101
|
Does serotonin deficit mediate susceptibility to ADHD? Neurochem Int 2015; 82:52-68. [DOI: 10.1016/j.neuint.2015.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/18/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022]
|
102
|
Baldinger P, Kraus C, Rami-Mark C, Gryglewski G, Kranz GS, Haeusler D, Hahn A, Spies M, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Interaction between 5-HTTLPR and 5-HT1B genotype status enhances cerebral 5-HT1A receptor binding. Neuroimage 2015; 111:505-12. [PMID: 25652393 DOI: 10.1016/j.neuroimage.2015.01.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022] Open
Abstract
Serotonergic neurotransmission is thought to underlie a dynamic interrelation between different key structures of the serotonin system. The serotonin transporter (SERT), which is responsible for the reuptake of serotonin from the synaptic cleft into the neuron, as well as the serotonin-1A (5-HT1A) and -1B (5-HT1B) receptors, inhibitory auto-receptors in the raphe region and projection areas, respectively, are likely to determine serotonin release. Thereby, they are involved in the regulation of extracellular serotonin concentrations and the extent of serotonergic effects in respective projection areas. Complex receptor interactions can be assessed in vivo with positron emission tomography (PET) and single-nucleotide-polymorphisms, which are thought to alter protein expression levels. Due to the complexity of the serotonergic system, gene × gene interactions are likely to regulate transporter and receptor expression and therefore subsequently serotonergic transmission. In this context, we measured 51 healthy subjects (mean age 45.5 ± 12.9, 38 female) with PET using [carbonyl-(11)C]WAY-100635 to determine 5-HT1A receptor binding potential (5-HT1A BPND). Genotyping for rs6296 (HTR1B) and 5-HTTLPR (SERT gene promoter polymorphism) was performed using DNA isolated from whole blood. Voxel-wise whole-brain ANOVA revealed a positive interaction effect of genotype groups (5-HTTLPR: LL, LS+SS and HTR1B: rs6296: CC, GC+GG) on 5-HT1A BPND with peak t-values in the bilateral parahippocampal gyrus. More specifically, highest 5-HT1A BPND was identified for individuals homozygous for both the L-allele of 5-HTTLPR and the C-allele of rs6296. This finding suggests that the interaction between two major serotonergic structures involved in serotonin release, specifically the SERT and 5-HT1B receptor, results in a modification of the inhibitory serotonergic tone mediated via 5-HT1A receptors.
Collapse
Affiliation(s)
- Pia Baldinger
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Genetics Research Center, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Germany; Department of Psychiatry, Medical University of Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University of Vienna, Austria.
| |
Collapse
|
103
|
Baldinger P, Höflich AS, Mitterhauser M, Hahn A, Rami-Mark C, Spies M, Wadsak W, Lanzenberger R, Kasper S. Effects of Silexan on the serotonin-1A receptor and microstructure of the human brain: a randomized, placebo-controlled, double-blind, cross-over study with molecular and structural neuroimaging. Int J Neuropsychopharmacol 2015; 18:pyu063. [PMID: 25522403 PMCID: PMC4360214 DOI: 10.1093/ijnp/pyu063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Recently, Silexan, a patented active substance comprised of an essential oil produced from Lavandula angustifolia flowers, has been authorized in Germany as a medicinal product for the treatment of states of restlessness related to anxious mood. Its efficacy has been shown in several forms of anxiety disorders. Findings from preclinical and clinical studies attribute a major role to the serotonin-1A receptor in the pathogenesis and treatment of anxiety. METHODS To elucidate the effect of Silexan on serotonin-1A receptor binding, 17 healthy men underwent 2 positron emission tomography measurements using the radioligand [carbonyl-(11)C]WAY-100635 following the daily intake of 160 mg Silexan or placebo for a minimum of 8 weeks (randomized, double-blind, cross-over design). Additionally, structural magnetic resonance imaging and voxel-based morphometry analysis was performed to determine potential effects on gray matter microstructure. RESULTS Serotonin-1A receptor binding potential was shown to be significantly reduced following the intake of Silexan compared with placebo in 2 large clusters encompassing the temporal gyrus, the fusiform gyrus and the hippocampus on one hand as well as the insula and anterior cingulate cortex on the other hand. No effects of Silexan on gray matter volume could be detected in this investigation. CONCLUSION This positron emission tomography study proposes an involvement of the serotonin-1A receptor in the anxiolytic effects of Silexan. The study was registered in the International Standard Randomized Controlled Trial Number Register as ISRCTN30885829 (http://www.controlled-trials.com/isrctn/).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy (Drs Baldinger, Höflich, Hahn, Spies, Lanzenberger and Kasper), Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine (Drs Mitterhauser, Rami-Mark and Wadsak), Medical University of Vienna, Austria.
