101
|
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol 2019; 10:227. [PMID: 30984006 PMCID: PMC6447777 DOI: 10.3389/fphys.2019.00227] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
In human beings the immature brain is highly plastic and depending on the stage of gestation is particularly vulnerable to a range of insults that if sufficiently severe, can result in long-term motor, cognitive and behavioral impairment. With improved neonatal care, the incidence of major motor deficits such as cerebral palsy has declined with prematurity. Unfortunately, however, milder forms of injury characterized by diffuse non-cystic white matter lesions within the periventricular region and surrounding white matter, involving loss of oligodendrocyte progenitors and subsequent axonal hypomyelination as the brain matures have not. Existing therapeutic options for treatment of preterm infants have proved inadequate, partly owing to an incomplete understanding of underlying post-injury cellular and molecular changes that lead to poor neurodevelopmental outcomes. This has reinforced the need to improve our understanding of brain plasticity, explore novel solutions for the development of protective strategies, and identify biomarkers. Compelling evidence exists supporting the involvement of microRNAs (miRNAs), a class of small non-coding RNAs, as important post-transcriptional regulators of gene expression with functions including cell fate specification and plasticity of synaptic connections. Importantly, miRNAs are differentially expressed following brain injury, and can be packaged within exosomes/extracellular vesicles, which play a pivotal role in assuring their intercellular communication and passage across the blood-brain barrier. Indeed, an increasing number of investigations have examined the roles of specific miRNAs following injury and regeneration and it is apparent that this field of research could potentially identify protective therapeutic strategies to ameliorate perinatal brain injury. In this review, we discuss the most recent findings of some important miRNAs in relation to the development of the brain, their dysregulation, functions and regulatory roles following brain injury, and discuss how these can be targeted either as biomarkers of injury or neuroprotective agents.
Collapse
Affiliation(s)
- Kenta Hyeon Tae Cho
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Departments of Molecular Medicine and Pathology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
102
|
Amerizadeh F, Khazaei M, Maftouh M, Mardani R, Bahrami A. miRNA Targeting Angiogenesis as a Potential Therapeutic Approach in the Treatment of Colorectal Cancers. Curr Pharm Des 2019; 24:4668-4674. [DOI: 10.2174/1381612825666190110161843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Angiogenesis refers to the formation of recent blood vessels, which is one of the characteristics of
cancer progression and it has been deliberated as a putative target to the treatment of many kinds of cancers. The
VEGF signaling substrate is very important for angiogenesis and is commonly high-regulated in tumors. As a
result, this molecule has attracted the attention of most of the researchers to develop antiangiogenic therapies. We
have presented that VEGF blockage in neoadjuvant setting via bevacizumab, aflibercept and sunitinib not only
has revealed some promising benefits but also has shown a large negative outcome in the adjuvant trials. However,
at an advanced stage of tumors, suppression of VEGF alone is inadequate to stop advancement, encouraging
drug resistance, and probably enhancing metastasis and invasion in the tumor microenvironment, thereby suggesting
the therapeutic potential of targeting angiogenic pathways in gastrointestinal cancers.
Collapse
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Mardani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
103
|
Xu Y, Zhang Y, Yang Y, Liu X, Chen Y. Seminal plasma miR‐210‐3p is a biomarker for screening dyszoospermia caused by varicocele. Andrologia 2019; 51:e13244. [PMID: 30714182 DOI: 10.1111/and.13244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yawei Xu
- Department of Urology, Tianjin Institute of Urology The Second Hospital of Tianjin Medical University Tianjin China
| | - Yuanyuan Zhang
- Department of Thyroid Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Yongjiao Yang
- Department of Urology, Tianjin Institute of Urology The Second Hospital of Tianjin Medical University Tianjin China
| | - Xiaoqiang Liu
- Department of Urology Tianjin Medical University General Hospital Tianjin China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology The Second Hospital of Tianjin Medical University Tianjin China
| |
Collapse
|
104
|
Biró O, Fóthi Á, Alasztics B, Nagy B, Orbán TI, Rigó J. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene 2019; 692:138-144. [PMID: 30659946 DOI: 10.1016/j.gene.2019.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION microRNAs (miRNAs) play important role in the regulation of placental development, and abnormal miRNA expression is associated with preeclampsia (PE). miRNAs are released from trophoblast cells to maternal blood flow, where they are highly stable, being encapsulated inside extracellular vesicles, like exosomes or bound to Argonaute proteins. In PE, placental dysfunction leads to aberrant extracellular miRNA secretion. hsa-miR-210 is a hypoxia-sensitive miRNA found to be upregulated in PE; however, it is unknown whether it is the cause or the consequence of the disease. OBJECTIVE Our aim was to analyze the expression of several miRNAs, including hsa-miR-210 in placenta, exosome and Ago-bound fractions comparing normal (N) and PE pregnancies. We performed in vitro analyses of extracellular hsa-miR-210 secretion of trophoblast cell cultures (of villous and extravillous origin) under hypoxic condition. METHODS PE and N placenta samples were collected from C-sections, and blood samples were drawn from each pregnant woman in the third trimester. HTR-8 and JAR cell lines were cultured in exosome-free media and treated with hypoxia-mimetic agents. Exosome and Ago-bound fractions were isolated by membrane affinity spin column method from plasma and cell media. Short RNAs were extracted from exosomes and vesicle-free fractions, and total-RNA was isolated from the placenta samples. The RNA purity and concentration were measured by spectrophotometry. Expression analysis was carried out by qPCR with specific primers to target and reference miRNAs. RESULTS The level of hsa-miR-210 was significantly higher in PE placentas, which could cause a minor increase of exosomal and a high elevation of Ago-bound miR-210 in circulation. Hypoxia lead to intracellular hsa-miR-210 upregulation in trophoblast cell lines. In extravillous cell (HTR-8) media, only the level of exosomal hsa-miR-210 was increased but no change in Ago-bound hsa-miR-210 level was observed. In contrast, in villous cell (JAR) media, the level of exosomal hsa-miR-210 was increased and enhanced release of Ago-bound hsa-miR-210 was also observed. CONCLUSION Based on our data, we postulate that in PE, exosomal hsa-miR-210 is secreted actively from the trophoblast, and by intercellular communication, it may have a role in disease etiology. In addition, there is a passive release of Ago-bound hsa-miR-210 into the circulation, which may represent by-products of cell-death and is thereby a possible consequence of the disease.
Collapse
Affiliation(s)
- Orsolya Biró
- Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Alasztics
- Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - János Rigó
- Department of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
105
|
Xie S, Liu G, Huang J, Hu HB, Jiang W. miR-210 promotes lung adenocarcinoma proliferation, migration, and invasion by targeting lysyl oxidase-like 4. J Cell Physiol 2019; 234:14050-14057. [PMID: 30633357 DOI: 10.1002/jcp.28093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has revealed that various microRNAs are deregulated and involved in lung cancer development and metastasis. miR-210 is implicated in several cancer progression. However, the detailed biological function and role of miR-210 in lung adenocarcinoma remains unclear. Our current study was aimed to investigate the mechanism of miR-210 in lung adenocarcinoma progression. We observed that miR-210 was significantly upregulated in lung cancer cell lines (A549 and H1650) in comparison to BEAS-2B cells. In addition, we found that miR-210 was greatly elevated in lung adenocarcinoma tissues. Then, it was shown that overexpression of miR-210 was able to promote lung cancer cell proliferation and colony formation ability while inhibitors of miR-210 exhibited a reversed phenomenon. Subsequently, A549 and H1650 cell migration and invasion capacity were obviously restrained by miR-210 inhibition whereas induced by miR-210 mimics. Lysyl oxidase-like 4 (LOXL4), a member of the secreted copper-dependent amine oxidases has been found to be increased or decreased in different cancer types. Here, we confirmed that LOXL4 could serve as a downstream target of miR-210 and miR-210 promoted lung cancer progression via targeting LOXL4. In A549 and H1650 cells, knockdown of LOXL4 dramatically repressed lung cancer cell proliferation, migration, and invasion. In conclusion, our study implied that miR-210 might indicate a new perspective for lung cancer.
