101
|
Schultzhaus JN, Carney GE. Dietary protein content alters both male and female contributions to Drosophila melanogaster female post-mating response traits. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:101-106. [PMID: 28414060 DOI: 10.1016/j.jinsphys.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Males transfer sperm, proteins and other molecules to females during mating. In Drosophila melanogaster, these molecules contribute to the induction of egg maturation, ovulation, oviposition, sperm storage and changes in female receptivity. This suite of physiological and behavioral changes is referred to as the female post-mating response (PMR). Protein is a necessary macronutrient for both male and female reproduction, but imbalances in protein content can decrease reproductive potential. Dietary protein affects the production of proteins in the male ejaculate that are important for induction of the PMR, and female fecundity increases with dietary protein while lifetime mating rate decreases. The effects of dietary protein levels on other aspects of the female PMR and on male ability to induce the PMR are unknown. To investigate how protein content affects PMR, we raised flies on diets containing low, moderate or high levels of protein and mated females and males from each diet in a combinatorial manner. We first measured the mating duration for each pair, an indication of male reproductive investment, and then evaluated two aspects of the female PMR, fecundity and female remating latency. We found that mating duration was negatively correlated with male dietary protein, and females that mated with high protein males laid fewer eggs. Female diet had no effect on mating duration, but females fed diets with higher protein content laid more eggs and remated sooner. Therefore, dietary protein levels can affect postcopulatory processes important for reproductive output in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | - Ginger E Carney
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA.
| |
Collapse
|
102
|
Abstract
Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.
Collapse
Affiliation(s)
- Susy M Kim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
103
|
Aranha MM, Herrmann D, Cachitas H, Neto-Silva RM, Dias S, Vasconcelos ML. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females. Sci Rep 2017; 7:46242. [PMID: 28401905 PMCID: PMC5388873 DOI: 10.1038/srep46242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 11/26/2022] Open
Abstract
Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour.
Collapse
Affiliation(s)
- Márcia M Aranha
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Dennis Herrmann
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Hugo Cachitas
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ricardo M Neto-Silva
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sophie Dias
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Maria Luísa Vasconcelos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
104
|
Ables ET, Drummond-Barbosa D. Steroid Hormones and the Physiological Regulation of Tissue-Resident Stem Cells: Lessons from the Drosophila Ovary. CURRENT STEM CELL REPORTS 2017; 3:9-18. [PMID: 28458991 PMCID: PMC5407287 DOI: 10.1007/s40778-017-0070-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stem cells respond to local paracrine signals; more recently, however, systemic hormones have also emerged as key regulators of stem cells. This review explores the role of steroid hormones in stem cells, using the Drosophila germline stem cell as a centerpiece for discussion. RECENT FINDINGS Stem cells sense and respond directly and indirectly to steroid hormones, which regulate diverse sets of target genes via interactions with nuclear hormone receptors. Hormone-regulated networks likely integrate the actions of multiple systemic signals to adjust the activity of stem cell lineages in response to changes in physiological status. SUMMARY Hormones are inextricably linked to animal physiology, and can control stem cells and their local niches. Elucidating the molecular mechanisms of hormone signaling in stem cells is essential for our understanding of the fundamental underpinnings of stem cell biology, and for informing new therapeutic interventions against cancers or for regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth T. Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
105
|
Avila FW, Wong A, Sitnik JL, Wolfner MF. Don't pull the plug! the Drosophila mating plug preserves fertility. Fly (Austin) 2016; 9:62-7. [PMID: 26695093 DOI: 10.1080/19336934.2015.1120931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mating plugs are hardened structures--typically a coagulation of seminal fluid components--that are transferred to, or formed within, the female reproductive tract of numerous animal species (both mammals and insects). Analysis of the role(s) of the mating plug in reproduction has been conducted in a wide array of diverse species. These structures have been proposed to have a multitude of functions, which include altering female re-mating rate, acting as a barrier to re-mating and being required for sperm storage or sperm movement to occur in mated females. A recent analysis of the Drosophila melanogaster mating plug has shown that proper formation of the structure is required for optimal fertility in flies: the Drosophila mating plug is required to retain the ejaculate within the female reproductive tract once mating has terminated. Here, we discuss the possible implications of the Drosophila mating plug in the fertility of this species in light of these new results.