| |
Collapse
|
104
|
Hahn A, Kranz GS, Sladky R, Ganger S, Windischberger C, Kasper S, Lanzenberger R. Individual diversity of functional brain network economy. Brain Connect 2014; 5:156-65. [PMID: 25411715 DOI: 10.1089/brain.2014.0306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.
Collapse
Affiliation(s)
- Andreas Hahn
- 1 Department of Psychiatry and Psychotherapy, Medical University of Vienna , Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
105
|
Hahn A, Kranz GS, Küblböck M, Kaufmann U, Ganger S, Hummer A, Seiger R, Spies M, Winkler D, Kasper S, Windischberger C, Swaab DF, Lanzenberger R. Structural Connectivity Networks of Transgender People. Cereb Cortex 2014; 25:3527-34. [PMID: 25217469 PMCID: PMC4585501 DOI: 10.1093/cercor/bhu194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity.
Collapse
Affiliation(s)
| | | | - Martin Küblböck
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Allan Hummer
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering
| | | | | | | | | | | | - Dick F Swaab
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
106
|
Kraus C, Baldinger P, Rami-Mark C, Gryglewsky G, Kranz GS, Haeusler D, Hahn A, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Exploring the impact of BDNF Val66Met genotype on serotonin transporter and serotonin-1A receptor binding. PLoS One 2014; 9:e106810. [PMID: 25188405 PMCID: PMC4154779 DOI: 10.1371/journal.pone.0106810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) may impact on the in-vivo binding of important serotonergic structures such as the serotonin transporter (5-HTT) and the serotonin-1A (5-HT1A) receptor. Previous positron emission tomography (PET) studies on the association between Val66Met and 5-HTT and 5-HT1A binding potential (BPND) have demonstrated equivocal results. Methods We conducted an imaging genetics study investigating the effect of Val66Met genotype on 5-HTT or 5-HT1A BPND in 92 subjects. Forty-one subjects (25 healthy subjects and 16 depressive patients) underwent genotyping for Val66Met and PET imaging with the 5-HTT specific radioligand [11C]DASB. Additionally, in 51 healthy subjects Val66Met genotypes and 5-HT1A binding with the radioligand [carbonyl-11C]WAY-100635 were ascertained. Voxel-wise and region of interest-based analyses of variance were used to examine the influence of Val66Met on 5-HTT and 5-HT1A BPND. Results No significant differences of 5-HTT nor 5-HT1A BPND between BDNF Val66Met genotype groups (val/val vs. met-carrier) were detected. There was no interaction between depression and Val66Met genotype status. Conclusion In line with previous data, our work confirms an absent effect of BDNF Val66Met on two major serotonergic structures. These results could suggest that altered protein expression associated with genetic variants, might be compensated invivo by several levels of unknown feedback mechanisms. In conclusion, Val66Met genotype status is not associated with changes of in-vivo binding of 5-HTT and 5-HT1A receptors in human subjects.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewsky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S. Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, Medical University of Halle, Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
107
|
Stein P, Baldinger P, Kaufmann U, Christina RM, Hahn A, Höflich A, Kranz GS, Savli M, Wadsak W, Mitterhauser M, Winkler D, Kasper S, Lanzenberger R. Relation of progesterone and DHEAS serum levels to 5-HT1A receptor binding potential in pre- and postmenopausal women. Psychoneuroendocrinology 2014; 46:52-63. [PMID: 24882158 DOI: 10.1016/j.psyneuen.2014.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/01/2014] [Accepted: 04/14/2014] [Indexed: 12/27/2022]
Abstract