Collapse
Affiliation(s)
- Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hai-Bo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
106
|
Marchand A, Roulland I, Semence F, Schröder K, Domergue V, Audran M. Detection of Hypoxia-Regulated MicroRNAs in Blood as Potential Biomarkers of HIF Stabilizer Molidustat. Microrna 2019; 8:189-197. [PMID: 30657053 DOI: 10.2174/2211536608666190117170317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The recent development of drugs that stabilize HIFalpha, called HIF stabilizers, offers a new strategy for treating anemia. Although these drugs are still in clinical trials, misuse for doping has already begun. Identifying the biomarkers of HIF stabilizers would therefore help in detecting this drug misuse by athletes. OBJECTIVE Our aim was twofold: to determine whether hypoxamiRs, the microRNAs associated with the cellular response to hypoxia, are potential biomarkers of HIF stabilizers in blood and whether the response to treatment with an HIF stabilizer differs from the response to a hypoxic environment. METHOD Rats were treated for 6 days with either a placebo or 2mg/kg of Molidustat, an HIF stabilizer, or they were put under hypoxia (10% oxygen) for the same length of time. Plasma samples were analyzed before, during and 48 hours after the treatments. RESULTS EPO concentration increased significantly in plasma during hypoxia and Molidustat treatment and showed a negative retro-control 2 days after the end of the treatments. On the contrary, circulating levels of VEGF were not modified. Among the hypoxamiRs tested, miR-130a and miR-21 were significantly increased during Molidustat treatment and miR-21 was still increased 48 hours after treatment end. CONCLUSION Although using these microRNAs as biomarkers seems unlikely due to other possible factors of regulation, this study provides the first identification of a specific effect of HIF stabilizers on microRNAs. Further investigations are needed to better understand the possible consequences of such regulation.
Collapse
Affiliation(s)
- Alexandre Marchand
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Ingrid Roulland
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Florian Semence
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Kaja Schröder
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Valérie Domergue
- AnimEx Chatenay-Malabry, Plateforme AnimEx IPSIT, Faculte de Pharmacie, Universite Paris-Sud, 5 rue Jean-Baptiste Clement, 92296 Châtenay-Malabry, France
| | - Michel Audran
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| |
Collapse
|
107
|
Gupta A, Ragumani S, Sharma YK, Ahmad Y, Khurana P. Analysis of Hypoxiamir-Gene Regulatory Network Identifies Critical MiRNAs Influencing Cell-Cycle Regulation Under Hypoxic Conditions. Microrna 2019; 8:223-236. [PMID: 30806334 DOI: 10.2174/2211536608666190219094204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypoxia is a pathophysiological condition which arises due to low oxygen concentration in conditions like cardiovascular diseases, inflammation, ascent to higher altitude, malignancies, deep sea diving, prenatal birth, etc. A number of microRNAs (miRNAs), Transcription Factors (TFs) and genes have been studied separately for their role in hypoxic adaptation and controlling cell-cycle progression and apoptosis during this stress. OBJECTIVE We hypothesize that miRNAs and TFs may act in conjunction to regulate a multitude of genes and play a crucial and combinatorial role during hypoxia-stress-responses and associated cellcycle control mechanisms. METHOD We collected a comprehensive and non-redundant list of human hypoxia-responsive miRNAs (also known as hypoxiamiRs). Their experimentally validated gene-targets were retrieved from various databases and a comprehensive hypoxiamiR-gene regulatory network was built. RESULTS Functional characterization and pathway enrichment of genes identified phospho-proteins as enriched nodes. The phospho-proteins which were localized both in the nucleus and cytoplasm and could potentially play important role as signaling molecules were selected; and further pathway enrichment revealed that most of them were involved in NFkB signaling. Topological analysis identified several critical hypoxiamiRs and network perturbations confirmed their importance in the network. Feed Forward Loops (FFLs) were identified in the subnetwork of enriched genes, miRNAs and TFs. Statistically significant FFLs consisted of four miRNAs (hsa-miR-182-5p, hsa- miR-146b-5p, hsa-miR-96, hsa-miR-20a) and three TFs (SMAD4, FOXO1, HIF1A) both regulating two genes (NFkB1A and CDKN1A). CONCLUSION Detailed BioCarta pathway analysis identified that these miRNAs and TFs together play a critical and combinatorial role in regulating cell-cycle under hypoxia, by controlling mechanisms that activate cell-cycle checkpoint protein, CDKN1A. These modules work synergistically to regulate cell-proliferation, cell-growth, cell-differentiation and apoptosis during hypoxia. A detailed mechanistic molecular model of how these co-regulatory FFLs may regulate the cell-cycle transitions during hypoxic stress conditions is also put forth. These biomolecules may play a crucial and deterministic role in deciding the fate of the cell under hypoxic-stress.
Collapse
Affiliation(s)
- Apoorv Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi- 110054, India
| | - Sugadev Ragumani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi- 110054, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi- 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi- 110054, India
| | - Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, Delhi- 110054, India
| |
Collapse
|
108
|
Li F, Bian H, Wang W, Ning L, Xu M, Sun S, Ren W, Qin C, Qi J. HBV infection suppresses the expression of inflammatory macrophage miR‑210. Mol Med Rep 2018; 19:1833-1839. [PMID: 30592291 DOI: 10.3892/mmr.2018.9795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
It has been previously reported that hepatitis B e‑antigen (HBeAg) induces microRNA (miR)‑155 expression and promotes liver injury by increasing inflammatory cytokine production in macrophages. Moreover, it was previously demonstrated that miR‑210 alleviates lipopolysaccharide‑stimulated proinflammatory cytokine production in macrophages. In addition, accumulating evidence suggests that miR‑210 is able to suppress hepatitis B virus (HBV) replication in HepG2.2.15 cells. However, it remains unclear whether miR‑210, similar to miR‑155, affects the progress of hepatitis B by regulating macrophage function. Reverse transcription‑quantitative polymerase chain reaction analysis was used to detect miR‑210 levels in serum and cells. HBV‑associated antigens stimulated different types of macrophages and facilitated the observation of the effects of these antigens on miR‑210 expression in macrophages. Co‑culture of peripheral blood monocytes from healthy controls and the serum of patients with chronic hepatitis B (CHB) was conducted to evaluate the effect of HBV‑associated elements in the serum on the expression of the macrophage miR‑210 in vivo. It was observed that miR‑210 expression levels were decreased in the peripheral blood monocytes (PBMs) and serum of patients with CHB and negatively associated with serum alanine aminotransferase and aspartate aminotransferase, but not other clinical parameters including hepatitis B surface antigen (HBsAg), HBeAg, anti‑HBe antibody (HBeAb) and hepatitis B core antibody (HBcAb) and HBV‑DNA. Notably, it was demonstrated that miR‑210 expression was not affected by treatment with HBV‑associated antigens in different types of macrophages. Notably, the serum of patients with CHB was able to markedly downregulate the miR‑210 expression of PBMs in healthy controls. These findings suggested that, unlike the induction of miR‑155 by HBeAg, there may be certain other elements, apart from HBV‑associated antigens, regulating miR‑210 levels in the serum and PBMs of patients with CHB that affect macrophage activation.
Collapse
Affiliation(s)
- Feifei Li
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongjun Bian
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liping Ning
- Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Miao Xu
- Department of Gastroenterology, Jinan Hospital, Jinan, Shandong 250013, P.R. China
| | - Shuohuan Sun
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wanhua Ren
- Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
109
|
Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct Integr Genomics 2018; 19:265-280. [DOI: 10.1007/s10142-018-0643-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
|
110
|
Asgharzadeh A, Alizadeh S, Keramati MR, Soleimani M, Atashi A, Edalati M, Kashani Khatib Z, Rafiee M, Barzegar M, Razavi H. Upregulation of miR-210 promotes differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Bosn J Basic Med Sci 2018; 18:328-335. [PMID: 30054999 DOI: 10.17305/bjbms.2018.2633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Numerous studies indicated that microRNAs are critical in the regulation of cellular differentiation, by controlling the expression of underlying genes. The aim of this study was to investigate the effect of miR-210 upregulation on differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into osteoblasts. MSCs were isolated from HUCB and confirmed by their adipogenic/osteogenic differentiation and flow cytometric analysis of surface markers. Pre-miR-210 was amplified from human DNA, digested and ligated with plenti-III-mir-green fluorescent protein (GFP) vector, and cloned in STBL4 bacteria. After confirmation with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), the plenti-III-GFP segment bearing pre-miR-210 was transfected into MSCs by electroporation. Two control vectors, pmaxGFP and Scramble, were transfected separately into MSCs. The expression of miR-210 and genes related to osteoblast differentiation, i.e., runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin gene, in the three groups of transfected MSCs was analyzed 0, 7, 14, and 21 days of transfection by quantitative reverse transcription PCR (qRT-PCR). Overexpression of miR-210 was observed in MSCs transfected with miR-210-bearing plasmid, and this was significantly different compared to Scramble group (p < 0.05). Significantly increased expression of Runx2 (at day 7 and 14), ALP and osteocalcin genes (at all time points for both genes) was observed in MSCs with miR-210-bearing plasmid compared to controls. Overall, the overexpression of miR-210 in MSCs led to MSC differentiation into osteoblasts, most probably by upregulating the Runx2, ALP, and osteocalcin genes at different stages of cell differentiation. Our study confirms the potential of miRNAs in developing novel therapeutic strategies that could target regulatory mechanisms of cellular differentiation in various disease states.
