101
|
Li Y, He L, Dong H, Liu Y, Wang K, Li A, Ren T, Shi D, Li Y. Fever-Inspired Immunotherapy Based on Photothermal CpG Nanotherapeutics: The Critical Role of Mild Heat in Regulating Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700805. [PMID: 29938166 PMCID: PMC6010888 DOI: 10.1002/advs.201700805] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/06/2017] [Indexed: 05/13/2023]
Abstract
Although there have been more than 100 clinical trials, CpG-based immunotherapy has been seriously hindered by complications in the immunosuppressive microenvironment of established tumors. Inspired by the decisive role of fever upon systemic immunity, a photothermal CpG nanotherapeutics (PCN) method with the capability to induce an immunofavorable tumor microenvironment by casting a fever-relevant heat (43 °C) in the tumor region is developed. High-throughput gene profile analysis identifies nine differentially expressed genes that are closely immune-related upon mild heat, accompanied by IL-6 upregulation, a pyrogenic cytokine usually found during fever. When treated with intratumor PCN injection enabling mild heating in the tumor region, the 4T1 tumor-bearing mice exhibit significantly improved antitumor immune effects compared with the control group. Superb efficacy is evident from pronounced apoptotic cell death, activated innate immune cells, enhanced tumor perfusion, and intensified innate and adaptive immune responses. This work highlights the crucial role of mild heat in modulating the microenvironment in optimum for improved immunotherapy, by converting the tumor into an in situ vaccine.
Collapse
Affiliation(s)
- Yan Li
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Lianghua He
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Haiqing Dong
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Yiqiong Liu
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| | - Kun Wang
- School of Materials Science and EngineeringTongji University4800 Caoan RoadShanghai201804P. R. China
| | - Ang Li
- School of Life Science and TechnologyTongji University1239 Siping RoadShanghai200092P. R. China
| | - Tianbin Ren
- School of Materials Science and EngineeringTongji University4800 Caoan RoadShanghai201804P. R. China
| | - Donglu Shi
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- The Materials Science and Engineering ProgramDepartment of Mechanical and Materials EngineeringCollege of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiOH45221USA
| | - Yongyong Li
- Shanghai East HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
| |
Collapse
|
102
|
Tay ZW, Chandrasekharan P, Chiu-Lam A, Hensley DW, Dhavalikar R, Zhou XY, Yu EY, Goodwill PW, Zheng B, Rinaldi C, Conolly SM. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS NANO 2018; 12:3699-3713. [PMID: 29570277 PMCID: PMC6007035 DOI: 10.1021/acsnano.8b00893] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Image-guided treatment of cancer enables physicians to localize and treat tumors with great precision. Here, we present in vivo results showing that an emerging imaging modality, magnetic particle imaging (MPI), can be combined with magnetic hyperthermia into an image-guided theranostic platform. MPI is a noninvasive 3D tomographic imaging method with high sensitivity and contrast, zero ionizing radiation, and is linearly quantitative at any depth with no view limitations. The same superparamagnetic iron oxide nanoparticle (SPIONs) tracers imaged in MPI can also be excited to generate heat for magnetic hyperthermia. In this study, we demonstrate a theranostic platform, with quantitative MPI image guidance for treatment planning and use of the MPI gradients for spatial localization of magnetic hyperthermia to arbitrarily selected regions. This addresses a key challenge of conventional magnetic hyperthermia-SPIONs delivered systemically accumulate in off-target organs ( e.g., liver and spleen), and difficulty in localizing hyperthermia results in collateral heat damage to these organs. Using a MPI magnetic hyperthermia workflow, we demonstrate image-guided spatial localization of hyperthermia to the tumor while minimizing collateral damage to the nearby liver (1-2 cm distance). Localization of thermal damage and therapy was validated with luciferase activity and histological assessment. Apart from localizing thermal therapy, the technique presented here can also be extended to localize actuation of drug release and other biomechanical-based therapies. With high contrast and high sensitivity imaging combined with precise control and localization of the actuated therapy, MPI is a powerful platform for magnetic-based theranostics.