Preclinical research and clinical experience point to a modulation of 5-HT1A receptor expression by gonadal steroid hormones. We examined the effect of estradiol, progesterone and DHEAS on serotonin neurotransmission in 16 premenopausal and 28 postmenopausal women, differentiating by reproductive status. By means of positron emission tomography and the radiotracer [carbonyl-(11)C]WAY-100635, the 5-HT1A receptor binding potential (BP) was quantified in 45 brain regions of interest. Median BP was used as a surrogate marker to estimate the whole brain effect of the steroid hormones on receptor binding. We found a strong negative effect of serum progesterone and DHEAS levels on 5-HT1A receptor binding in postmenopausal women both in the Median BP and on a regional level. Furthermore, there was a non-linear, U-shaped relationship between DHEAS levels and 5-HT1A receptor binding in the pooled sample. Presynaptic 5-HT1A receptor BP in the raphe nuclei was significantly explained in a non-linear way by both progesterone and DHEAS in the pooled sample. Our study confirms in humans a preclinically suggested relation of the steroid hormones progesterone and DHEAS to 5-HT1A receptor binding. We show differential effects of the hormones with regard to reproductive hormonal status. Non-linear, U-shaped relationships between hormone serum concentrations and serotonin neurotransmission might explain paradoxical effects of these hormones on mood.
Collapse
Affiliation(s)
- Patrycja Stein
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Rami-Mark Christina
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Markus Savli
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1).
| |
Collapse
|
108
|
Kranz GS, Rami-Mark C, Kaufmann U, Baldinger P, Hahn A, Höflich A, Savli M, Stein P, Wadsak W, Mitterhauser M, Winkler D, Lanzenberger R, Kasper S. Effects of hormone replacement therapy on cerebral serotonin-1A receptor binding in postmenopausal women examined with [carbonyl-¹¹C]WAY-100635. Psychoneuroendocrinology 2014; 45:1-10. [PMID: 24845171 DOI: 10.1016/j.psyneuen.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/18/2014] [Accepted: 03/11/2014] [Indexed: 11/16/2022]
Abstract
Preclinical research points to a strong modulatory influence of gonadal hormones on the serotonin system. However, human data corroborating this association remains scarce. The aim of this study was to examine the effects of hormone replacement therapy on 5-HT₁A receptor binding in postmenopausal women using positron emission tomography (PET) and the radioligand [carbonyl-(11)C]WAY-100635. In this randomized, double-blind, longitudinal study, 30 postmenopausal women underwent treatment with either a combination of oral 17β-estradiol valerate and micronized progesterone (group 1, n=10), oral 17β-estradiol valerate (group 2, n=10), or placebo (group 3, n=10). Two PET measurements were performed, one the day before treatment start and the second after at least eight weeks of treatment. Plasma levels of estradiol (E₂), progesterone (P₄), sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were collected prior to PET measurements. As expected, hormone replacement therapy led to a significant increase in E₂ and P4 plasma levels in group 1 and to a significant increase in E₂ levels in group 2. The 5-HT₁A receptor binding did not change significantly after estrogen, combined estrogen/progesterone treatment or placebo in any of the investigated brain regions. There were no significant correlations between changes in E₂ or P4 values and changes in 5-HT₁A receptor binding. Although we were not able to confirm effects of gonadal hormone treatment on 5-HT₁A receptor binding, our data do not preclude associations between sex steroid levels and serotonin, the neurotransmitter implicated most strongly in the pathogenesis of affective and anxiety disorders. ClinicalTrials.gov Identifier: NCT00755963.