Collapse
Affiliation(s)
- Ali Asgharzadeh
- Department of Hematology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Yang L, Yang Z, Yao R, Li Y, Liu Z, Chen X, Zhang G. miR-210 promotes progression of endometrial carcinoma by regulating the expression of NFIX. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5213-5222. [PMID: 31949601 PMCID: PMC6963009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/11/2018] [Indexed: 06/10/2023]
Abstract
microRNA-210 (miR-210) plays an important role in human disease, but its function in endometrial cancer (EC) is still unclear. Similarly, the nuclear factor I/X (NFIX) plays an important role in various biological functions of cells, but its function in EC is not yet known. In this study, we detected the expression of miR-210 from 66 EC patient tissues and 29 normal endometrium (NU) tissues by quantitative real-time PCR (RT-qPCR), as well as the expression of NIFX protein by western blot. We found that the expression of miR-210 in EC tissues was up-regulated and NIFX protein was down-regulated which was negatively correlated with NU tissues. The luciferase gene reporter system confirmed that miR-210 targeted inhibition of NIFX expression in HEC-1A cells. Up-regulation of miR-210 expression by transfection of miR-210-inhibitor could promote the proliferation, migration, and invasion of HEC-1A/HEC-1B cells. Taken together, we demonstrated that miR-210 could promote proliferation, migration and invasion by the negative regulation of NFIX expression in vitro, and that miR-210 promoted the progression of endometrial carcinoma by negative regulation NFIX expression.
Collapse
Affiliation(s)
- Li Yang
- Department of Obstetrics and Gynecology, Tangshan Workers’ HospitalTangshan, Hebei, China
| | - Zhihong Yang
- Department of Basic Medicine, Tangshan Vocational and Technical CollegeTangshan, Hebei, China
| | - Ruili Yao
- Department of Basic Medicine, Tangshan Vocational and Technical CollegeTangshan, Hebei, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical UniversityTianjin, China
| | - Zhihui Liu
- Department of Obstetrics and Gynecology, Tangshan Workers’ HospitalTangshan, Hebei, China
| | - Xiaozhong Chen
- Department of Obstetrics and Gynecology, Tangshan Workers’ HospitalTangshan, Hebei, China
| | - Guiqin Zhang
- Department of Obstetrics and Gynecology, Tangshan Workers’ HospitalTangshan, Hebei, China
| |
Collapse
|
112
|
He Z, Dang J, Song A, Cui X, Ma Z, Zhang Z. Identification of
LINC01234
and
MIR210HG
as novel prognostic signature for colorectal adenocarcinoma. J Cell Physiol 2018; 234:6769-6777. [PMID: 30362555 DOI: 10.1002/jcp.27424] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Zhiyun He
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Jie Dang
- Children’s Physical Examination Center, Lanzhou University Second Hospital Lanzhou China
| | - Ailin Song
- General Surgery Department, Lanzhou University Second Hospital Lanzhou China
| | - Xiang Cui
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Zhijun Ma
- Colorectal Surgical Department, Lanzhou University Second Hospital Lanzhou China
| | - Zhongtao Zhang
- General Surgical Department, Beijing Friendship Hospital Beijing China
| |
Collapse
|
113
|
Lacedonia D, Scioscia G, Pia Palladino G, Gallo C, Carpagnano GE, Sabato R, Foschino Barbaro MP. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 2018; 9:35114-35122. [PMID: 30416683 PMCID: PMC6205556 DOI: 10.18632/oncotarget.26210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 02/05/2023] Open
Abstract
Introduction MicroRNAs (miRNAs) are small non coding RNAs which play a role in several cellular processes. MiRNA expression is influenced by oxidative stress, inflammatory cascade and hypoxia. Effects of different types of hypoxia (intermittent and chronic) have been poorly investigated. The aim of this study was to evaluate how intermittent and chronic hypoxia influence the expression of a pool of miRNAs. Results Subjects with HI presented higher levels of miR-21, miR-23b, miR-145 and miR-210 compared to the other groups, while higher levels of miR-26 was observed in the HC group. Subjects with HCHI had lower levels of all selected miRNAs. A strong correlation was found between miR-23b and miR-210 and both correlated with PaO2, age and FEV1. MiR-145 is correlated with miR-21 but no correlations were found with other parameters. The level of miR-26a seems to be correlated only with BMI. Materials and Methods We used RT-PCR to detect the miRNAs expression in three different models of hypoxemia: intermittent (HI), chronic (HC) and both of them (HCHI). Expression of miRNAs was analyzed using ANOVA and post hoc analysis, moreover, Spearman correlation and Cluster analysis were applied to study the relationship between miRNAs and main clinical parameters. Conclusions Intermittent hypoxia induces the expression of some miRNAs more than chronic hypoxia. These miRNAs may play an important role in the development of different diseases usually associated with OSA such as cardiovascular disease. In addition, mechanisms involved in cancer progression may be induced in the presence of chronic and more often intermittent hypoxia.
Collapse
Affiliation(s)
- Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| | - Grazia Pia Palladino
- Department of Medical and Surgical Sciences, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| | - Crescenzio Gallo
- Department of Clinical and Experimental Medicine, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| | | | - Roberto Sabato
- Department of Medical and Surgical Sciences, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, Policlinico "OO. Riuniti", Foggia, Italy
| |
Collapse
|
114
|
Gupta A, Sugadev R, Sharma YK, Yahmad Y, Khurana P. Role of miRNAs in hypoxia-related disorders. J Biosci 2018; 43:739-749. [PMID: 30207319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxia is a complex pathophysiological condition. The physiological and molecular responses to this stress have been extensively studied. However, the management of its ill effects still poses a challenge to clinicians. MicroRNAs (miRNAs) are short non-coding RNA molecules that control post-transcriptional gene expression. The regulatory role of miRNAs in hypoxic environments has been studied in many hypoxia-related disorders, however a comprehensive compilation and analysis of all data and the significance of miRNAs in hypoxia adaption is still lacking. This review summarizes the miRNAs related to various hypoxia-related disorders and highlights the computational approaches to study them. This would help in designing novel strategies toward efficient management of hypoxia-related disorders.
Collapse
Affiliation(s)
- A Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R and D Organization (DRDO), Timarpur, Delhi 110 054, India
| | | | | | | | | |
Collapse
|
115
|
Wu Y, Huang J, Xu H, Gong Z. Over-expression of miR-15a-3p enhances the radiosensitivity of cervical cancer by targeting tumor protein D52. Biomed Pharmacother 2018; 105:1325-1334. [DOI: 10.1016/j.biopha.2018.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
|
116
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
117
|
Świtlik W, Karbownik MS, Suwalski M, Kozak J, Szemraj J. miR-30a-5p together with miR-210-3p as a promising biomarker for non-small cell lung cancer: A preliminary study. Cancer Biomark 2018; 21:479-488. [PMID: 29103030 DOI: 10.3233/cbm-170767] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although an immense effort has been made to develop novel diagnostic methods and treatment strategies for non-small cell lung cancer (NSCLC), the survival rate of this disease has remained virtually unchanged. Small non-coding RNAs called microRNAs (miRNAs) have appeared to be very promising biomarkers of cancer including NSCLC. OBJECTIVE We investigated the expression level of six miRNAs, and subsequently we evaluated their diagnostic ability and their clinical significance. METHODS We performed an analysis in 50 paired cancer and non-cancerous lung tissue samples collected from NSCLC patients. The RT-qPCR technique was used to investigate the expression profile. RESULTS Obtained results indicate that miR-30a-5p, miR-126-3p and miR-486-5p are downregulated, while miR-205-5p and miR-210-3p are upregulated in NSCLC tissue. Moreover, performed stepwise discriminant analysis determined the model including miR-30a-5p and miR-210-3p which tested on the test set (n= 30) revealed an AUC of 0.969 and provided 100% sensitivity and 80% specificity in discriminating NSCLC tissue from non-cancerous lung tissue. CONCLUSIONS The present preliminary study demonstrated that five tested miRNAs were deregulated in cancer tissue. Moreover, miR-30a-5p together with miR-210-3p with excellent sensitivity and acceptable specificity may distinguish cancer tissue form non-cancerous tissue and thus may become a potential diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Weronika Świtlik