Collapse
Affiliation(s)
| | | | - Andreina Chiu-Lam
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Daniel W Hensley
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | - Rohan Dhavalikar
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | | - Elaine Y Yu
- Magnetic Insight, Inc. , Alameda , California 94501 , United States
| | | | | | - Carlos Rinaldi
- Department of Chemical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | | |
Collapse
|
103
|
Sheen MR, Fiering S. In situ
vaccination: Harvesting low hanging fruit on the cancer immunotherapy tree. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1524. [DOI: 10.1002/wnan.1524] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Mee Rie Sheen
- Department of Hematology and Oncology Harvard Medical School/Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Steven Fiering
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Hanover New Hampshire
- Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth and Dartmouth‐Hitchcock Medical Center Lebanon New Hampshire
| |
Collapse
|
104
|
Hoopes PJ, Wagner RJ, Duval K, Kang K, Gladstone DJ, Moodie KL, Crary-Burney M, Ariaspulido H, Veliz FA, Steinmetz NF, Fiering SN. Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation. Mol Pharm 2018; 15:3717-3722. [PMID: 29613803 DOI: 10.1021/acs.molpharmaceut.8b00126] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The presence and benefit of a radiation therapy-associated immune reaction is of great interest as the overall interest in cancer immunotherapy expands. The pathological assessment of irradiated tumors rarely demonstrates consistent immune or inflammatory response. More recent information, primarily associated with the "abscopal effect", suggests a subtle radiation-based systemic immune response may be more common and have more therapeutic potential than previously believed. However, to be of consistent value, the immune stimulatory potential of radiation therapy (RT) will clearly need to be supported by combination with other immunotherapy efforts. In this study, using a spontaneous canine oral melanoma model, we have assessed the efficacy and tumor immunopathology of two nanotechnology-based immune adjuvants combined with RT. The immune adjuvants were administered intratumorally, in an approach termed "in situ vaccination", that puts immunostimulatory reagents into a recognized tumor and utilizes the endogenous antigens in the tumor as the antigens in the antigen/adjuvant combination that constitutes a vaccine. The radiation treatment consisted of a local 6 × 6 Gy tumor regimen given over a 12 day period. The immune adjuvants were a plant-based virus-like nanoparticle (VLP) and a 110 nm diameter magnetic iron oxide nanoparticle (mNPH) that was activated with an alternating magnetic field (AMF) to produce moderate heat (43 °C/60 min). The RT was used alone or combined with one or both adjuvants. The VLP (4 × 200 μg) and mNPH (2 × 7.5 mg/gram tumor) were delivered intratumorally respectively during the RT regimen. All patients received a diagnostic biopsy and CT-based 3-D radiation treatment plan prior to initiating therapy. Patients were assessed clinically 14-21 days post-treatment, monthly for 3 months following treatment, and bimonthly, thereafter. Immunohistopathologic assessment of the tumors was performed before and 14-21 days following treatment. Results suggest that addition of VLPs and/or mNPH to a hypofractionated radiation regimen increases the immune cell infiltration in the tumor, extends the tumor control interval, and has important systemic therapeutic potential.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States.,Thayer School of Engineering at Dartmouth , Hanover , New Hampshire 03755 , United States.,Section of Radiation Oncology , Dartmouth Hitchcock Medical Center , Lebanon , New Hampshire 03766 , United States
| | - Robert J Wagner
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Kayla Duval
- Thayer School of Engineering at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Kevin Kang
- Thayer School of Engineering at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - David J Gladstone
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States.,Thayer School of Engineering at Dartmouth , Hanover , New Hampshire 03755 , United States.,Section of Radiation Oncology , Dartmouth Hitchcock Medical Center , Lebanon , New Hampshire 03766 , United States
| | - Karen L Moodie
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Margaret Crary-Burney
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Hugo Ariaspulido
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| | - Frank A Veliz
- Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Nicole F Steinmetz
- Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Steven N Fiering
- Geisel School of Medicine at Dartmouth , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
105
|
Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:977-990. [PMID: 29409836 PMCID: PMC5899012 DOI: 10.1016/j.nano.2018.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD.
| |
Collapse
|
106
|
Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat Commun 2018; 9:1074. [PMID: 29540781 PMCID: PMC5852008 DOI: 10.1038/s41467-018-03473-9] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
Photothermal therapy (PTT) is a promising cancer treatment modality, but PTT generally requires direct access to the source of light irradiation, thus precluding its utility against disseminated, metastatic tumors. Here, we demonstrate that PTT combined with chemotherapy can trigger potent anti-tumor immunity against disseminated tumors. Specifically, we have developed polydopamine-coated spiky gold nanoparticles as a new photothermal agent with extensive photothermal stability and efficiency. Strikingly, a single round of PTT combined with a sub-therapeutic dose of doxorubicin can elicit robust anti-tumor immune responses and eliminate local as well as untreated, distant tumors in >85% of animals bearing CT26 colon carcinoma. We also demonstrate their therapeutic efficacy against TC-1 submucosa-lung metastasis, a highly aggressive model for advanced head and neck squamous cell carcinoma (HNSCC). Our study sheds new light on a previously unrecognized, immunological facet of chemo-photothermal therapy and may lead to new therapeutic strategies against advanced cancer.
Collapse
Affiliation(s)
- Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sejin Son
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lukasz J Ochyl
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
107
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
108
|
Gao S, Zheng M, Ren X, Tang Y, Liang X. Local hyperthermia in head and neck cancer: mechanism, application and advance. Oncotarget 2018; 7:57367-57378. [PMID: 27384678 PMCID: PMC5302995 DOI: 10.18632/oncotarget.10350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Local hyperthermia (HT), particularly in conjunction with surgery, radiotherapy and chemotherapy was useful for the treatment of human malignant tumors including head and neck cancer. However, at present it suffered from many limitations such as thermal dose control, target treatment regions and discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials to local HT of head and neck cancer that basically take advantage of various targeting approaches. The aim of this paper is to give a brief review of the mechanism, methods and clinical applications of local HT in head and neck cancer, mainly focusing on photothermal therapy (PTT) and nanoparticle-based hyperthermia.