Collapse
Affiliation(s)
- Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Markus Savli
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Patrycja Stein
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1).
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria(1)
| |
Collapse
|
109
|
|
110
|
Tuckwell HC, Penington NJ. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog Neurobiol 2014; 118:59-101. [PMID: 24784445 DOI: 10.1016/j.pneurobio.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/14/2023]
Abstract
Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a single-compartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current INa, a delayed rectifier potassium current IKDR, a transient potassium current IA, a slow non-inactivating potassium current IM, a low-threshold calcium current IT, two high threshold calcium currents IL and IN, small and large conductance potassium currents ISK and IBK, a hyperpolarization-activated cation current IH and a leak current ILeak. In Sections 3-8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemaker-like spiking, long-lasting afterhyperpolarization and the ramp-like return to threshold after a spike. In some cases the membrane potential trajectories display doublets or have humps or notches as have been reported in some experimental studies. The computed time courses of IA and IT during the interspike interval support the generally held view of a competition between them in influencing the frequency of spiking. Spontaneous activity was facilitated by the presence of IH which has been found in these neurons by some investigators. For reasonable sets of parameters spike frequencies between about 0.6Hz and 1.2Hz are obtained, but frequencies as high as 6Hz could be obtained with special parameter choices. Topics investigated and compared with experiment include shoulders, notches, anodal break phenomena, the effects of noradrenergic input, frequency versus current curves, depolarization block, effects of cell size and the effects of IM. The inhibitory effects of activating 5-HT1A autoreceptors are also investigated. There is a considerable discussion of in vitro versus in vivo firing behavior, with focus on the roles of noradrenergic input, corticotropin-releasing factor and orexinergic inputs. Location of cells within the nucleus is probably a major factor, along with the state of the animal.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany; School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA; Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| |
Collapse
|
111
|
Scharinger C, Rabl U, Kasess CH, Meyer BM, Hofmaier T, Diers K, Bartova L, Pail G, Huf W, Uzelac Z, Hartinger B, Kalcher K, Perkmann T, Haslacher H, Meyer-Lindenberg A, Kasper S, Freissmuth M, Windischberger C, Willeit M, Lanzenberger R, Esterbauer H, Brocke B, Moser E, Sitte HH, Pezawas L. Platelet serotonin transporter function predicts default-mode network activity. PLoS One 2014; 9:e92543. [PMID: 24667541 PMCID: PMC3965432 DOI: 10.1371/journal.pone.0092543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/25/2014] [Indexed: 12/16/2022] Open
Abstract
Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation.
Collapse
Affiliation(s)
- Christian Scharinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ulrich Rabl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christian H. Kasess
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Bernhard M. Meyer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Tina Hofmaier
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kersten Diers
- Department of Psychology, Dresden University of Technology, Dresden, Germany
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gerald Pail
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Huf
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Statistics and Probability Theory, Vienna University of Technology, Vienna, Austria
| | - Zeljko Uzelac
- Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Beate Hartinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Klaudius Kalcher
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Statistics and Probability Theory, Vienna University of Technology, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Burkhard Brocke
- Department of Psychology, Dresden University of Technology, Dresden, Germany
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lukas Pezawas
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
112
|
Hahn A, Haeusler D, Kraus C, Höflich AS, Kranz GS, Baldinger P, Savli M, Mitterhauser M, Wadsak W, Karanikas G, Kasper S, Lanzenberger R. Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Hum Brain Mapp 2014; 35:3857-66. [PMID: 24443158 DOI: 10.1002/hbm.22442] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/21/2013] [Accepted: 11/25/2013] [Indexed: 11/06/2022] Open
Abstract