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| | | | - Michał Suwalski
- Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Tuszyn, Poland
| | - Józef Kozak
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Faculty of Health Sciences with the Division of Nursing and Midwifery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
118
|
De Robertis M, Poeta ML, Signori E, Fazio VM. Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol 2018; 53:232-247. [PMID: 30130662 DOI: 10.1016/j.semcancer.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) in colorectal tumorigenesis are suggested to be responsible for initiation, development and propagation of colorectal cancer (CRC) and have been extensively characterized by the expression of phenotypic determinants, such as surface or intracellular proteins. The generation of CSCs is likely due to a dysregulation of the signaling pathways that principally control self-renewal and pluripotency in normal intestinal stem cells (ISCs) through different (epi)genetic changes that define cell fate, identity, and phenotype of CSCs. These aspects are currently under intense investigation. In the framework of the oncogenic signaling pathways controlled by microRNAs (miRNAs) during CRC development, a plethora of data suggests that miRNAs can play a key role in several regulatory pathways involving CSCs biology, epithelial-mesenchymal transition (EMT), angiogenesis, metastatization, and pharmacoresistance. This review examines the most relevant evidences about the role of miRNAs in the etiology of CRC, through the regulation of colon CSCs and the principal differences between colorectal CSCs and benign stem cells. In this perspective, the utility of the principal CSCs-related miRNAs changes is explored, emphasizing their use as potential biomarkers to aid in diagnosis, prognosis and predicting response to therapy in CRC patients, but also as promising targets for more effective and personalized anti-CRC treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy; Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70126 Bari, Italy
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; IRCCS "Casa Sollievo della Sofferenza", viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy
| |
Collapse
|
119
|
Gupta A, Sugadev R, Sharma YK, Ahmad Y, Khurana P. Role of miRNAs in hypoxia-related disorders. J Biosci 2018. [DOI: 10.1007/s12038-018-9789-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
120
|
Xie Y, Wang Y, Li J, Hang Y, Jaramillo L, Wehrkamp CJ, Phillippi MA, Mohr AM, Chen Y, Talmon GA, Mott JL, Oupický D. Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Am J Cancer Res 2018; 8:4305-4320. [PMID: 30214622 PMCID: PMC6134930 DOI: 10.7150/thno.26506] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver malignancy with extremely poor therapeutic outcome due to high drug resistance, widespread metastasis and lack of effective treatment options. CCA progression and metastasis are regulated by multiple biological factors including multiple miRNAs and chemokine receptor CXCR4. The goal of this study was to test if nanotherapeutic blockade of CXCR4 by polymeric CXCR4 antagonist (PCX) combined with inhibition of hypoxia-inducible miR-210 cooperatively enhances therapeutic efficacy in CCA through reducing invasiveness, inducing cell killing, and reversing drug resistance. Methods: We first tested the activity of PCX to inhibit migration of CCA cells. We then prepared PCX/anti-miRNA nanoparticles and analyzed their miRNA delivery efficacy and anticancer activity in vitro. Finally, in vivo biodistribution assay and anticancer activity study were performed in CCA tumor-bearing mice. Results: Our results show that PCX had a broad inhibitory effect on cell migration, effectively delivered anti-miR-210, and downregulated miR-210 expression in CCA cells. Combination PCX/anti-miR-210 nanoparticles showed cytotoxic activity towards CCA cells and reduced the number of cancer stem-like cells. The nanoparticles reversed hypoxia-induced drug resistance and sensitized CCA cells to standard gemcitabine and cisplatin combination treatment. Systemic intravenous treatment with the nanoparticles in a CCA xenograft model resulted in prominent combined antitumor activity. Conclusion: Our findings support PCX-based nanoparticles as a promising delivery platform of therapeutic miRNA in combination CCA therapies.
Collapse
|
121
|
Saba F, Soleimani M, Abroun S. New role of hypoxia in pathophysiology of multiple myeloma through miR-210. EXCLI JOURNAL 2018; 17:647-662. [PMID: 30108468 PMCID: PMC6088223 DOI: 10.17179/excli2018-1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Bone is one of the most common sites of complication in multiple myeloma (MM) progression and bone remodeling gets definitively perturbed during disease progression. Hypoxia and miR-210 play an important role in hematological malignancies. In an attempt to elucidate the specificity of the pathways of hypoxia and miR-210 in suppression of osteoblastic differentiation in MM patients, we examined the effect of miR-210 and hypoxia on expression of important cytokines and genes of myeloma cells. Differentiation of BM-MSCs towards osteoblastic cells in response to microvesicles (MVs) was also investigated. Finally, we proposed a molecular model on how HIF-1α may promote bone lesions in MM patients. To validate the effect of miR-210 and HIF-1α on targeted genes, the shRNA of HIF-1α and off-hsa-miR-210 were transfected into RPMI-8226 cells. BM-MSCs were cultured in osteoblastic inducer and 50 µg/mL of MVs derived from both hypoxic and normoxic myeloma cells. We designed an in vitro study to establish the effects of HIF-1α and miR-210 on the crosstalk between MM and osteoblasts. We here showed that hypoxia-induced miR-210 increased the mRNA expression of VLA-4, CXCR4, IL-6 and TGF-β in myeloma cells. MiR-210 is mandatory for the hypoxia-increased resistance of MM cells to melphalan. Moreover, MVs derived from hypoxic myeloma cells substantially decreased osteoblast differentiation. Considered comprehensively, our findings explain one of the reasons of bone loss that occurs at the sites of MM and a nascent crosstalk model in MM pathogenesis.
Collapse
Affiliation(s)
- Fakhredin Saba
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| |
Collapse
|
122
|
Dallas A, Trotsyuk A, Ilves H, Bonham CA, Rodrigues M, Engel K, Barrera JA, Kosaric N, Stern-Buchbinder ZA, White A, Mandell KJ, Hammond PT, Mansbridge J, Jayasena S, Gurtner GC, Johnston BH. Acceleration of Diabetic Wound Healing with PHD2- and miR-210-Targeting Oligonucleotides. Tissue Eng Part A 2018; 25:44-54. [PMID: 29644938 DOI: 10.1089/ten.tea.2017.0484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.
Collapse
Affiliation(s)
| | - Artem Trotsyuk
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | | - Clark A Bonham
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Melanie Rodrigues
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Karl Engel
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Janos A Barrera
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Nina Kosaric
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | - Paula T Hammond
- 4 Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | - Geoffrey C Gurtner
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
123
|
Silakit R, Kitirat Y, Thongchot S, Loilome W, Techasen A, Ungarreevittaya P, Khuntikeo N, Yongvanit P, Yang JH, Kim NH, Yook JI, Namwat N. Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells. PLoS One 2018; 13:e0199827. [PMID: 29953500 PMCID: PMC6023215 DOI: 10.1371/journal.pone.0199827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-210 (miR-210) is a robust target for hypoxia-inducible factor, and its overexpression has been detected in a variety of solid tumors. However, the role of miR-210 in the development, progression and response to therapy in cholangiocarcinoma (CCA) remains undefined. We report here that high miR-210 expression was significantly correlated with the shorter survival of CCA patients. Overexpression of miR-210 inhibited CCA cell proliferation at the G2/M phase and reduced the gemcitabine sensitivity in CCA cells under CoCl2-induced pseudohypoxia. Concomitantly, inhibition of endogenous miR-210 activity using miRNA sponges increased cell proliferation under CoCl2-induced pseudohypoxia, resulting in an increase in gemcitabine sensitivity in CCA cells. We showed that HIF-3α, a negative controller of HIF-1α, was a target of miR-210 constituting a feed-forward hypoxic regulatory loop. Our data suggest an important role of miR-210 in sustaining HIF-1α activity via the suppression of HIF-3α, regulating cell growth and chemotherapeutic drug resistance in CCA.