Collapse
Affiliation(s)
- Shiyu Gao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Zhoushan, China
| | - Xiaohua Ren
- Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
109
|
Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. Biointerphases 2018; 13:011005. [PMID: 29402091 DOI: 10.1116/1.5009989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles. Cells were sequentially incubated with two populations of magnetic particles: nonfunctionalized superparamagnetic nanoparticles and anti-CXCR4-functionalized particles. After removing the excess of free particles, an alternating magnetic field (AMF) was applied to produce MHT. The induced cytotoxicity was assessed at different time-points after AMF application. Complete loss of cell viability was observed 72 h after MHT when the iron loading of the anti-CXCR4-functionalized particles was boosted by that of a nontargeted population. Additionally, induction of necrosis resulted in more efficient cell death than did induction of apoptosis. Achieving a uniquely high effectiveness in monotherapeutic MHT demonstrates the potential of this approach to achieve complete loss of viability of cancer cells while avoiding the side effects of dual-treatment strategies that use MHT only as a sensitizing therapy.
Collapse
|
110
|
Le Fèvre R, Durand-Dubief M, Chebbi I, Mandawala C, Lagroix F, Valet JP, Idbaih A, Adam C, Delattre JY, Schmitt C, Maake C, Guyot F, Alphandéry E. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics 2017; 7:4618-4631. [PMID: 29158849 PMCID: PMC5695153 DOI: 10.7150/thno.18927] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, biologically synthesized iron oxide nanoparticles, called magnetosomes, are made fully biocompatible by removing potentially toxic organic bacterial residues such as endotoxins at magnetosome mineral core surfaces and by coating such surface with poly-L-lysine, leading to magnetosomes-poly-L-lysine (M-PLL). M-PLL antitumor efficacy is compared with that of chemically synthesized iron oxide nanoparticles (IONPs) currently used for magnetic hyperthermia. M-PLL and IONPs are tested for the treatment of glioblastoma, a dreadful cancer, in which intratumor nanoparticle administration is clinically relevant, using a mouse allograft model of murine glioma (GL-261 cell line). A magnetic hyperthermia treatment protocol is proposed, in which 25 µg in iron of nanoparticles per mm3 of tumor are administered and exposed to 11 to 15 magnetic sessions during which an alternating magnetic field of 198 kHz and 11 to 31 mT is applied for 30 minutes to attempt reaching temperatures of 43-46 °C. M-PLL are characterized by a larger specific absorption rate (SAR of 40 W/gFe compared to 26 W/gFe for IONPs as measured during the first magnetic session), a lower strength of the applied magnetic field required for reaching a target temperature of 43-46 °C (11 to 27 mT compared with 22 to 31 mT for IONPs), a lower number of mice re-administered (4 compared to 6 for IONPs), a longer residence time within tumours (5 days compared to 1 day for IONPs), and a less scattered distribution in the tumour. M-PLL lead to higher antitumor efficacy with full tumor disappearances achieved in 50% of mice compared to 20% for IONPs. This is ascribed to better ability of M-PLL, at equal iron concentrations, to maintain tumor temperatures at 43-46°C over a longer period of times.
Collapse
Affiliation(s)
- Raphaël Le Fèvre
- Nanobacterie SARL, 36 boulevard Flandrin, 75016, Paris
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75005 Paris, France
| | | | - Imène Chebbi
- Nanobacterie SARL, 36 boulevard Flandrin, 75016, Paris
| | - Chalani Mandawala
- Nanobacterie SARL, 36 boulevard Flandrin, 75016, Paris
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum Naitonal d'Histoire Naturelle. 4 Place Jussieu, 75005, Paris, France
| | - France Lagroix
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Jean-Pierre Valet
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France. AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Clovis Adam
- Laboratoire de neuropathologie, GHU Paris-Sud-Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Jean-Yves Delattre
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France. AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Charlotte Schmitt
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France. AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Caroline Maake
- Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - François Guyot
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum Naitonal d'Histoire Naturelle. 4 Place Jussieu, 75005, Paris, France
| | - Edouard Alphandéry
- Nanobacterie SARL, 36 boulevard Flandrin, 75016, Paris
- Institut de minéralogie de physique des matériaux et de cosmochimie, Sorbonne Université UMR 7590 CNRS, Université Pierre et Marie Curie, Muséum Naitonal d'Histoire Naturelle. 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
111
|
Liu Y, Maccarini P, Palmer GM, Etienne W, Zhao Y, Lee CT, Ma X, Inman BA, Vo-Dinh T. Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) for the Treatment of Unresectable and Metastatic Cancers. Sci Rep 2017; 7:8606. [PMID: 28819209 PMCID: PMC5561243 DOI: 10.1038/s41598-017-09116-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
Abstract
Metastatic spread is the mechanism in more than 90 percent of cancer deaths and current therapeutic options, such as systemic chemotherapy, are often ineffective. Here we provide a proof of principle for a novel two-pronged modality referred to as Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) having the potential to safely eradicate both primary tumors and distant metastatic foci. Using a combination of immune-checkpoint inhibition and plasmonic gold nanostar (GNS)–mediated photothermal therapy, we were able to achieve complete eradication of primary treated tumors and distant untreated tumors in some mice implanted with the MB49 bladder cancer cells. Delayed rechallenge with MB49 cancer cells injection in mice that appeared cured by SYMPHONY did not lead to new tumor formation after 60 days observation, indicating that SYMPHONY treatment induced effective long-lasting immunity against MB49 cancer cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.,Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Paolo Maccarini
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wiguins Etienne
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yulin Zhao
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chen-Ting Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xiumei Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brant A Inman
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Department of Chemistry, Duke University, Durham, NC, 27708, USA. .,Fitzpatrick Institute of Photonics, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
112
|
Alphandéry E, Idbaih A, Adam C, Delattre JY, Schmitt C, Guyot F, Chebbi I. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 2017; 262:259-272. [PMID: 28713041 DOI: 10.1016/j.jconrel.2017.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023]
Abstract
Previous studies showed that magnetic hyperthermia could efficiently destroy tumors both preclinically and clinically, especially glioma. However, antitumor efficacy remained suboptimal and therefore required further improvements. Here, we introduce a new type of nanoparticles synthesized by magnetotactic bacteria, called magnetosomes, with improved properties compared with commonly used chemically synthesized nanoparticles. Indeed, mice bearing intracranial U87-Luc glioma tumors injected with 13μg of nanoparticles per mm3 of tumor followed by 12 to 15 of 30min alternating magnetic field applications displayed either full tumor disappearance in 40% of mice or no tumor regression using magnetosomes or chemically synthesized nanoparticles, respectively. Magnetosome superior antitumor activity could be explained both by a larger production of heat and by endotoxins release under alternating magnetic field application. Most interestingly, this behavior was observed when magnetosomes occupied only 10% of the whole tumor volume, which suggests that an indirect mechanism, such as an immune reaction, takes part in tumor regression. This is desired for the treatment of infiltrating tumors, such as glioma, for which whole tumor coverage by nanoparticles can hardly be achieved.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de minéralogie et de physique des milieux condensés de physique des matériaux et de cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France; Nanobacterie SARL, 36 boulevard Flandrin, 75016 Paris, France.