Collapse
Affiliation(s)
- Frank W Avila
- a Department of Molecular Biology and Genetics ; Cornell University ; Ithaca , NY , USA
| | - Alex Wong
- b Department of Biology ; Carleton University ; Ottawa , Ontario , Canada
| | - Jessica L Sitnik
- a Department of Molecular Biology and Genetics ; Cornell University ; Ithaca , NY , USA
| | - Mariana F Wolfner
- a Department of Molecular Biology and Genetics ; Cornell University ; Ithaca , NY , USA
| |
Collapse
|
106
|
Garbe DS, Vigderman AS, Moscato E, Dove AE, Vecsey CG, Kayser MS, Sehgal A. Changes in Female Drosophila Sleep following Mating Are Mediated by SPSN-SAG Neurons. J Biol Rhythms 2016; 31:551-567. [PMID: 27658900 DOI: 10.1177/0748730416668048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Female Drosophila melanogaster, like many other organisms, exhibit different behavioral repertoires after mating with a male. These postmating responses (PMRs) include increased egg production and laying, increased rejection behavior (avoiding further male advances), decreased longevity, altered gustation and decreased sleep. Sex Peptide (SP), a protein transferred from the male during copulation, is largely responsible for many of these behavioral responses, and acts through a specific circuit to induce rejection behavior and alter dietary preference. However, less is known about the mechanisms and neurons that influence sleep in mated females. In this study, we investigated postmating changes in female sleep across strains and ages and on different media, and report that these changes are robust and relatively consistent under a variety of conditions. We find that female sleep is reduced by male-derived SP acting through the canonical sex peptide receptor (SPR) within the same neurons responsible for altering other PMRs. This circuit includes the SPSN-SAG neurons, whose silencing by DREADD induces postmating behaviors including sleep. Our data are consistent with the idea that mating status is communicated to the central brain through a common circuit that diverges in higher brain centers to modify a collection of postmating sensorimotor processes.
Collapse
Affiliation(s)
- David S Garbe
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail S Vigderman
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilia Moscato
- Department of Psychiatry at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail E Dove
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Christopher G Vecsey
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania.,Neuroscience Program, Skidmore College, Saratoga Springs, New York
| | - Matthew S Kayser
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Psychiatry at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Howard Hughes Medical Institute/Department of Neuroscience
| |
Collapse
|
107
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
108
|
Wilson C, Leiblich A, Goberdhan DCI, Hamdy F. The Drosophila Accessory Gland as a Model for Prostate Cancer and Other Pathologies. Curr Top Dev Biol 2016; 121:339-375. [PMID: 28057306 PMCID: PMC5224695 DOI: 10.1016/bs.ctdb.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human prostate is a gland of the male reproductive tract, which together with the seminal vesicles, is responsible for most seminal fluid production. It is a common site of cancer, and unlike other glands, it typically enlarges in aging men. In flies, the male accessory glands make many major seminal fluid components. Like their human equivalents, they secrete proteins from several conserved families, including proteases, lectins, and cysteine-rich secretory proteins, some of which interact with sperm and affect fertility. A key protein, sex peptide, is not conserved in vertebrates but plays a central role in mediating long-term effects on females after mating. Although postmitotic, one epithelial cell type in the accessory glands, the secondary cell, continues to grow in adults. It secretes microvesicles called exosomes from the endosomal multivesicular body, which, after mating, fuse with sperm. They also appear to affect female postmating behavior. Remarkably, the human prostate epithelium also secretes exosomes, which fuse to sperm in vitro to modulate their activity. Exosomes from prostate and other cancer cells are increasingly proposed to play fundamental roles in modulating the tumor microenvironment and in metastasis. Here we review a diverse accessory gland literature, which highlights functional analogies between the male reproductive glands of flies and humans, and a critical role for extracellular vesicles in allowing seminal fluid to promote male interests within the female. We postulate that secondary cells and prostate epithelial cells use common mechanisms to control growth, secretion, and signaling, which are relevant to prostate and other cancers, and can be genetically dissected in the uniquely tractable fly model.
Collapse
Affiliation(s)
- C Wilson
- University of Oxford, Oxford, United Kingdom.
| | - A Leiblich
- University of Oxford, Oxford, United Kingdom; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - F Hamdy
- University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
109
|
Lee H, Choi HW, Zhang C, Park ZY, Kim YJ. A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster. Mol Cells 2016; 39:573-9. [PMID: 27378227 PMCID: PMC4959023 DOI: 10.14348/molcells.2016.0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating. We identify two CG3542-ppk expressing neurons that innervate the upper oviduct and appear to be responsible for normal egg-laying. Our results suggest specific subsets of the ppk neurons are responsible for each PMR component.