Collapse
Affiliation(s)
- Runglawan Silakit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Yingpinyapat Kitirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Suyanee Thongchot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ji Hye Yang
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
- * E-mail: (NN); (JIY)
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (NN); (JIY)
| |
Collapse
|
124
|
Sun Y, Han J, Chu Q, Liu X, Xu T. microRNA-210 participates in regulating RIG-I signaling pathway via targeting DUBA in miiuy croaker after poly(I:C) stimulation. FISH & SHELLFISH IMMUNOLOGY 2018; 77:1-7. [PMID: 29408541 DOI: 10.1016/j.fsi.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in the regulation of various biological processes. A series of microRNAs have been shown to be important regulators of both innate and adaptive immune responses, including RIG-I signaling pathway. In this study, we evaluated the regulation role of miR-210 in the RLRs signaling pathway of miiuy croaker. Upon poly(I:C) stimulation, the expression of miR-210 in both miiuy croaker spleen tissues and macrophages were significantly upregulated. By means of the dual luciferase reporter assay, a direct interaction between miR-210 and the 3-untranslated region (UTR) of Deubiquitinating enzyme A (DUBA) was confirmed, and we found that miR-210 could reduce the luciferase levels of wild-type DUBA 3'UTR, whereas mutant-type led to a complete abrogation of the negative effect. Furthermore, the negative regulatory effects of pre-miR-210 on DUBA have been indicated in a dose- and time-dependent manners. As DUBA is an important regulator involved in the RLRs signaling pathway and could bind with and regulate TRAF3, we also examined the expression patterns of DUBA and TRAF3 in vivo and in vitro. We found that the expression of both DUBA and TRAF3 were significantly changed upon poly(I:C) stimulation in miiuy croaker. The expression patterns between miR-210 and DUBA showed a negative correlation, which indicated that miR-210 can target and downregulate the expression of DUBA. Overall, these results will enrich the knowledge of immune response related miRNAs in miiuy croaker, which will be useful for better understanding the complicated regulatory networks in fish species.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
125
|
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018. [PMID: 29676470 DOI: 10.1002/jcp.26607] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths all over the world, among both men and women, with an incidence of over 200,000 new cases per year coupled with a very high mortality rate. LC comprises of two major clinicopathological categories: small-cell (SCLC) and nonsmall-cell lung carcinoma (NSCLC). The microRNAs (miRNAs) are small noncoding RNAs, usually 18-25 nucleotides long, which repress protein translation through binding to complementary target mRNAs. The miRNAs regulate many biological processes including cell cycle regulation, cellular growth, proliferation, differentiation, apoptosis, metabolism, neuronal patterning, and aging. This review summarizes the role of miRNAs expression in LC. It also provides information about the miRNAs as biomarker and therapeutic target for lung cancer. Understanding the role of miRNAs in LC may provide insights into the diagnosis and treatment strategy for LC.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, India
| | | |
Collapse
|
126
|
Hypoxia-Induced MicroRNA-210 Targets Neurodegenerative Pathways. Noncoding RNA 2018; 4:ncrna4020010. [PMID: 29657306 PMCID: PMC6027187 DOI: 10.3390/ncrna4020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-regulated microRNA-210 (miR-210) is a highly conserved microRNA, known to regulate various processes under hypoxic conditions. Previously we found that miR-210 is also involved in honeybee learning and memory, raising the questions of how neural activity may induce hypoxia-regulated genes and how miR-210 may regulate plasticity in more complex mammalian systems. Using a pull-down approach, we identified 620 unique target genes of miR-210 in humans, among which there was a significant enrichment of age-related neurodegenerative pathways, including Huntington's, Alzheimer's, and Parkinson's diseases. We have also validated that miR-210 directly regulates various identified target genes of interest involved with neuronal plasticity, neurodegenerative diseases, and miR-210-associated cancers. This data suggests a potentially novel mechanism for how metabolic changes may couple plasticity to neuronal activity through hypoxia-regulated genes such as miR-210.
Collapse
|
127
|
Kumar V, Kumar A, Das S, Kumar A, Abhishek K, Verma S, Mandal A, Singh RK, Das P. Leishmania donovani Activates Hypoxia Inducible Factor-1α and miR-210 for Survival in Macrophages by Downregulation of NF-κB Mediated Pro-inflammatory Immune Response. Front Microbiol 2018; 9:385. [PMID: 29568285 PMCID: PMC5852103 DOI: 10.3389/fmicb.2018.00385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Micro RNAs (miRNAs) have emerged as a critical regulator of several biological processes in both animals and plants. They have also been associated with regulation of immune responses in many human diseases during recent years. Visceral leishmaniasis (VL) is the most severe form of leishmaniasis, which is characterized by impairment of both innate and adaptive immune responses. In the present study, we observed that Leishmania establishes hypoxic environment in host macrophages that induces the expression of hypoxia inducible factor-1α (HIF-1α) and miRNA-210. Further, the expression of miRNA-210 was found to be dependent on activation of HIF-1α expression. The HIF-1α silencing by siRNA resulted in significantly (p < 0.001) decreased expression of miR-210 in parasites infected macrophages. We also observed that in siHIF-1α or antagomir-210 treated L. donovani infected macrophages, the parasitic load and percentage infectivity were significantly (p < 0.001) decreased. Furthermore, we found that inhibition of miR-210 leads to activation of NF-κB subunit p50, and it forms heterodimer with p65 and translocates into the nucleus from the cytoplasm. This significantly (p < 0.05) induced the transcription of pro-inflammatory cytokines genes such as TNF-α and IL-12 in miRNA-210 inhibited macrophages compared to uninhibited macrophages whereas the level of IL-10, an anti-inflammatory cytokine, was found to be significantly decreased (p < 0.001). These findings suggested that L. donovani infection induces hypoxic environment inside the macrophages that activates HIF-1α. Further, HIF-1α upregulates miR-210, which eventually establishes a suitable environment for the survival of parasite inside the host macrophages by downregulating NF-κB mediated pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Vinod Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
128
|
Bhadury J, Einarsdottir BO, Podraza A, Bagge RO, Stierner U, Ny L, Dávila López M, Nilsson JA. Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts. Oncotarget 2018; 7:23801-11. [PMID: 27009863 PMCID: PMC5029664 DOI: 10.18632/oncotarget.8181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2016] [Indexed: 01/09/2023] Open
Abstract
Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors.
Collapse
Affiliation(s)
- Joydeep Bhadury
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Berglind O Einarsdottir
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Agnieszka Podraza
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Stierner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Dávila López
- The Bioinformatics Core Facility at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas A Nilsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
129
|
Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, Haan S, Letellier E. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget 2018; 7:65454-65470. [PMID: 27589845 PMCID: PMC5323168 DOI: 10.18632/oncotarget.11772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.
Collapse
Affiliation(s)
- Pit Ullmann
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Komal Qureshi-Baig
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Fabien Rodriguez
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Dominik Ternes
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jil Weiler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karoline Gäbler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Christelle Bahlawane
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, L-4367 Belvaux, Luxembourg
| | - Serge Haan
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Elisabeth Letellier
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
130
|
Amr KS, Abdelmawgoud H, Ali ZY, Shehata S, Raslan HM. Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br J Biomed Sci 2018; 75:82-87. [PMID: 29452547 DOI: 10.1080/09674845.2017.1402404] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Macrovascular complications are the main cause of morbidity and mortality among the diabetic patients. MicroRNAs (miRNAs), a family of small non-coding RNAs, play vital roles in the regulation of blood glucose level and the concurrent cardiovascular complications of type 2 diabetes. We hypothesized that plasma miR-126 and miR-210 are linked to coronary artery disease (CAD) in these diabetes patients. METHODS Fasting blood samples were collected from 20 healthy volunteers and 100 patients with diabetes (54 patients without CAD and 46 patients with CAD). Plasma miR-126 and miR-210 expressions were assessed by quantitative real time PCR. Specificity and sensitivity of miR-126 and miR-210 to discriminate CAD with diabetes was determined by receiver operating characteristic curve analysis. Correlations between miR-126 and miR-210 and studied characteristics in diabetes patients with and without CAD were compared. RESULTS Plasma relative expressions of miR-126 and miR-210 were 0.38 ± 0.03 and 5.3 ± 0.56 in diabetes alone vs. 0.08 ± 0.03 and 21.44 ± 0.97 in diabetes with CAD, respectively (both p < 0.0001). Levels of miR-126 and miR-210 significantly correlated with certain glycemic and lipid indices. The miRNAs significantly discriminated between diabetes with and without CAD at cut-off values of 0.055 (sensitivity 91.3%, specificity 100%) for miR-126 and of 17.59 (sensitivity 93.5%, specificity 100%) for miR-210. CONCLUSION Plasma miR-126 and miR-210 levels may be biomarkers for diabetes with or without CAD.
Collapse
Affiliation(s)
- K S Amr
- a Medical Molecular Genetics Department , National Research Centre , Giza , Egypt
| | - H Abdelmawgoud
- b Biochemistry Department, Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Z Y Ali
- c Biochemistry Department , National Organization of Drug Control and Research , Giza , Egypt
| | - S Shehata
- c Biochemistry Department , National Organization of Drug Control and Research , Giza , Egypt
| | - H M Raslan
- d Internal Medicine and Rheumatology Department , National Research Centre , Giza , Egypt
| |
Collapse
|
131
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
132
|
Namazi H, Mohit E, Namazi I, Rajabi S, Samadian A, Hajizadeh-Saffar E, Aghdami N, Baharvand H. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem 2018; 119:4150-4160. [PMID: 29243842 DOI: 10.1002/jcb.26621] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Exosomes are required for the regenerative effects of human cardiosphere-derived cells (CDCs). Studies show that they mimic the cardioprotective benefits of CDCs in rodents and porcine myocardial infarction (MI) models. Hypoxic preconditioning of stem cells increases the cardioprotective effects of exosomes in MI models by enhancing angiogenesis. Several exosomal microRNAs (miRNAs) up-regulate in response to hypoxia and play a role in cardioprotective and pro-angiogenic effects. In this study, we have demonstrated that human CDCs secreted exosomes under hypoxic conditions (1% O2 for 2 days) enhanced tube formation by human umbilical vein endothelial cells (HUVECs) at a concentration of 25 µg/mL. Pro-angiogenic exosomal miRNAs including miR-126, miR-130a, and miR-210 showed a substantial increase (>2-, >2-, and >4-fold, respectively) in the hypoxic exosomes compared to normoxic CDC-derived exosomes. Our study suggested a significant benefit of hypoxic CDC exosomes for the treatment of cardiac diseases by induction of angiogenesis via enrichment of pro-angiogenic exosomal miRNAs.
