorescence and readily reacts with non-protein thiols to form fluorescent thiol adducts with λex = 400 nm and λem = 540 nm. No reaction was observed when TBONES was mixed with compounds containing nucleophilic functional groups other than thiols such as -OH, -NH2, and -COOH. No reaction was observed either when TBONES was mixed with protein thiols. When incubated with cells, TBONES selectively and effectively imaged lysosomal thiols in live cells. Imaging of lysosomal thiols was confirmed by a co-localization experiment with LysoTracker™ Blue DND-22.
Collapse
Affiliation(s)
- Yahya Alqahtani
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Ave, Box 2202C, Brookings, SD, 57007, USA
| | - Shenggang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Ave, Box 2202C, Brookings, SD, 57007, USA
| | - Asim Najmi
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Ave, Box 2202C, Brookings, SD, 57007, USA
| | - Yue Huang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Ave, Box 2202C, Brookings, SD, 57007, USA
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, 1055 Campanile Ave, Box 2202C, Brookings, SD, 57007, USA.
| |
Collapse
|
103
|
Zhu M, Dai X. Maintenance of translational elongation rate underlies the survival of Escherichia coli during oxidative stress. Nucleic Acids Res 2019; 47:7592-7604. [PMID: 31131413 PMCID: PMC6698664 DOI: 10.1093/nar/gkz467] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Abstract
To cope with harsh circumstances, bacterial cells must initiate cellular stress response programs, which demands the de novo synthesis of many stress defense proteins. Reactive oxygen species (ROS) is a universal environmental stressor for both prokaryotic cells and eukaryotic cells. However, the physiological burden that limits the survival of bacterial cells during oxidative stress remains elusive. Here we quantitatively characterize the cell growth and translational elongation rate of Escherichia coli cells treated with different doses of hydrogen peroxide. Cell growth is immediately arrested by low to moderate levels of hydrogen peroxide, but completely recovers after a certain lag time. The lag time depends positively on the dose of hydrogen peroxide. During the lag time, translational elongation rate drops by as much as ∼90% at initial stage and recovers to its normal state later, a phenomenon resulting from the dramatic alteration in cellular tRNA pools during oxidative stress. However, translational elongation is completely stalled at a certain threshold-level of hydrogen peroxide, at which cells ultimately fail to resume growth. Although the mRNA transcription of oxidative defense genes in oxyR regulon is dramatically induced upon hydrogen peroxide treatment, the extreme slow-down of translational elongation during high levels of hydrogen peroxide has severely compromised the timely synthesis of those oxidative defense proteins. Our study demonstrates that the tRNA-limited translational elongation is a key physiological bottleneck that the bacteria must overcome to counteract ROS, and the maintenance of translational elongation rate for timely synthesis of stress defense proteins is crucial for cells to smoothly get over the oxidative stress.
Collapse
Affiliation(s)
- Manlu Zhu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| | - Xiongfeng Dai
- School of Life Sciences, Central China Normal University, Wuhan, Hubei province, China
| |
Collapse
|
104
|
The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019; 9:biom9050190. [PMID: 31100951 PMCID: PMC6571867 DOI: 10.3390/biom9050190] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022] Open
Abstract
The last decade has seen accumulating evidence of various proteins being degraded by the core 20S proteasome, without its regulatory particle(s). Here, we will describe recent advances in our knowledge of the functional aspects of the 20S proteasome, exploring several different systems and processes. These include neuronal communication, post-translational processing, oxidative stress, intrinsically disordered protein regulation, and extracellular proteasomes. Taken together, these findings suggest that the 20S proteasome, like the well-studied 26S proteasome, is involved in multiple biological processes. Clarifying our understanding of its workings calls for a transformation in our perception of 20S proteasome-mediated degradation—no longer as a passive and marginal path, but rather as an independent, coordinated biological process. Nevertheless, in spite of impressive progress made thus far, the field still lags far behind the front lines of 26S proteasome research. Therefore, we also touch on the gaps in our knowledge of the 20S proteasome that remain to be bridged in the future.