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - Clovis Adam
- Laboratoire de neuropathologie, GHU Paris-Sud-Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Jean-Yves Delattre
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - Charlotte Schmitt
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - François Guyot
- Institut de minéralogie et de physique des milieux condensés de physique des matériaux et de cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France
| | - Imène Chebbi
- Nanobacterie SARL, 36 boulevard Flandrin, 75016 Paris, France
| |
Collapse
|
113
|
Abstract
Immune checkpoint therapy has become the first widely adopted immunotherapy for patients with late stage malignant melanoma, with potential for a wide range of cancers. While some patients can experience long term disease remission, this is limited only to a subset of patients and tumor types. The path forward to expand this therapy to more patients and tumor types is currently thought to be combinatorial treatments, the combination of immunotherapy with other treatments. In this review, the combinatorial approach of immune checkpoint therapy combined with nanoparticle-assisted localized hyperthermia is discussed, starting with an overview of the different nanoparticle hyperthermia approaches in development, an overview of the state of immune checkpoint therapy, recent reports of immune checkpoint therapy and nanoparticle-assisted hyperthermia in a combinatorial approach, and finally a discussion of future research topics and areas to be explored in this new combinatorial approach to cancer treatment.
Collapse
Affiliation(s)
- Austin J Moy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James W Tunnell
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
114
|
Rodrigues HF, Capistrano G, Mello FM, Zufelato N, Silveira-Lacerda E, Bakuzis AF. Precise determination of the heat delivery duringin vivomagnetic nanoparticle hyperthermia with infrared thermography. Phys Med Biol 2017; 62:4062-4082. [DOI: 10.1088/1361-6560/aa6793] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
115
|
The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4 + T-cell-mediated antitumor memory immune response. Cell Death Dis 2017; 8:e2703. [PMID: 28333145 PMCID: PMC5386530 DOI: 10.1038/cddis.2017.125] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Tumor metastasis is a major concern in tumor therapy. In our previous studies, a novel tumor therapeutic modality of the cryo-thermal therapy has been presented, highlighting its effect on the suppression of distal metastasis and leading to long-term survival in 4T1 murine mammary carcinoma model. To demonstrate the therapeutic efficacy in other aggressive tumor models and further investigate the mechanism of long-term survival induced, in this study, spontaneous metastatic murine B16F10 melanoma model was used. The cryo-thermal therapy induced regression of implanted melanoma and prolonged long-term survival while inhibiting lung metastasis. It also promoted the activation of CD4+ CD25− conventional T cells, while reduced the percentage of CD4+ CD25+ regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the spleen, lung and blood. Furthermore, the cryo-thermal therapy enhanced the cytolytic function of CD8+ T cells and induced differentiation of CD8+ T cells into memory stem T cell (TSCM), and differentiation of CD4+ T cells into dominant CD4-CTL, Th1 and Tfh subsets in the spleen for 90 days after the treatment. It was found that good therapeutic effect was mainly dependent on CD4+ T cells providing a durable memory antitumor immune response. At the same time, significant increase of serum IFN-γ was also observed to provide an ideal microenvironment of antitumor immunity. Further study showed that the rejection of re-challenge of B16F10 but not GL261 tumor in the treated mice in 45 or 60 days after the treatment, implied a strong systemic and melanoma-specific memory antitumor immunity induced by the treatment. Thus the cryo-thermal therapy would be considered as a new therapeutic strategy to prevent tumor recurrence and metastasis with potential clinical applications in the near future.