Collapse
Affiliation(s)
- Helia Namazi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Students Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Namazi
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
133
|
Placental hypoxia-regulating network in relation to birth weight and ponderal index: the ENVIRONAGE Birth Cohort Study. J Transl Med 2018; 16:2. [PMID: 29316938 PMCID: PMC5761191 DOI: 10.1186/s12967-017-1375-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/28/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND HIF1α, miR-210 and its downstream targets ISCU, COX-10, RAD52 and PTEN are all part of the placental hypoxia-responsive network. Tight regulation of this network is required to prevent development of maternal-fetal complications such as fetal growth restriction. HIF1α expression is increased in preeclamptic placentae, but little is known about its association with birth weight in normal pregnancies. METHODS We measured placental levels of HIF1α, miR-20a, miR-210, ISCU, COX-10, RAD52 and PTEN in 206 mother-newborn pairs of the ENVIRONAGE birth cohort. RESULTS Placental HIF1α gene expression was inversely associated with the ponderal index (PI): for a doubling in placental HIF1α expression, PI decreased by 6.7% (95% confidence interval [CI] 1.3 to 12.0%, p = 0.01). Placental RAD52 expression also displayed an inverse association with PI, a doubling in gene expression was associated with a 6.2% (CI 0.2 to 12.1% p = 0.04) decrease in PI. As for birth weight, we observed a significant association with placental miR-20a expression only in boys, where a doubling in miR-20a expression is associated with a 54.2 g (CI 0.6 to 108 g, p = 0.05) increase in birth weight. CONCLUSIONS The decrease in fetal growth associated with expression of hypoxia-network members HIF1a, RAD52 and miR-20a indicates that this network is important in potential intrauterine insults.
Collapse
|
134
|
da Silveira JC, de Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol 2018; 236:R15-R27. [PMID: 28870888 DOI: 10.1530/joe-17-0200] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
Mammalian gamete maturation requires extensive signaling between germ cells and their surrounding somatic cells. In the ovary, theca cells, mural granulosa cells, cumulus cells and the oocyte all secrete factors throughout follicle growth and maturation that are critical for ovulation of a high-quality oocyte with the competence to develop into an embryo. Similarly, maturation of sperm occurs as it transits the epididymis during which epididymal epithelium and sperm exchange secretory factors that are required for sperm to gain motility and fertility. Recent studies in a variety of species have uncovered the presence of cell-secreted vesicles in follicular fluid (microvesicles and exosomes) and epididymal fluid (epididymosomes). Moreover, these cell-secreted vesicles contain small non-coding regulatory RNAs called microRNAs, which can be shuttled between maturing gametes and surrounding somatic cells. Although little is known about the exact mechanism of how microRNAs are loaded into these cell-secreted vesicles or are transferred and modulate gene expression and function in gametes, recent studies clearly suggest that cell-secreted vesicle microRNAs play a role in oocyte and sperm maturation. Moreover, a role for cell-secreted vesicular microRNAs in gamete maturation provides for novel opportunities to modulate and discover new diagnostic markers associated with male or female fertility. This manuscript provides an overview of cell-secreted vesicles in ovarian follicular fluid and epididymal fluid and microRNAs and discusses recent discoveries on the potential function of cell-secreted vesicles as carriers of microRNAs in oocyte and sperm maturation.
Collapse
Affiliation(s)
- Juliano C da Silveira
- Department of Veterinary MedicineFaculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - Ana Clara F C M de Ávila
- Department of Veterinary MedicineFaculty of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, Brazil
| | - Hannah L Garrett
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Jason E Bruemmer
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Quinton A Winger
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Gerrit J Bouma
- Department of Biomedical SciencesCollege of Veterinary and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
135
|
Xie Y, Yu F, Tang W, Alade B, Peng ZH, Wang Y, Li J, Oupický D. Synthesis and Evaluation of Chloroquine-Containing DMAEMA Copolymers as Efficient Anti-miRNA Delivery Vectors with Improved Endosomal Escape and Antimigratory Activity in Cancer Cells. Macromol Biosci 2018; 18:10.1002/mabi.201700194. [PMID: 28776937 PMCID: PMC5997184 DOI: 10.1002/mabi.201700194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/11/2017] [Indexed: 12/19/2022]
Abstract
Chloroquine-containing 2-(dimethylamino)ethyl methacrylate copolymers (PDCs) are synthesized by reversible addition-fragmentation chain-transfer polymerization. Systematic evaluation is performed to test the hypothesis that presence of chloroquine (CQ) in the PDC structure will improve miRNA delivery due to enhanced endosomal escape while simultaneously contribute to anticancer activity of PDC/miRNA polyplexes through inhibition of cancer cell migration. The results show that miRNA delivery efficiency is dependent both on the molecular weight and CQ. The best performing PDC/miRNA polyplexes show effective endosomal escape of miRNA. PDC polyplexes with therapeutic miR-210 show promising anticancer activity in human breast cancer cells. PDC/miRNA polyplexes show excellent ability to inhibit migration of cancer cells. Overall, this study supports the use of PDC as a promising polymeric drug platform for use in combination anti-metastatic and anticancer miRNA therapeutic strategies.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bolutito Alade
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zheng-Hong Peng
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
136
|
Lai HH, Li JN, Wang MY, Huang HY, Croce CM, Sun HL, Lyu YJ, Kang JW, Chiu CF, Hung MC, Suzuki HI, Chen PS. HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis. J Clin Invest 2017; 128:625-643. [PMID: 29251629 DOI: 10.1172/jci89212] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
HIF-1α, one of the most extensively studied oncogenes, is activated by a variety of microenvironmental factors. The resulting biological effects are thought to depend on its transcriptional activity. The RNAse enzyme Dicer is frequently downregulated in human cancers, which has been functionally linked to enhanced metastatic properties; however, current knowledge of the upstream mechanisms regulating Dicer is limited. In the present study, we identified Dicer as a HIF-1α-interacting protein in multiple types of cancer cell lines and different human tumors. HIF-1α downregulated Dicer expression by facilitating its ubiquitination by the E3 ligase Parkin, thereby enhancing autophagy-mediated degradation of Dicer, which further suppressed the maturation of known tumor suppressors, such as the microRNA let-7 and microRNA-200b. Consequently, expression of HIF-1α facilitated epithelial-mesenchymal transition (EMT) and metastasis in tumor-bearing mice. Thus, this study uncovered a connection between oncogenic HIF-1α and the tumor-suppressive Dicer. This function of HIF-1α is transcription independent and occurs through previously unrecognized protein interaction-mediated ubiquitination and autophagic proteolysis.
Collapse
Affiliation(s)
- Hui-Huang Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hui-Lung Sun
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Yu-Jhen Lyu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| | - Jui-Wen Kang
- Department of Internal Medicine, NCKU Hospital, Tainan, Taiwan
| | - Ching-Feng Chiu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, NCKU, Tainan, Taiwan
| |
Collapse
|
137
|
Giardina S, Hernández-Alonso P, Salas-Salvadó J, Rabassa-Soler A, Bulló M. Modulation of Human Subcutaneous Adipose Tissue MicroRNA Profile Associated with Changes in Adiposity-Related Parameters. Mol Nutr Food Res 2017; 62. [PMID: 29024341 DOI: 10.1002/mnfr.201700594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Indexed: 12/23/2022]
Abstract
SCOPE To analyze the effect of three calorie-restricted diets with different amount and quality of carbohydrates on subcutaneous adipose tissue (SAT) microRNA (miRNA) profile. METHODS AND RESULTS 6-month parallel, randomized trial conducted on overweight and obese subjects randomized to: 1) low glycemic index diet (LGI), 2) high glycemic index diet (HGI), and 3) low-fat (LF). The genome-wide SAT miRNA profile was assessed in eight randomly selected participants and the most relevant changing miRNAs (n = 13) were validated in 48 subjects. None of the miRNAs showed significant changes between the intervention groups. However, changes in some of them correlated with changes in biochemical and anthropometric variables. Stratifying our population according to tertiles of percentage change in body weight (BW), we observed a significant down-regulation of miR-210 in those subjects in Tertile 1 as compared to Tertile 3. When our population was stratified by tertiles of waist circumference, miR-132, miR-29a, miR-34a, and miR-378 were found to be significantly down-regulated, in T2 compared to T3. Furthermore, when stratified by tertiles of fat mass, we also observed the significant down-regulation of miR-132 in T1. CONCLUSION The macronutrient composition of a calorie-restricted diet does not affect the expression of the miRNAs analyzed, while changes in adiposity play a primary regulatory role.