Collapse
|
105
|
Afzal S, Garg S, Ishida Y, Terao K, Kaul SC, Wadhwa R. Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Mar Drugs 2019; 17:E189. [PMID: 30909572 PMCID: PMC6470788 DOI: 10.3390/md17030189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Stress, protein aggregation, and loss of functional properties of cells have been shown to contribute to several deleterious pathologies including cancer and neurodegeneration. The incidence of these pathologies has also been shown to increase with age and are often presented as evidence to the cumulative effect of stress and protein aggregation. Prevention or delay of onset of these diseases may prove to be unprecedentedly beneficial. In this study, we explored the anti-stress and differentiation-inducing potential of two marine bioactive carotenoids (astaxanthin and fucoxanthin) using rat glioma cells as a model. We found that the low (nontoxic) doses of both protected cells against UV-induced DNA damage, heavy metal, and heat-induced protein misfolding and aggregation of proteins. Their long-term treatment in glioma cells caused the induction of physiological differentiation into astrocytes. These phenotypes were supported by upregulation of proteins that regulate cell proliferation, DNA damage repair mechanism, and glial differentiation, suggesting their potential for prevention and treatment of stress, protein aggregation, and age-related pathologies.
Collapse
Affiliation(s)
- Sajal Afzal
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
106
|
Sun W, Dai L, Yu H, Puspita B, Zhao T, Li F, Tan JL, Lim YT, Chen MW, Sobota RM, Tenen DG, Prabhu N, Nordlund P. Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. Redox Biol 2019; 24:101168. [PMID: 30925293 PMCID: PMC6439307 DOI: 10.1016/j.redox.2019.101168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) induce different cellular stress responses but can also mediate cellular signaling. Augmented levels of ROS are associated with aging, cancer as well as various metabolic and neurological disorders. ROS can also affect the efficacy and adverse effects of drugs. Although proteins are key mediators of most ROS effects, direct studies of ROS-modulated-protein function in the cellular context are very challenging. Therefore the understanding of specific roles of different proteins in cellular ROS responses is still relatively rudimentary. In the present work we show that Mass Spectrometry-Cellular Thermal Shift Assay (MS-CETSA) can directly monitor ROS and redox modulations of protein structure at the proteome level. By altering ROS levels in cultured human hepatocellular carcinoma cell lysates and intact cells, we detected CETSA responses in many proteins known to be redox sensitive, and also revealed novel candidate ROS sensitive proteins. Studies in intact cells treated with hydrogen peroxide and sulfasalazine, a ROS modulating drug, identified not only proteins that are directly modified, but also proteins reporting on downstream cellular effects. Comprehensive changes are seen on rate-limiting proteins regulating key cellular processes, including known redox control systems, protein degradation, epigenetic control and protein translational processes. Interestingly, concerted shifts on ATP-binding proteins revealed redox-induced modulation of ATP levels, which likely control many cellular processes. Collectively, these studies establish CETSA as a novel method for cellular studies of redox modulations of proteins, which implicated in a wide range of processes and for the discovery of CETSA-based biomarkers reporting on the efficacy as well as adverse effects of drugs.
Collapse
Affiliation(s)
- Wendi Sun
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Brenda Puspita
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Tianyun Zhao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Feng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Justin L Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A*STAR, 138672, Singapore
| | - Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
107
|
Erdős G, Mészáros B, Reichmann D, Dosztányi Z. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Proteomics 2019; 19:e1800070. [PMID: 30628183 DOI: 10.1002/pmic.201800070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/13/2018] [Indexed: 12/17/2022]
Abstract
Recently developed quantitative redox proteomic studies enable the direct identification of redox-sensing cysteine residues that regulate the functional behavior of target proteins in response to changing levels of reactive oxygen species. At the molecular level, redox regulation can directly modify the active sites of enzymes, although a growing number of examples indicate the importance of an additional underlying mechanism that involves conditionally disordered proteins. These proteins alter their functional behavior by undergoing a disorder-to-order transition in response to changing redox conditions. However, the extent to which this mechanism is used in various proteomes is currently unknown. Here, a recently developed sequence-based prediction tool incorporated into the IUPred2A web server is used to estimate redox-sensitive conditionally disordered regions at a large scale. It is shown that redox-sensitive conditional disorder is fairly widespread in various proteomes and that its presence strongly correlates with the expansion of specific domains in multicellular organisms that largely rely on extra stability provided by disulfide bonds or zinc ion binding. The analyses of yeast redox proteomes and human disease data further underlie the significance of this phenomenon in the regulation of a wide range of biological processes, as well as its biomedical importance.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Bálint Mészáros
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
108
|
Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 2019; 20:533-543. [PMID: 30508698 PMCID: PMC6279957 DOI: 10.1016/j.redox.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
Collapse
Affiliation(s)
- L Bramasole
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - A Sinha
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - S Gurevich
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - M Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Y Klein
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - N Panat
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - E Gefen
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - T Rinaldi
- Department of Biology and Biotechnology, University of Rome ''La Sapienza'', Rome 00185, Italy
| | - D Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - J Johnson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N Reis
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - D Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - M H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - E Pick
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel.