Collapse
|
116
|
Hoopes PJ, Wagner RJ, Song A, Osterberg B, Gladstone DJ, Bursey AA, Fiering SN, Giustini AJ. The effect of hypofractionated radiation and magnetic nanoparticle hyperthermia on tumor immunogenicity and overall treatment response. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10066:100660D. [PMID: 29515284 PMCID: PMC5837053 DOI: 10.1117/12.2255981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Robert J Wagner
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Ailin Song
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Bjorn Osterberg
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - David J Gladstone
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Alicea A Bursey
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Steven N Fiering
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | |
Collapse
|
117
|
Hoopes PJ, Mazur CM, Osterberg B, Song A, Gladstone DJ, Steinmetz NF, Veliz FA, Bursey AA, Wagner RJ, Fiering SN. Effect of intra-tumoral magnetic nanoparticle hyperthermia and viral nanoparticle immunogenicity on primary and metastatic cancer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10066:100660G. [PMID: 29203952 PMCID: PMC5711520 DOI: 10.1117/12.2256062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although there is long association of medical hyperthermia and immune stimulation, the relative lack of a quantifiable and reproducible effect has limited the utility and advancement of this relationship in preclinical/clinical cancer and non-cancer settings. Recent cancer-based immune findings (immune checkpoint modulators etc.) including improved mechanistic understanding and biological tools now make it possible to modify and exploit the immune system to benefit conventional cancer treatments such as radiation and hyperthermia. Based on the prior experience of our research group including; cancer-based heat therapy, magnetic nanoparticle (mNP) hyperthermia, radiation biology, cancer immunology and Cowpea Mosaic Virus that has been engineered to over express antigenic proteins without RNA or DNA (eCPMV/VLP). This research was designed to determine if and how the intra-tumoral delivery of mNP hyperthermia and VLP can work together to improve local and systemic tumor treatment efficacy. Using the C3H mouse/MTG-B mammary adenocarcinoma cell model and the C57-B6 mouse/B-16-F10 melanoma cancer cell model, our data suggests the appropriate combination of intra-tumoral mNP heat (e.g. 43°C/30-60 minutes) and VLP (100 μg/200 mm3 tumor) not only result in significant primary tumor regression but the creation a systemic immune reaction that has the potential to retard secondary tumor growth (abscopal effect) and resist tumor rechallenge. Molecular data from these experiments suggest treatment based cell damage and immune signals such as Heat Shock Protein (HSP) 70/90, calreticulin, MTA1 and CD47 are potential targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of hyperthermia cancer treatment.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | | - Bjorn Osterberg
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Ailin Song
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - David J Gladstone
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | | | | - Alicea A Bursey
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Robert J Wagner
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Steven N Fiering
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| |
Collapse
|
118
|
Hoopes PJ, Moodie KL, Petryk AA, Petryk JD, Sechrist S, Gladstone DJ, Steinmetz NF, Veliz FA, Bursey AA, Wagner RJ, Rajan A, Dugat D, Crary-Burney M, Fiering SN. Hypo-fractionated Radiation, Magnetic Nanoparticle Hyperthermia and a Viral Immunotherapy Treatment of Spontaneous Canine Cancer. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2017; 10066:1006605. [PMID: 29203951 PMCID: PMC5711517 DOI: 10.1117/12.2256213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 μg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.
Collapse
Affiliation(s)
- P Jack Hoopes
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Karen L Moodie
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | | - James D Petryk
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | | - David J Gladstone
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | | | | | - Alicea A Bursey
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Robert J Wagner
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Ashish Rajan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK
| | | | - Margaret Crary-Burney
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| | - Steven N Fiering
- Geisel School of Medicine, Dartmouth College 1 Rope Ferry Road, Hanover, NH, USA 03755
| |
Collapse
|
119
|
Arriortua OK, Garaio E, Herrero de la Parte B, Insausti M, Lezama L, Plazaola F, García JA, Aizpurua JM, Sagartzazu M, Irazola M, Etxebarria N, García-Alonso I, Saiz-López A, Echevarria-Uraga JJ. Antitumor magnetic hyperthermia induced by RGD-functionalized Fe 3O 4 nanoparticles, in an experimental model of colorectal liver metastases. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1532-1542. [PMID: 28144504 PMCID: PMC5238624 DOI: 10.3762/bjnano.7.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 06/02/2023]
Abstract
This work reports important advances in the study of magnetic nanoparticles (MNPs) related to their application in different research fields such as magnetic hyperthermia. Nanotherapy based on targeted nanoparticles could become an attractive alternative to conventional oncologic treatments as it allows a local heating in tumoral surroundings without damage to healthy tissue. RGD-peptide-conjugated MNPs have been designed to specifically target αVβ3 receptor-expressing cancer cells, being bound the RGD peptides by "click chemistry" due to its selectivity and applicability. The thermal decomposition of iron metallo-organic precursors yield homogeneous Fe3O4 nanoparticles that have been properly functionalized with RGD peptides, and the preparation of magnetic fluids has been achieved. The nanoparticles were characterized by transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), electron magnetic resonance (EMR) spectroscopy and magnetic hyperthermia. The nanoparticles present superparamagnetic behavior with very high magnetization values, which yield hyperthermia values above 500 W/g for magnetic fluids. These fluids have been administrated to rats, but instead of injecting MNP fluid directly into liver tumors, intravascular administration of MNPs in animals with induced colorectal tumors has been performed. Afterwards the animals were exposed to an alternating magnetic field in order to achieve hyperthermia. The evolution of an in vivo model has been described, resulting in a significant reduction in tumor viability.