Collapse
Affiliation(s)
- Simona Giardina
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Rabassa-Soler
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
138
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
139
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and clinical implications of miRNAs in drug resistance of esophageal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:1151-1163. [PMID: 28838272 DOI: 10.1080/17474124.2017.1372189] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the increasing incidence of esophageal cancer, drug resistance is becoming a major obstacle to successful cancer therapy since chemotherapy is regarded as a curative approach to inhibit cancer cell proliferation. Despite the great progress in anticancer treatment achieved during the last decades, the mechanisms of multidrug resistance have not been completely elucidated. Recently, accumulating studies and pre-clinical reports highlighted the role of miRNAs in the drug resistance of esophageal cancer. Areas covered: In this review, we mainly summarized the current advances of miRNAs in esophageal cancer and the mechanisms underlying drug resistance. We also reviewed the potential role of miRNAs as biomarkers for predicting drug response and prognosis. Finally, we envisaged the future orientation and challenges in translating the existing knowledge of drug resistance related miRNAs into clinical applications. Expert commentary: Based on the current knowledge of certain miRNAs, we believe that miRNAs would be helpful to overcome the drug resistance and provide personalized treatment for patients with esophageal cancer. The aims of this study were to provide a comprehensive summary on the emerging role of miRNAs in the drug resistance of esophageal cancer and attract broad attention of more researchers on this field.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
140
|
Geva GA, Gielchinsky I, Aviv N, Max KEA, Gofrit ON, Gur-Wahnon D, Ben-Dov IZ. Urine cell-free microRNA as biomarkers for transitional cell carcinoma. BMC Res Notes 2017; 10:641. [PMID: 29187235 PMCID: PMC5708087 DOI: 10.1186/s13104-017-2950-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE MicroRNA (miRNA) are short nucleotide strands with a regulatory function in the cell. Several miRNAs have been shown to be useful as biomarkers for different neoplasms. The aim of this project was to assess whether levels of miRNA in cell free urine could be used as a biomarker in transitional cell carcinoma (TCC). RESULTS cDNA libraries were produced based on small RNAs in urine samples of fourteen TCC patients and twenty healthy volunteers. Resulting reads were deep sequenced on Illumina HiSeq sequencer with the intent of characterizing cell free urine miRNA profiles. A statistically significant difference was found for a single miRNA; miR-210 was > sixfold higher in the TCC group compared to the control group. Furthermore, we were able to produce a diagnostic score by summing of standardized levels of overexpressed miRNA. This score was considerably higher in TCC patients with a sensitivity of 0.93, specificity of 0.76 and negative predictive value > 0.97.
Collapse
Affiliation(s)
- Gil A. Geva
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Ilan Gielchinsky
- Department of Urology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Nina Aviv
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Klaas E. A. Max
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065 USA
| | - Ofer N. Gofrit
- Department of Urology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Iddo Z. Ben-Dov
- Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
141
|
Law IKM, Padua DM, Iliopoulos D, Pothoulakis C. Role of G protein-coupled receptors-microRNA interactions in gastrointestinal pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 313:G361-G372. [PMID: 28774868 PMCID: PMC5792214 DOI: 10.1152/ajpgi.00144.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ivy Ka Man Law
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - David Miguel Padua
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | - Dimitrios Iliopoulos
- 1Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and ,2Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| |
Collapse
|
142
|
Mei Y, Li Z, Zhang Y, Zhang W, Hu H, Zhang P, Wu M, Huang D. Low miR-210 and CASP8AP2 expression is associated with a poor outcome in pediatric acute lymphoblastic leukemia. Oncol Lett 2017; 14:8072-8077. [PMID: 29250188 DOI: 10.3892/ol.2017.7229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
The prognostic significance of microRNA (miR)-210 and the caspase 8-associated protein 2 (CASP8AP2) gene in children with acute lymphoblastic leukemia (ALL) has been validated and CASP8AP2 has been demonstrated as a target of miR-210. In the present study, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine miR-210 and CASP8AP2 expression in 91 children with ALL. Associations between gene expression levels and the prognostic value of combined detection of the two indicators were analyzed. Results from a receiver operating characteristic curve demonstrated that threshold values of miR-210 and CASP8AP2 were 3.8243 and 0.4760, respectively. Although the expression of miR-210 and CASP8AP2 were not associated at the mRNA level in pediatric ALL, combined detection of the two predicted ALL prognosis with an increased accuracy. Furthermore, an equation was devised including minimal residual disease at day 33 and expression of miR-210 and CASP8AP2, which may enable bone marrow relapse to be predicted more precisely compared with the current risk stratification.
Collapse
Affiliation(s)
- Yanyan Mei
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Zhigang Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Yi Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Weiling Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Huimin Hu
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Pinwei Zhang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| | - Minyuan Wu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Hematology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, P.R. China
| | - Dongsheng Huang
- Department of Pediatrics, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China
| |
Collapse
|
143
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Yang Z, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets 2017; 21:1063-1075. [PMID: 28994330 DOI: 10.1080/14728222.2017.1389900] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Zhiping Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | | | - Liu Hong
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
144
|
Hu H, Ding Y, Wang Y, Geng S, Liu J, He J, Lu Y, Li X, Yuan M, Zhu S, Zhao S. MitoK ATP channels promote the proliferation of hypoxic human pulmonary artery smooth muscle cells via the ROS/HIF/miR-210/ISCU signaling pathway. Exp Ther Med 2017; 14:6105-6112. [PMID: 29285165 DOI: 10.3892/etm.2017.5322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Previous results have indicated that mitochondrial ATP-sensitive potassium (mitoKATP) channels are associated with the hypoxic proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the mechanism underlying the promotive effects of mitoKATP channels on cell proliferation in response to hypoxia remains unknown. mitoKATP channel opening results in a collapse of mitochondrial membrane potential and generation of mitochondrial reactive oxygen species (ROS). As hypoxia-inducible factor-1α (HIF-1α) is a critical oxygen sensor and major transcriptional regulator of the hypoxic adaptive response, the current study assessed whether mitoKATP opening contributes to the chronic proliferation of human PASMCs (hPASMCs) in collaboration with HIF-1α and its downstream targets under hypoxic conditions. The present study demonstrated that there was crosstalk between mitoKATP channels and HIF-1α signaling in PASMCs under hypoxic conditions. The results suggest that mitoKATP channels are involved in the proliferation of PASMCs during hypoxia through upregulation of the ROS/HIF/microRNA-210/iron-sulfur cluster protein signaling pathway.
Collapse
Affiliation(s)
- Hongling Hu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yang Wang
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shuang Geng
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jue Liu
- Department of Clinical Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China.,Central Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yang Lu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xueying Li
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mingli Yuan
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shan Zhu
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Su Zhao
- Department of Respiratory Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
145
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
146
|
MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl) 2017; 95:1369-1385. [PMID: 28948298 DOI: 10.1007/s00109-017-1591-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022]
Abstract
An innovative approach for cardiac regeneration following injury is to induce endogenous cardiomyocyte (CM) cell cycle re-entry. In the present study, CMs from adult rat hearts were isolated and transfected with cel-miR-67 (control) and rno-miR-210. A significant increase in CM proliferation and mono-nucleation were observed in miR-210 group, in addition to a reduction in CM size, multi-nucleation, and cell death. When compared to control, β-catenin and Bcl-2 were upregulated while APC (adenomatous polyposis coli), p16, and caspase-3 were downregulated in miR-210 group. In silico analysis predicted cell cycle inhibitor, APC, as a direct target of miR-210 in rodents. Moreover, compared to control, a significant increase in CM survival and proliferation were observed with siRNA-mediated inhibition of APC. Furthermore, miR-210 overexpressing C57BL/6 mice (210-TG) were used for short-term ischemia/reperfusion study, revealing smaller cell size, increased mono-nucleation, decreased multi-nucleation, and increased CM proliferation in 210-TG hearts in contrast to wild-type (NTG). Likewise, myocardial infarction (MI) was created in adult mice, echocardiography was performed, and the hearts were harvested for immunohistochemistry and molecular studies. Compared to NTG, 210-TG hearts showed a significant increase in CM proliferation, reduced apoptosis, upregulated angiogenesis, reduced infarct size, and overall improvement in cardiac function following MI. β-catenin, Bcl-2, and VEGF (vascular endothelial growth factor) were upregulated while APC, p16, and caspase-3 were downregulated in 210-TG hearts. Overall, constitutive overexpression of miR-210 rescues heart function following cardiac injury in adult mice via promoting CM proliferation, cell survival, and angiogenesis. KEY MESSAGES MiRNA-210 transfected adult rat CMs show proliferation and reduced cell death in vitro. Cell cycle inhibitor APC is a target of miR-210. MiR-210 overexpressing (210-TG) mouse hearts show CMs cell cycle re-entry and survival post myocardial injury. 210-TG mice show significant neovascularization and angiogenic potential post myocardial infarction. 210-TG hearts show reduced infarct size following ischemic injury.