Collapse
Affiliation(s)
- Hyunjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005,
Korea
| | - Hyun Woo Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005,
Korea
| | - Chen Zhang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005,
Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005,
Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005,
Korea
| |
Collapse
|
110
|
Ameku T, Niwa R. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila. PLoS Genet 2016; 12:e1006123. [PMID: 27310920 PMCID: PMC4911108 DOI: 10.1371/journal.pgen.1006123] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/23/2016] [Indexed: 11/18/2022] Open
Abstract
Mating and gametogenesis are two essential components of animal reproduction. Gametogenesis must be modulated by the need for gametes, yet little is known of how mating, a process that utilizes gametes, may modulate the process of gametogenesis. Here, we report that mating stimulates female germline stem cell (GSC) proliferation in Drosophila melanogaster. Mating-induced increase in GSC number is not simply owing to the indirect effect of emission of stored eggs, but rather is stimulated by a male-derived Sex Peptide (SP) and its receptor SPR, the components of a canonical neuronal pathway that induces a post-mating behavioral switch in females. We show that ecdysteroid, the major insect steroid hormone, regulates mating-induced GSC proliferation independently of insulin signaling. Ovarian ecdysteroid level increases after mating and transmits its signal directly through the ecdysone receptor expressed in the ovarian niche to increase the number of GSCs. Impairment of ovarian ecdysteroid biosynthesis disrupts mating-induced increase in GSCs as well as egg production. Importantly, feeding of ecdysteroid rescues the decrease in GSC number caused by impairment of neuronal SP signaling. Our study illustrates how female GSC activity is coordinately regulated by the neuroendocrine system to sustain reproductive success in response to mating.
Collapse
Affiliation(s)
- Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
111
|
Abstract
The Drosophila sex-peptide (SP) has been identified as a seminal fluid component that induces post-mating responses (PMRs) in the inseminated females, such as inhibition of remating and stimulation of egg-laying. SP has been thought to play a central role in sexual conflict and sexually antagonistic co-evolution. Most of the sequenced Drosophila genomes contain SP orthologs, but their functions have been poorly characterized. Recently, we have investigated cross-species activity of D. melanogaster SP by means of injection into virgin females of other species. Among 11 species examined, SP response was observed in 6 species belonging to the D. melanogaster species group only. These species females express SP receptor (SPR) in their oviducts at relatively high levels, which was visualized by using a GFP-tagged SP. Furthermore, females of this species group responded to their own SP orthologs. However, females of the species outside the group did not respond to their own SP orthologs, even though all of them were potent inducers of SP-response in D. melanogaster. Our results suggested that the SP/SPR-mediated PMR was established in the lineage of the D. melanogaster species group.
Collapse
Affiliation(s)
- Manabu Tsuda
- a Department of Liberal Arts and Human Development , Kanagawa University of Human Services , Kanagawa , Japan
| | - Toshiro Aigaki
- b Department of Biological Sciences , Tokyo Metropolitan University , Tokyo , Japan
| |
Collapse
|
112
|
Neuropeptides Modulate Female Chemosensory Processing upon Mating in Drosophila. PLoS Biol 2016; 14:e1002455. [PMID: 27145127 PMCID: PMC4856363 DOI: 10.1371/journal.pbio.1002455] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
A female's reproductive state influences her perception of odors and tastes along with her changed behavioral state and physiological needs. The mechanism that modulates chemosensory processing, however, remains largely elusive. Using Drosophila, we have identified a behavioral, neuronal, and genetic mechanism that adapts the senses of smell and taste, the major modalities for food quality perception, to the physiological needs of a gravid female. Pungent smelling polyamines, such as putrescine and spermidine, are essential for cell proliferation, reproduction, and embryonic development in all animals. A polyamine-rich diet increases reproductive success in many species, including flies. Using a combination of behavioral analysis and in vivo physiology, we show that polyamine attraction is modulated in gravid females through a G-protein coupled receptor, the sex peptide receptor (SPR), and its neuropeptide ligands, MIPs (myoinhibitory peptides), which act directly in the polyamine-detecting olfactory and taste neurons. This modulation is triggered by an increase of SPR expression in chemosensory neurons, which is sufficient to convert virgin to mated female olfactory choice behavior. Together, our data show that neuropeptide-mediated modulation of peripheral chemosensory neurons increases a gravid female's preference for important nutrients, thereby ensuring optimal conditions for her growing progeny.
Collapse
|
113
|
Auer TO, Benton R. Sexual circuitry in Drosophila. Curr Opin Neurobiol 2016; 38:18-26. [PMID: 26851712 DOI: 10.1016/j.conb.2016.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/05/2016] [Indexed: 11/15/2022]
Abstract
The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses.