Collapse
Affiliation(s)
- Oihane K Arriortua
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Eneko Garaio
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Borja Herrero de la Parte
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Maite Insausti
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Luis Lezama
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Fernando Plazaola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Jose Angel García
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48160, Derio, Spain
| | - Jesús M Aizpurua
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Maialen Sagartzazu
- José Mari Korta Center, University of the Basque Country, UPV/EHU, 20018 Donostia, Spain
| | - Mireia Irazola
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Nestor Etxebarria
- Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48080, Bilbao, Spain
| | - Ignacio García-Alonso
- Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | | | | |
Collapse
|
120
|
Paholak HJ, Stevers NO, Chen H, Burnett JP, He M, Korkaya H, McDermott SP, Deol Y, Clouthier SG, Luther T, Li Q, Wicha MS, Sun D. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy. Biomaterials 2016; 104:145-57. [PMID: 27450902 PMCID: PMC5680543 DOI: 10.1016/j.biomaterials.2016.06.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggesting breast cancer stem cells (BCSCs) drive metastasis and evade traditional therapies underscores a critical need to exploit the untapped potential of nanotechnology to develop innovative therapies that will significantly improve patient survival. Photothermal therapy (PTT) to induce localized hyperthermia is one of few nanoparticle-based treatments to enter clinical trials in human cancer patients, and has recently gained attention for its ability to induce a systemic immune response targeting distal cancer cells in mouse models. Here, we first conduct classic cancer stem cell (CSC) assays, both in vitro and in immune-compromised mice, to demonstrate that PTT mediated by highly crystallized iron oxide nanoparticles effectively eliminates BCSCs in translational models of triple negative breast cancer. PTT in vitro preferentially targets epithelial-like ALDH + BCSCs, followed by mesenchymal-like CD44+/CD24- BCSCs, compared to bulk cancer cells. PTT inhibits BCSC self-renewal through reduction of mammosphere formation in primary and secondary generations. Secondary implantation in NOD/SCID mice reveals the ability of PTT to impede BCSC-driven tumor formation. Next, we explore the translational potential of PTT using metastatic and immune-competent mouse models. PTT to inhibit BCSCs significantly reduces metastasis to the lung and lymph nodes. In immune-competent BALB/c mice, PTT effectively eliminates ALDH + BCSCs. These results suggest the feasibility of incorporating PTT into standard clinical treatments such as surgery to enhance BCSC destruction and inhibit metastasis, and the potential of such combination therapy to improve long-term survival in patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Hayley J Paholak
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas O Stevers
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Hongwei Chen
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States.
| | - Joseph P Burnett
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Hasan Korkaya
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States; Georgia Regents University Cancer Center, Augusta, GA, United States
| | - Sean P McDermott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Yadwinder Deol
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shawn G Clouthier
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Tahra Luther
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Qiao Li
- Departments of Surgery and Pathology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
121
|
To understand moxibustion from the biological effect of local thermal stimulation. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2016. [DOI: 10.1016/s1003-5257(17)30060-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
122
|
Karponis D, Azzawi M, Seifalian A. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer. Nanomedicine (Lond) 2016; 11:2215-32. [DOI: 10.2217/nnm-2016-0113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine is an emerging field, which constitutes a new direction in the treatment of cancer. Magnetic nanoparticles (MNPs) can circumvent vascular tissue to concentrate at the site of the tumor. Under the influence of an external, alternating magnetic field, MNPs generate high temperatures within the tumor and ablate malignant cells while inflicting minimal damage to healthy host tissue. Due to their theranostic properties, they constitute a promising candidate for the treatment of cancer. A critical review of the type, size and therapeutic effect of different MNPs is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry, with a few studies moving to clinical trials within the next 5 years.
Collapse
Affiliation(s)
| | - May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- NanoRegMed Ltd, The London BioScience Innovation Center, London, UK
| |
Collapse
|
123
|
Tupal A, Sabzichi M, Ramezani F, Kouhsoltani M, Hamishehkar H. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J Microencapsul 2016; 33:372-80. [PMID: 27338131 DOI: 10.1080/02652048.2016.1200150] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Dermal delivery of Doxorubicin (Dox) would be an ideal way in maximising drug efficiency against skin cancer accompanying with minimising side effects. We investigated the potential of Dox-loaded Solid lipid nanoparticles (SLNs) for topical delivery against skin cancer. METHODS In vitro and in vivo cytotoxicity of optimised formulation were evaluated on murine melanoma (B16F10) cells by MTT assay and melanoma induced Balb/C mice, respectively. Animal study followed by histological analysis. RESULTS Optimised formulation showed mean particle size and encapsulation efficiency (EE) of 92 nm and 86% w/w (0.86% w/w value of encapsulated Dox in the lipid matrix), respectively. FTIR experiment confirmed drug-lipid interaction interpreting the observed high EE value for Dox. In vitro and in vivo results indicated the superiority of cytotoxic performance of Dox-loaded SLN compared to Dox solution. CONCLUSION Our findings may open the possibilities for the topical delivery of Dox to the skin cancerous tissues.