| |
Collapse
|
109
|
Teeli AS, Leszczyński P, Krishnaswamy N, Ogawa H, Tsuchiya M, Śmiech M, Skarzynski D, Taniguchi H. Possible Mechanisms for Maintenance and Regression of Corpus Luteum Through the Ubiquitin-Proteasome and Autophagy System Regulated by Transcriptional Factors. Front Endocrinol (Lausanne) 2019; 10:748. [PMID: 31803139 PMCID: PMC6877548 DOI: 10.3389/fendo.2019.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The corpus luteum (CL) is an important tissue of the female reproductive process which is established through ovulation of the mature follicle. Pulsatile release of prostaglandin F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle in most non-primate species. The rapid functional regression of the CL, which coincides with decrease of progesterone production, is followed by its structural regression. Although we now have a better understanding of how the CL is triggered to undergo programmed cell death, the precise mechanisms governing CL protein degradation in a very short period of luteolysis remains unknown. In this context, activation of ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP) maintains tissue homeostasis in the face of both internal and external stressors. The UPP also controls physiological processes in many gonadal cells. Emerging evidence suggests that UPP dysfunction is involved in male and female reproductive tract dysfunction. Autophagy is activated when cells are exposed to different types of stressors such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an important role for the UPP and autophagy in the CL, the key underlying transcriptional mechanisms have not been well-documented. In this review, we propose how CL regression may be governed by the ubiquitin-proteasome and autophagy pathways. We will further consider potential transcription factors which may regulate these events in the CL.
Collapse
Affiliation(s)
- Aamir S. Teeli
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | | | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Magdalena Śmiech
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- *Correspondence: Hiroaki Taniguchi
| |
Collapse
|
110
|
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:221-264. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Collapse
|
111
|
The Chaperone and Redox Properties of CnoX Chaperedoxins Are Tailored to the Proteostatic Needs of Bacterial Species. mBio 2018; 9:mBio.01541-18. [PMID: 30482828 PMCID: PMC6282202 DOI: 10.1128/mbio.01541-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How proteins are protected from stress-induced aggregation is a crucial question in biology and a long-standing mystery. While a long series of landmark studies have provided important contributions to our current understanding of the proteostasis network, key fundamental questions remain unsolved. In this study, we show that the intrinsic features of the chaperedoxin CnoX, a folding factor that combines chaperone and redox protective function, have been tailored during evolution to fit to the specific needs of their host. Whereas Escherichia coli CnoX needs to be activated by bleach, a powerful oxidant produced by our immune system, its counterpart in Caulobacter crescentus, a bacterium living in bleach-free environments, is a constitutive chaperone. In addition, the redox properties of E. coli and C. crescentus CnoX also differ to best contribute to their respective cellular redox homeostasis. This work demonstrates how proteins from the same family have evolved to meet the needs of their hosts. Hypochlorous acid (bleach), an oxidizing compound produced by neutrophils, turns the Escherichia coli chaperedoxin CnoX into a powerful holdase protecting its substrates from bleach-induced aggregation. CnoX is well conserved in bacteria, even in non-infectious species unlikely to encounter this oxidant, muddying the role of CnoX in these organisms. Here, we found that CnoX in the non-pathogenic aquatic bacterium Caulobacter crescentus functions as a holdase that efficiently protects 50 proteins from heat-induced aggregation. Remarkably, the chaperone activity of Caulobacter CnoX is constitutive. Like E. coli CnoX, Caulobacter CnoX transfers its substrates to DnaK/J/GrpE and GroEL/ES for refolding, indicating conservation of cooperation with GroEL/ES. Interestingly, Caulobacter CnoX exhibits thioredoxin oxidoreductase activity, by which it controls the redox state of 90 proteins. This function, which E. coli CnoX lacks, is likely welcome in a bacterium poorly equipped with antioxidant defenses. Thus, the redox and chaperone properties of CnoX chaperedoxins were fine-tuned during evolution to adapt these proteins to the specific needs of each species.