Suffering from anhedonia, patients with major depressive disorder (MDD) exhibit alterations in several parts of the serotonergic neurotransmitter system, which are in turn involved in reward processing. However, previous investigations of the serotonin transporter (SERT) focused on regional differences with varying results depending on the clinical syndrome. Here, we aimed to describe the serotonergic system of MDD patients on a network level by evaluating SERT associations across brain regions. Twenty medication free patients with major depression and 20 healthy controls underwent positron emission tomography using the radioligand [(11) C]DASB. SERT binding potentials (BPND ) were quantified voxel-wise with the multilinear reference tissue model 2. In addition, SERT BPND was extracted from the dorsal raphe nucleus (DRN) as an indicator of midbrain serotonergic neurotransmission. Whole-brain linear regression analysis was applied to evaluate the association of DRN SERT bindings to those in projection areas, which was followed by ANCOVA to assess differences in interregional relationships between patients and controls. Although both groups showed widespread positive correlations, group differences were restricted to decreased SERT associations between the DRN and the ventral striatum (right and left respectively: t=5.85, P<0.05 corrected and t=5.07, P<0.1 corrected) when comparing MDD patients (R(2)=0.11 and 0.24) to healthy subjects (R(2)=0.72 and 0.66, P<0.01 and 0.05 corrected). Adjusting for age and sex did not change these findings. This study indicates a disturbed regulation between key regions involved in reward processing via the SERT. Our interregional approach highlights the importance of evaluating pathophysiological alterations on a network level to gain complementary information in addition to regional investigations.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Ravan S, Martinez D, Slifstein M, Abi-Dargham A. Molecular imaging in alcohol dependence. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:293-311. [PMID: 25307582 DOI: 10.1016/b978-0-444-62619-6.00018-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cellular mechanisms of alcohol's effects in the brain are complex, targeting multiple transmitter systems. Molecular imaging has been used to study the effects of alcohol and alcohol use disorders on these various systems. Studies of dopaminergic indices have provided robust evidence for deficits in D2-mediated transmission in the striatum of chronic recently detoxified alcoholics. Their presence in the at-risk state prior to excessive drinking, and their recovery after long-term sobriety, are unclear and represent an active area of current research. Investigations of the GABAergic system have shown generalized deficits in various brain regions in the chronic abstinence phase. Studies of the opiate system have suggested alterations in some subtypes in discrete brain regions, including the ventral striatum, while studies of serotonin have been negative and those of the cannabinoid system have been inconclusive. Future investigations should target the glutamatergic system, which plays an important role both in the acute intoxicating effects of alcohol as well as in the long-term effects associated with dependence.
Collapse
Affiliation(s)
- Shervin Ravan
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Diana Martinez
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Anissa Abi-Dargham
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
114
|
PET Neuroimaging: The White Elephant Packs His Trunk? Neuroimage 2014; 84:1094-100. [DOI: 10.1016/j.neuroimage.2013.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 01/30/2023] Open
|
115
|
Siebner HR, Strafella AP, Rowe JB. The white elephant revived: a new marriage between PET and MRI: comment to Cumming: "PET neuroimaging: the white elephant packs his trunk?". Neuroimage 2014; 84:1104-6. [PMID: 24084070 DOI: 10.1016/j.neuroimage.2013.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | | | | |
Collapse
|
116
|
Baldinger P, Kranz GS, Haeusler D, Savli M, Spies M, Philippe C, Hahn A, Höflich A, Wadsak W, Mitterhauser M, Lanzenberger R, Kasper S. Regional differences in SERT occupancy after acute and prolonged SSRI intake investigated by brain PET. Neuroimage 2013; 88:252-62. [PMID: 24121201 DOI: 10.1016/j.neuroimage.2013.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/17/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022] Open
Abstract
Blocking of the serotonin transporter (SERT) represents the initial mechanism of action of selective serotonin reuptake inhibitors (SSRIs) which can be visualized due to the technical proceedings of SERT occupancy studies. When compared to the striatum, higher SERT occupancy in the midbrain and lower values in the thalamus were reported. This indicates that occupancy might be differently distributed throughout the brain, which is supported by preclinical findings indicating a regionally varying SERT activity and antidepressant drug concentration. The present study therefore aimed to investigate regional SERT occupancies with positron emission tomography and the radioligand [(11)C]DASB in 19 depressed patients after acute and prolonged intake of oral doses of either 10mg/day escitalopram or 20mg/day citalopram. Compared to the mean occupancy across cortical and subcortical regions, we detected increased SERT occupancies in regions commonly associated with antidepressant response, such as the subgenual cingulate, amygdala and raphe nuclei. When acute and prolonged drug intake was compared, SERT occupancies increased in subcortical areas that are known to be rich in SERT. Moreover, SERT occupancy in subcortical brain areas after prolonged intake of antidepressants was predicted by plasma drug levels. Similarly, baseline SERT binding potential seems to impact SERT occupancy, as regions rich in SERT showed greater binding reduction as well as higher residual binding. These findings suggest a region-specific distribution of SERT blockage by SSRIs and relate the postulated link between treatment response and SERT occupancy to certain brain regions such as the subgenual cingulate cortex.