Collapse
Affiliation(s)
- Ailar Tupal
- a Biotechnology Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Sabzichi
- b Research Center for Pharmaceutical Nanotechnology and Students' Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Ramezani
- c Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Iran
| | - Maryam Kouhsoltani
- d Department of Oral & Maxillofacial Pathology, Faculty of Dentistry , Tabriz University of Medical Science , Tabriz , Iran
| | - Hamed Hamishehkar
- e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
124
|
Chiu-Lam A, Rinaldi C. Nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3933-3941. [PMID: 29225561 PMCID: PMC5720376 DOI: 10.1002/adfm.201505256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles can be made to dissipate heat to their immediate surroundings in response to an applied alternating magnetic field. This property, combined with the biocompatibility of iron oxide nanoparticles and the ability of magnetic fields to penetrate deep in the body, makes magnetic nanoparticles attractive in a range of biomedical applications where thermal energy is used either directly to achieve a therapeutic effect or indirectly to actuate the release of a therapeutic agent. Although the concept of bulk heating of fluids and tissues using energy dissipated by magnetic nanoparticles has been well accepted and applied for several decades, many new and exciting biomedical applications of magnetic nanoparticles take advantage of heat effects that are confined to the immediate nanoscale vicinity of the nanoparticles. Until recently the existence of these nanoscale thermal phenomena had remained controversial. In this short review we summarize some of the recent developments in this field and emerging applications for nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields.
Collapse
Affiliation(s)
- Andreina Chiu-Lam
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611-6005, USA
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611-6005, USA
| |
Collapse
|
125
|
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299:78-89. [PMID: 26739622 PMCID: PMC4811709 DOI: 10.1016/j.taap.2015.12.022] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA.
| | - Michael Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anna A Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
126
|
Zhukova GV, Goroshinskaya IA, Shikhliarova AI, Kit OI, Kachesova PS, Polozhentsev OE. On the self-dependent effect of metal nanoparticles on malignant tumors. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
127
|
Carrião MS, Bakuzis AF. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? NANOSCALE 2016; 8:8363-77. [PMID: 27046437 DOI: 10.1039/c5nr09093h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.
Collapse
Affiliation(s)
- Marcus S Carrião
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.
| |
Collapse
|
128
|
van den Tempel N, Horsman MR, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 2016; 32:446-54. [PMID: 27086587 DOI: 10.3109/02656736.2016.1157216] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia's many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - Michael R Horsman
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Roland Kanaar
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
129
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
130
|
Cao G, Wang J, Zheng X, Wei H, Tian Z, Sun R. Tumor Therapeutics Work as Stress Inducers to Enhance Tumor Sensitivity to Natural Killer (NK) Cell Cytolysis by Up-regulating NKp30 Ligand B7-H6. J Biol Chem 2015; 290:29964-73. [PMID: 26472927 DOI: 10.1074/jbc.m115.674010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future.
Collapse
Affiliation(s)
- Guoshuai Cao
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jian Wang
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China,
| | - Xiaodong Zheng
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Zhigang Tian
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- From the Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, and
| |
Collapse
|
131
|
Abstract
Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing the history of hyperthermia therapy for cancer and introducing methods for inducing local hyperthermia, this review describes different mechanisms by which heating tumours can elicit anti-tumour immune responses, including tumour cell damage, tumour surface molecule changes, heat shock proteins, exosomes, direct effects on immune cells, and changes in the tumour vasculature. We then go over in vivo studies that provide promising results showing that local hyperthermia therapy indeed activates various systemic anti-tumour immune responses that slow growth of untreated tumours. Finally, future research questions that will help bring the use of local hyperthermia as systemic immunotherapy closer to clinical application are discussed.
Collapse
Affiliation(s)
- Seiko Toraya-Brown
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover , New Hampshire
| | | |
Collapse
|
132
|
Moros M, Ambrosone A, Stepien G, Fabozzi F, Marchesano V, Castaldi A, Tino A, de la Fuente JM, Tortiglione C. Deciphering intracellular events triggered by mild magnetic hyperthermia in vitro and in vivo. Nanomedicine (Lond) 2015; 10:2167-83. [PMID: 25959578 DOI: 10.2217/nnm.15.70] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To assess the cell response to magnetic nanoparticles under an alternating magnetic field by molecular quantification of heat responsive transcripts in two model systems. MATERIALS & METHODS Melanoma cells and Hydra vulgaris treated with magnetic nanoparticles were subjected to an alternating magnetic field or to macroscopic heating. Effect to these treatments were assessed at animal, cellular and molecular levels. RESULTS By comparing hsp70 expression following both treatments, thermotolerance pathways were found in both systems in absence of cell ablation or global temperature increment. CONCLUSION Analysis of hsp70 transcriptional activation can be used as molecular thermometer to sense cells' response to magnetic hyperthermia. Similar responses were found in cells and Hydra, suggesting a general mechanism to the delivery of sublethal thermal doses.
Collapse
Affiliation(s)
- Maria Moros
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Alfredo Ambrosone
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Grazyna Stepien
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Federica Fabozzi
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Valentina Marchesano
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Anna Castaldi
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Angela Tino
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Jesus M de la Fuente
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza. C/Pedro Cerbuna 12, Zaragoza, Spain
| | - Claudia Tortiglione
- Istituto di Cibernetica "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| |
Collapse
|
133
|
Ndong C, Toraya-Brown S, Kekalo K, Baker I, Gerngross TU, Fiering SN, Griswold KE. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. Int J Nanomedicine 2015; 10:2595-617. [PMID: 25878495 PMCID: PMC4388088 DOI: 10.2147/ijn.s79367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs) to the folate receptor alpha (FOLRα) using an engineered antibody fragment (Ffab). Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy.