Collapse
Affiliation(s)
- Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
114
|
Alfonso-Parra C, Ahmed-Braimah YH, Degner EC, Avila FW, Villarreal SM, Pleiss JA, Wolfner MF, Harrington LC. Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0004451. [PMID: 26901677 PMCID: PMC4764262 DOI: 10.1371/journal.pntd.0004451] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito. Female post-mating behavior has important consequences for mosquito populations and their ability to transmit diseases. Male Aedes aegypti seminal fluid substances transferred during mating cause many important changes to female behavior and physiology, including blood feeding behavior, egg development, and oviposition. In an effort to understand how males induce these responses in Ae. aegypti females, we characterized the transcriptome changes that occur in the female reproductive tract at different time points after mating. We found several RNAs that are apparently transferred by the male, and 280 genes whose mRNA abundance in the female is affected by mating. The nature of the predicted products of many of these genes suggests roles in priming the reproductive tract for egg development, protecting the female against bacterial infections or processing the blood meal. This identification of mating-responsive genes provides information potentially useful for developing tools aimed at preventing disease transmission by manipulating female mosquitoes’ post-mating responses.
Collapse
Affiliation(s)
- Catalina Alfonso-Parra
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Instituto Colombiano de Medicina Tropical - Universidad CES, Medellín, Colombia
| | - Yasir H. Ahmed-Braimah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Ethan C. Degner
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Frank W. Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Susan M. Villarreal
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey A. Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MFW); (LCH)
| |
Collapse
|
115
|
Sellami A, Veenstra JA. SIFamide acts on fruitless neurons to modulate sexual behavior in Drosophila melanogaster. Peptides 2015; 74:50-6. [PMID: 26469541 DOI: 10.1016/j.peptides.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
The Drosophila gene fruitless expresses male and female specific transcription factors which are responsible for the generation of male specific neuronal circuitry for courtship behavior. Mutations in this gene may lead to bisexual behavior in males. Bisexual behavior in males also occurs in the absence of the neuropeptide SIFamide. We show here that the SIFamide neurons do not express fruitless. However, when fruitless neurons are made to express RNAi specific for the SIFamide receptor, male flies engage in bisexual behavior, showing that SIFamide acts on fruitless neurons. If neurons expressing a SIFaR-gal4 transgene are killed by the apoptotic protein reaper or when these neurons express SIFamide receptor RNAi, males also show male-male courtship behavior. We next used this transgene to localize neurons that express the SIFamide receptor. Such neurons are ubiquitously present in the central nervous and we also found two neurons in the uterus that project into the central nervous system.
Collapse
Affiliation(s)
- Azza Sellami
- Université de Bordeaux, CNRS, INCIA UMR 5287, 33400 Talence, France
| | - Jan A Veenstra
- Université de Bordeaux, CNRS, INCIA UMR 5287, 33400 Talence, France.
| |
Collapse
|
116
|
Deady LD, Sun J. A Follicle Rupture Assay Reveals an Essential Role for Follicular Adrenergic Signaling in Drosophila Ovulation. PLoS Genet 2015; 11:e1005604. [PMID: 26473732 PMCID: PMC4608792 DOI: 10.1371/journal.pgen.1005604] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 11/18/2022] Open
Abstract
Ovulation is essential for the propagation of the species and involves a proteolytic degradation of the follicle wall for the release of the fertilizable oocyte. However, the precise mechanisms for regulating these proteolytic events are largely unknown. Work from our lab and others have shown that there are several parallels between Drosophila and mammalian ovulation at both the cellular and molecular levels. During ovulation in Drosophila, posterior follicle cells surrounding a mature oocyte are selectively degraded and the residual follicle cells remain in the ovary to form a corpus luteum after follicle rupture. Like in mammals, this rupturing process also depends on matrix metalloproteinase 2 (Mmp2) activity localized at the posterior end of mature follicles, where oocytes exit. In the present study, we show that Mmp2 activity is regulated by the octopaminergic signaling in mature follicle cells. Exogenous octopamine (OA; equivalent to norepinephrine, NE) is sufficient to induce follicle rupture when isolated mature follicles are cultured ex vivo, in the absence of the oviduct or ovarian muscle sheath. Knocking down the alpha-like adrenergic receptor Oamb (Octoampine receptor in mushroom bodies) in mature follicle cells prevents OA-induced follicle rupture ex vivo and ovulation in vivo. We also show that follicular OA-Oamb signaling induces Mmp2 enzymatic activation but not Mmp2 protein expression, likely via intracellular Ca2+ as the second messenger. Our