Collapse
Affiliation(s)
- Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Savli
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
117
|
Haleem DJ. Extending therapeutic use of psychostimulants: focus on serotonin-1A receptor. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:170-80. [PMID: 23906987 DOI: 10.1016/j.pnpbp.2013.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Despite a number of medicinally important pharmacological effects, the therapeutic use of psychostimulants is limited because of abuse potential and psychosis following long term use. Development of pharmacological agents for improving and extending therapeutic use of psychostimulants in narcolepsy, attention deficit hyperactivity disorder, Parkinson's disease, obesity and as cognitive enhancer is an important research imperative. In this regard, one potential target system is the 5-hydroxytryptamine (5-HT; serotonin) neurotransmitter system. The focus of the present article is to evaluate a potential role of 5-HT-1A receptor in the alleviation of abuse potential and psychosis-induced by prescription psychostimulants amphetamines and apomorphine. METHOD Synaptic contacts between dopamine systems and 5-HT-1A receptors are traced. Studies on serotonin-1A influences on the modulation of dopamine neurotransmission and psychostimulant-induced behavioral sensitization are accumulated. RESULTS Inhibition of amphetamine and apomorphine-induced behavioral sensitization by co administration of 5-HT-1A agonists cannot be explained in terms of direct activation of 5-HT-1A receptors, because activation of pre- as well as postsynaptic 5-HT-1A receptors tends to increase dopamine neurotransmission. CONCLUSION Long term use of amphetamine and apomorphine produces adaptive changes in 5-HT-1A receptor mediated functions, which are prevented by the co-use of 5-HT-1A agonists. In view of extending medicinal use of psychostimulants, it is important to evaluate the effects of co-use of 5-HT-1A agonists on potential therapeutic profile of amphetamine and apomorphine in preclinical research. It is also important to evaluate the functional significance of 5-HT-1A receptors on psychostimulant-induced behaviors in other addiction models such as drug self-administration and reinstatement of drug seeking behavior.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
118
|
Höflich A, Savli M, Comasco E, Moser U, Novak K, Kasper S, Lanzenberger R. Neuropsychiatric deep brain stimulation for translational neuroimaging. Neuroimage 2013; 79:30-41. [DOI: 10.1016/j.neuroimage.2013.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
|
119
|
Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 2013; 33:10544-51. [PMID: 23785166 DOI: 10.1523/jneurosci.3007-12.2013] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.