Collapse
Affiliation(s)
| | - Seiko Toraya-Brown
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Ian Baker
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Tillman U Gerngross
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA ; Department of Biological Sciences, Dartmouth, Hanover, NH, USA ; Department of Chemistry, Dartmouth, Hanover, NH, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA ; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA ; Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA ; Department of Biological Sciences, Dartmouth, Hanover, NH, USA ; Norris Cotton Cancer Center, Lebanon, NH, USA
| |
Collapse
|
134
|
Osaci M, Cacciola M. An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2173-82. [PMID: 26665090 PMCID: PMC4660916 DOI: 10.3762/bjnano.6.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/06/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes: Néel relaxation and Brownian relaxation. RESULTS Since a consistent theory for the Néel relaxation time that is applicable to systems of interacting nanoparticles has not yet been developed, we adapted the Coffey theoretical model for the Néel relaxation time in external magnetic fields in order to consider local dipolar magnetic fields. Then, we obtained the effective relaxation time. The effective relaxation time is further used for obtaining values of specific loss power (SLP) through linear response theory (LRT). A comparative analysis between our model and the discrete orientation model, more often used in literature, and a comparison with experimental data from literature have been carried out, in order to choose the optimal magnetic parameters of a nanoparticle system. CONCLUSION In this way, we can study effects of the nanoparticle concentration on SLP in an acceptable range of frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia.
Collapse
Affiliation(s)
- Mihaela Osaci
- “Politehnica” University of Timisoara, Department of Electrical Engineering and Industrial Informatics, Piata Victoriei Nr. 2, 300006 Timisoara, jud. Timis, Romania
| | - Matteo Cacciola
- University “Mediterranea” of Reggio Calabria, DICEAM, Via Graziella Feo di Vito, I-89100 Reggio Calabria, Italy
| |
Collapse
|
135
|
Baker I, Fiering SN, Griswold KE, Hoopes PJ, Kekalo K, Ndong C, Paulsen K, Petryk AA, Pogue B, Shubitidze F, Weaver J. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia. Nanomedicine (Lond) 2015; 10:1685-92. [PMID: 26080693 PMCID: PMC4493741 DOI: 10.2217/nnm.15.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.
Collapse
Affiliation(s)
- Ian Baker
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Steve N Fiering
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Karl E Griswold
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - P Jack Hoopes
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Katerina Kekalo
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Christian Ndong
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Keith Paulsen
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Alicea A Petryk
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Brian Pogue
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Fridon Shubitidze
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
| | - John Weaver
- Thayer School of Engineering, 14 Engineering Drive, Hanover, NH 03755, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| |
Collapse
|
136
|
Chang Q, Gao H, Bu S, Zhong W, Lu F, Xing M. An injectable aldehyded 1-amino-3,3-diethoxy-propane hyaluronic acid–chitosan hydrogel as a carrier of adipose derived stem cells to enhance angiogenesis and promote skin regeneration. J Mater Chem B 2015; 3:4503-4513. [DOI: 10.1039/c5tb00027k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report an injectable aldehyded 1-amino-3,3-diethoxy-propane (ADEP)–hyaluronic acid (AHA)–chitosan (CS) hydrogel.
Collapse
Affiliation(s)
- Qiang Chang
- Department of Mechanical and Manufacturing Engineering
- University of Manitoba
- Winnipeg
- Canada
- Department of Biochemistry and Medical Genetics
| | - Haiyun Gao
- Department of Mechanical and Manufacturing Engineering
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute of Child Health
| | - Shouhan Bu
- Department of Mechanical and Manufacturing Engineering
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute of Child Health
| | - Wen Zhong
- Department of Textile Sciences
- Faculty of Human Ecology
- University of Manitoba
- Winnipeg
- Canada
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery
- Nanfang Hospital
- Southern Medical University
- 1838 Guangzhou
- P. R. China
| | - Malcolm Xing
- Department of Mechanical and Manufacturing Engineering
- University of Manitoba
- Winnipeg
- Canada
- Department of Biochemistry and Medical Genetics
| |
Collapse
|
137
|
Ju M, Lv J, Kuang XY, Ding LP, Lu C, Wang JJ, Jin YY, Maroulis G. Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ(n = 1–8, μ = 0, ±1): insights and perspectives. RSC Adv 2015. [DOI: 10.1039/c4ra12259c] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The structural and magnetic properties of neutral and charged (FeO)nμ(n= 1–8,μ= 0, ±1) clusters have been studied using an unbiased CALYPSO structure searching method.
Collapse
Affiliation(s)
- Meng Ju
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - Jian Lv
- Beijing Computational Science Research Center
- Beijing 100084
- China
- State Key Laboratory of Superhard Materials
- Jilin University
| | - Xiao-Yu Kuang
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - Li-Ping Ding
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - Cheng Lu
- Department of Physics
- Nanyang Normal University
- Nanyang 473061
- China
| | - Jing-Jing Wang
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - Yuan-Yuan Jin
- Institute of Atomic and Molecular Physics
- Sichuan University
- Chengdu 610065
- China
| | - George Maroulis
- Department of Chemistry
- University of Patras
- GR-26500 Patras
- Greece
| |
Collapse
|