Collapse
|
147
|
Bounds KR, Chiasson VL, Pan LJ, Gupta S, Chatterjee P. MicroRNAs: New Players in the Pathobiology of Preeclampsia. Front Cardiovasc Med 2017; 4:60. [PMID: 28993808 PMCID: PMC5622156 DOI: 10.3389/fcvm.2017.00060] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
Our understanding of how microRNAs (miRNAs) regulate gene networks and affect different molecular pathways leading to various human pathologies has significantly improved over the years. In contrary, the role of miRNAs in pregnancy-related hypertensive disorders such as preeclampsia (PE) is only beginning to emerge. Recent papers highlight that adverse pregnancy outcomes are associated with aberrant expression of several miRNAs. Presently, efforts are underway to determine the biologic function of these placental miRNAs which can shed light on their contribution to these pregnancy-related disease conditions. The discovery that miRNAs are stable in circulation coupled with the fact that the placenta is capable of releasing them to the circulation in exosomes generates a lot of enthusiasm to use them as biomarkers. In this review, we will summarize the recent findings of our understanding of miRNA regulation in relation to PE, a hypertensive disorder of pregnancy. Particular emphasis will be given to the role of key miRNA molecules such as miR-210 and miR-155 that are known to be consistently dysregulated in women with PE.
Collapse
Affiliation(s)
- Kelsey R Bounds
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Valorie L Chiasson
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Lu J Pan
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Sudhiranjan Gupta
- Department of Medical Physiology, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| | - Piyali Chatterjee
- Department of Internal Medicine, Baylor Scott & White Health, Texas A&M Health Science Center, Temple, TX, United States
| |
Collapse
|
148
|
Zhou S, Sun L, Cao C, Wu P, Li M, Sun G, Fei G, Ding X, Wang R. Hypoxia-induced microRNA-26b inhibition contributes to hypoxic pulmonary hypertension via CTGF. J Cell Biochem 2017; 119:1942-1952. [PMID: 28816418 DOI: 10.1002/jcb.26355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/15/2017] [Indexed: 01/02/2023]
Abstract
The objective of this study was to explore the role of miRNAs in the control of HPH as well as molecular mechanism underlying. Computational analysis and luciferase assay were carried out to search the target gene of miR-26b. Luciferase assay, RT-PCR and western-blot analysis was performed to test interaction among hypoxia, miR-26b, SRF and CTGF. MiR-26b was significantly downregulated; meanwhile, CTGF and SRF were significantly upregulated in HPH rat model. Using computational analysis, CTGF was found to be a virtual target gene of miR-26b, and only cell transfected with vectors containing wild-type CTGF 3'UTR and miR-26b showed a lower luciferase activity than scramble control. Hypoxia significantly inhibited miR-26b promoter, and promoted SRF promoter. Meanwhile, hypoxia had no effect on CTGF promoter. In addition, SRF promoted the promoter of CTGF. MiR-26b was significantly downregulated; meanwhile, CTGF and SRF were upregulated in PASMCs exposed to hypoxia. In addition, miR-26b and SRF siRNA, but not CTGF siRNA, significantly inhibited SRF expression. Meanwhile, miR-26b, SRF siRNA, and CTGF siRNA significantly inhibited CTGF expression in hypoxia-treated cell. PASMCs treated with hypoxia showed higher cell viability and higher percentage cells in S phase than the control, which could be reversed by miR-26b, SRF siRNA, and CTGF siRNA transfection. These findings suggested that hypoxia induced miR-26b inhibition and SRF and CTGF upregulation in HPH rat model. CTGF mediated hypoxia-induced regulation of miR-26b and SRF in proliferation of PASMCs, which indicated that hypoxia-induced miR-26b inhibition contributed to the pathogenesis of HPH via CTGF.
Collapse
Affiliation(s)
- Sijing Zhou
- Department of Occupational Medicine, Hefei Prevention and Treatment Center for Occupational Diseases, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, Ningbo, China
| | - Peipei Wu
- Department of Occupational Medicine, Hefei Prevention and Treatment Center for Occupational Diseases, Hefei, China
| | - Min Li
- Department of Oncology, First affiliated hospital of Anhui Medical University, Hefei, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Ding
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
149
|
Biró O, Alasztics B, Molvarec A, Joó J, Nagy B, Rigó J. Various levels of circulating exosomal total-miRNA and miR-210 hypoxamiR in different forms of pregnancy hypertension. Pregnancy Hypertens 2017; 10:207-212. [PMID: 29153681 DOI: 10.1016/j.preghy.2017.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/13/2017] [Accepted: 09/06/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Hypertension is a common complication during pregnancy, affecting 10% of pregnant women worldwide. Several microRNA (miRNA) were shown to be involved in hypertensive disorders of pregnancy. In preeclampsia (PE), placental dysfunction causes the enhanced release of extracellular vesicle-derived miRNAs. The hypoxia-sensitive hsa-mir-210 is the most common PE-associated miRNA, but its exosomal profile has not been investigated. OBJECTIVES Our aims were to measure exosomal total-miRNA concentration and to perform expression analysis of circulating exosomal hsa-miR-210 in women affected by chronic hypertension (CHT) gestational hypertension (GHT) or PE. MATERIALS AND METHODS We collected plasma samples from women with CHT, GHT, PE (moderate: mPE and severe: sPE) and from normotensive pregnancies. Exosomal miRNAs were extracted and miRNA concentration was measured. RT-PCR was carried out with hsa-miR-210-3p-specific primers and relative expression was calculated using the comparative Ct method. RESULTS The total-miRNA concentration was different in the disease subgroups, and was significantly higher in mPE and sPE compared to the other groups. We found a significant difference in the relative exosomal hsa-miR-210-3p expression between all hypertensive groups compared to the normotensive samples, but significant upregulation was only observed in case of mPE and sPE patients. Both the level of total-miRNA and hsa-miR-210 expression was higher in case of severe PE. CONCLUSIONS The level of circulating exosomal total-miRNA and hsa-miR-210 was elevated in women with PE, and it was higher in the severe form. We showed that hsa-miR-210 is secreted via exosomes, which may have a role in the pathomechanism of the disease.
Collapse
Affiliation(s)
- Orsolya Biró
- 1st Dept. of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary.
| | - Bálint Alasztics
- 1st Dept. of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Attila Molvarec
- 1st Dept. of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - József Joó
- 1st Dept. of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Dept. of Human Genetics, University of Debrecen, Hungary
| | - János Rigó
- 1st Dept. of Obstetrics and Gynaecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
150
|
Zaccagnini G, Maimone B, Fuschi P, Maselli D, Spinetti G, Gaetano C, Martelli F. Overexpression of miR-210 and its significance in ischemic tissue damage. Sci Rep 2017; 7:9563. [PMID: 28842599 PMCID: PMC5573334 DOI: 10.1038/s41598-017-09763-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-induced miR-210 displays a pro-survival, cytoprotective and pro-angiogenic role in several in vitro systems. In vivo, we previously found that miR-210 inhibition increases ischemic damage. Here we describe the generation of a versatile transgenic mouse model allowing the evaluation of miR-210 therapeutic potential in ischemic cardiovascular diseases. We generated a Tet-On miR-210 transgenic mouse strain (TG-210) by targeted transgenesis in the ROSA26 locus. To functionally validate miR-210 transgenic mice, hindlimb ischemia was induced by femoral artery dissection. Blood perfusion was evaluated by power Doppler while tissue damage and inflammation were assessed by histological evaluation. We found that miR-210 levels were rapidly increased in TG-210 mice upon doxycycline administration. miR-210 overexpression was maintained over time and remained within physiological levels in multiple tissues. When hindlimb ischemia was induced, miR-210 overexpression protected from both muscular and vascular ischemic damage, decreased inflammatory cells density and allowed to maintain a better calf perfusion. In conclusion, we generated and functionally validated a miR-210 transgenic mouse model. Albeit validated in the context of a specific cardiovascular ischemic disease, miR-210 transgenic mice may also represent a useful model to assess the function of miR-210 in other physio-pathological conditions.
Collapse
Affiliation(s)
- G Zaccagnini
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, 20097 San Donato Milanese, Milan, Italy
| | - B Maimone
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, 20097 San Donato Milanese, Milan, Italy
| | - P Fuschi
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, 20097 San Donato Milanese, Milan, Italy
| | - D Maselli
- Laboratory of Cardiovascular Research, MultiMedica-IRCCS, 20138, Milan, Italy
| | - G Spinetti
- Laboratory of Cardiovascular Research, MultiMedica-IRCCS, 20138, Milan, Italy
| | - C Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Internal Medicine Clinic III, Goethe University, Frankfurt am Main, Germany
| | - F Martelli
- Laboratory of Molecular Cardiology, Policlinico San Donato-IRCCS, 20097 San Donato Milanese, Milan, Italy.
| |
Collapse
|