Collapse
|
120
|
Kraus C, Ganger S, Losak J, Hahn A, Savli M, Kranz GS, Baldinger P, Windischberger C, Kasper S, Lanzenberger R. Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake. Neuroimage 2013; 84:236-44. [PMID: 23988273 DOI: 10.1016/j.neuroimage.2013.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 08/16/2013] [Indexed: 01/31/2023] Open
Abstract
Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brain's functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brain's metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Functional, Molecular and Translational Neuroimaging Lab - PET & MRI, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Baldinger P, Hahn A, Mitterhauser M, Kranz GS, Friedl M, Wadsak W, Kraus C, Ungersböck J, Hartmann A, Giegling I, Rujescu D, Kasper S, Lanzenberger R. Impact of COMT genotype on serotonin-1A receptor binding investigated with PET. Brain Struct Funct 2013; 219:2017-28. [PMID: 23928748 DOI: 10.1007/s00429-013-0621-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/27/2013] [Indexed: 12/15/2022]
Abstract
Alterations of the inhibitory serotonin-1A receptor (5-HT1A) constitute a solid finding in neuropsychiatric research, particularly in the field of mood and anxiety disorders. Manifold factors influencing the density of this receptor have been identified, e.g., steroid hormones, sunlight exposure and genetic variants of serotonin-related genes. Given the close interactions between serotonergic and dopaminergic neurotransmission, we investigated whether a common single-nucleotide-polymorphism of the catechol-O-methyltransferase (COMT) gene (VAL158MET or rs4680) coding for a key enzyme of the dopamine network that is associated with the pathogenesis of mood disorders and antidepressant treatment response, directly affects 5-HT1A receptor binding potential. Fifty-two healthy individuals (38 female, mean age ± standard deviation = 40.48 ± 14.87) were measured via positron emission tomography using the radioligand [carbonyl-(11)C]WAY-100635. Genotyping for rs4680 was performed using DNA isolated from whole blood with the MassARRAY platform of the software SEQUENOM(®). Whole brain voxel-wise ANOVA resulted in a main effect of genotype on 5-HT1A binding. Compared to A carriers (AA + AG) of rs4680, homozygote G subjects showed higher 5-HT1A binding potential in the posterior cingulate cortex (F (2,49) = 17.7, p = 0.05, FWE corrected), the orbitofrontal cortex, the anterior cingulate cortex, the insula, the amygdala and the hippocampus (voxel-level: p < 0.01 uncorrected, t > 2.4; cluster-level: p < 0.05 FWE corrected). In light of the frequently reported alterations of 5-HT1A binding in anxiety and mood disorders, this study proposes a potential implication of the COMT genotype, more specifically the VAL158MET polymorphism, via modulation of the serotonergic neurotransmission.
Collapse
Affiliation(s)
- Pia Baldinger
- Functional, Molecular and Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Rami-Mark C, Ungersboeck J, Haeusler D, Nics L, Philippe C, Mitterhauser M, Willeit M, Lanzenberger R, Karanikas G, Wadsak W. Reliable set-up for in-loop ¹¹C-carboxylations using Grignard reactions for the preparation of [carbonyl-¹¹C]WAY-100635 and [¹¹C]-(+)-PHNO. Appl Radiat Isot 2013; 82:75-80. [PMID: 23974301 PMCID: PMC3842501 DOI: 10.1016/j.apradiso.2013.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 02/02/2023]
Abstract
Aim of this work was the implementation of a generalized in-loop synthesis for 11C-carboxylations and subsequent 11C-acylations on the TRACERlab FxC Pro platform. The set-up was tested using [carbonyl-11C]WAY-100635 and, for the first time, [11C]-(+)-PHNO. Its general applicability could be demonstrated and both [carbonyl-11C]WAY-100635 and [11C]-(+)-PHNO were prepared with high reliability and satisfying outcome. Generalized method for in-loop 11C-carboxylations implemented. Grignard reactions successfully tested. First in-loop procedure for [11C]-(+)PHNO established. Satisfactory synthesis outcome for both [carbonyl-11C]WAY-100635 and [11C]-(+)PHNO. No distillation for purification of intermediate required.
Collapse
Affiliation(s)
- Christina Rami-Mark
- Radiochemistry and Biomarker Development Unit, Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna, Austria; Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Tuckwell HC. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus. Biosystems 2013; 112:204-13. [PMID: 23391700 DOI: 10.1016/j.biosystems.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
Abstract
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany.
| |
Collapse
|