Collapse
|
112
|
Molecular Factors of Hypochlorite Tolerance in the Hypersaline Archaeon Haloferax volcanii. Genes (Basel) 2018; 9:genes9110562. [PMID: 30463375 PMCID: PMC6267482 DOI: 10.3390/genes9110562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Halophilic archaea thrive in hypersaline conditions associated with desiccation, ultraviolet (UV) irradiation and redox active compounds, and thus are naturally tolerant to a variety of stresses. Here, we identified mutations that promote enhanced tolerance of halophilic archaea to redox-active compounds using Haloferax volcanii as a model organism. The strains were isolated from a library of random transposon mutants for growth on high doses of sodium hypochlorite (NaOCl), an agent that forms hypochlorous acid (HOCl) and other redox acid compounds common to aqueous environments of high concentrations of chloride. The transposon insertion site in each of twenty isolated clones was mapped using the following: (i) inverse nested two-step PCR (INT-PCR) and (ii) semi-random two-step PCR (ST-PCR). Genes that were found to be disrupted in hypertolerant strains were associated with lysine deacetylation, proteasomes, transporters, polyamine biosynthesis, electron transfer, and other cellular processes. Further analysis revealed a ΔpsmA1 (α1) markerless deletion strain that produces only the α2 and β proteins of 20S proteasomes was hypertolerant to hypochlorite stress compared with wild type, which produces α1, α2, and β proteins. The results of this study provide new insights into archaeal tolerance of redox active compounds such as hypochlorite.
Collapse
|
113
|
Aim for the core: suitability of the ubiquitin-independent 20S proteasome as a drug target in neurodegeneration. Transl Res 2018; 198:48-57. [PMID: 30244692 PMCID: PMC6154511 DOI: 10.1016/j.trsl.2018.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a class of age-associated proteopathies characterized by the accumulation of misfolded and/or aggregation-prone proteins. This imbalance has been attributed, in part, to an age-dependent decay in the capacity of protein turnover. Most proteins are degraded by the ubiquitin-proteasome system (UPS), which is composed of ubiquitin ligases and regulatory particles, such as the 19S, that deliver cargo to the proteolytically active 20S proteasome (20S) core. However, a subset of clients, especially intrinsically disordered proteins (IDPs), are also removed by the action of the ubiquitin-independent proteasome system (UIPS). What are the specific contributions of the UPS and UIPS in the context of neurodegeneration? Here, we explore how age-associated changes in the relative contribution of the UPS and UIPS, combined with the IDP-like structure of many neurodegenerative disease-associated proteins, might contribute. Strikingly, the 20S has been shown to predominate in older neurons and to preferentially act on relevant substrates, such as synuclein and tau. Moreover, pharmacological activation of the 20S has been shown to accelerate removal of aggregation-prone proteins in some models. Together, these recent studies are turning attention to the 20S and the UIPS as potential therapeutic targets in neurodegeneration.
Collapse
|
114
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
115
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
116
|
Stagni V, Cirotti C, Barilà D. Ataxia-Telangiectasia Mutated Kinase in the Control of Oxidative Stress, Mitochondria, and Autophagy in Cancer: A Maestro With a Large Orchestra. Front Oncol 2018; 8:73. [PMID: 29616191 PMCID: PMC5864851 DOI: 10.3389/fonc.2018.00073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Ataxia-telangiectasia mutated kinase (ATM) plays a central role in the DNA damage response (DDR) and mutations in its gene lead to the development of a rare autosomic genetic disorder, ataxia telangiectasia (A-T) characterized by neurodegeneration, premature aging, defects in the immune response, and higher incidence of lymphoma development. The ability of ATM to control genome stability several pointed to ATM as tumor suppressor gene. Growing evidence clearly support a significant role of ATM, in addition to its master ability to control the DDR, as principle modulator of oxidative stress response and mitochondrial homeostasis, as well as in the regulation of autophagy, hypoxia, and cancer stem cell survival. Consistently, A-T is strongly characterized by aberrant oxidative stress, significant inability to remove damaged organelles such as mitochondria. These findings raise the question whether ATM may contribute to a more general hijack of signaling networks in cancer, therefore, playing a dual role in this context. Indeed, an unexpected tumorigenic role for ATM, in particular, tumor contexts has been demonstrated. Genetic inactivation of Beclin-1, an autophagy regulator, significantly reverses mitochondrial abnormalities and tumor development in ATM-null mice, independently of DDR. Furthermore, ATM sustains cancer stem cells survival by promoting the autophagic flux and ATM kinase activity is enhanced in HER2-dependent tumors. This mini-review aims to shed new light on the complexity of these new molecular circuits through which ATM may modulate cancer progression and to highlight a novel role of ATM in the control of proteostasis.
Collapse
Affiliation(s)
- Venturina Stagni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Claudia Cirotti
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Daniela Barilà
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|