work develops a novel ex vivo follicle rupture assay and demonstrates the role for follicular adrenergic signaling in Mmp2 activation and ovulation in Drosophila, which is likely conserved in other species. Ovulation is the process of releasing fertilizable oocytes from the ovary and is essential for metazoan reproduction. Our recent work has demonstrated principles governing ovulation process that are highly conserved across species, such that both mammals and Drosophila utilize matrix metalloproteinase (Mmp) to degrade extracellular matrix and weaken the follicle wall for follicle rupture. However, a fundamental question remaining in the field is how Mmp activity is precisely regulated during ovulation. This paper reports that Drosophila octopamine (OA), the insect equivalent of norepinephrine (NE), is the signal to induce Mmp activity through activating its receptor Oamb on mature follicle cells and that this may induce ovulation. These findings allow us to develop the first ex vivo follicle rupture assay for Drosophila, which gives us unprecedented ability to characterize the entire follicle rupturing process ex vivo and to identify essential factors for ovulation. Furthermore, we show that NE partially fulfills OA’s role in inducing follicle rupture ex vivo, indicating that follicular adrenergic signal is a conserved signal to regulating Mmp activity and ovulation. Our work not only sheds light on the long-standing question of Mmp regulation, but also may lead to a better understanding of Mmp and NE linked pathological processes including cancer metastasis and polycystic ovary syndrome.
Collapse
Affiliation(s)
- Lylah D. Deady
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
117
|
Rubinstein CD, Wolfner MF. Reproductive hacking. A male seminal protein acts through intact reproductive pathways in female Drosophila. Fly (Austin) 2015; 8:80-5. [PMID: 25483253 DOI: 10.4161/fly.28396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones.
Collapse
Affiliation(s)
- C Dustin Rubinstein
- a Laboratory of Cell and Molecular Biology; University of Wisconsin; Madison, WI USA
| | | |
Collapse
|
118
|
Postmating Circuitry Modulates Salt Taste Processing to Increase Reproductive Output in Drosophila. Curr Biol 2015; 25:2621-30. [PMID: 26412135 DOI: 10.1016/j.cub.2015.08.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022]
Abstract
To optimize survival and reproduction, animals must match their nutrient intake to their current needs. Reproduction profoundly changes nutritional requirements, with many species showing an appetite for sodium during reproductive periods. How this internal state modifies neuronal information processing to ensure homeostasis is not understood. Here, we show that dietary sodium levels positively affect reproductive output in Drosophila melanogaster; to satisfy this requirement, females develop a strong, specific appetite for sodium following mating. We show that mating modulates gustatory processing to increase the probability of initiating feeding on salt. This postmating effect is not due to salt depletion by egg production, since abolishing egg production leaves the sodium appetite intact. Rather, the salt appetite is induced need-independently by male-derived Sex Peptide acting on the Sex Peptide Receptor in female reproductive tract neurons. We further demonstrate that postmating appetites for both salt and yeast are driven by the resultant silencing of downstream SAG neurons. Surprisingly, unlike the postmating yeast appetite, the salt appetite does not require octopamine, suggesting a divergence in the postmating circuitry. These findings demonstrate that the postmating circuit supports reproduction by increasing the palatability of specific nutrients. Such a feedforward regulation of sensory processing may represent a common mechanism through which reproductive state-sensitive circuits modify complex behaviors across species.
Collapse
|
119
|
Li L, Li P, Xue L. The RED domain of Paired is specifically required for Drosophila accessory gland maturation. Open Biol 2015; 5:140179. [PMID: 25694546 PMCID: PMC4345280 DOI: 10.1098/rsob.140179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix–turn–helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain.
Collapse
Affiliation(s)
- Li Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Ping Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
120
|
Abstract
Females of many species, once mated, undergo a rapid change in reproductive physiology and behavior, shifting from a sexually receptive state to one devoted to the rearing of offspring. Two recent reports shed light on the neural circuitry governing the female post-mating response in the fruit fly Drosophila, providing insight into the neurobiological processes governing a complex behavior.
Collapse
|
121
|
Abstract
Male flies put on a multimedia show during courtship involving dance, song, perfume and even vibrations; if a female likes it, she pauses to let him know. Recent studies shed new light on how development and experience contribute to neural mechanisms of female sexual receptivity.
Collapse
Affiliation(s)
- Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, PO Box 11103, University of Groningen, Groningen, 9700 CC, The Netherlands.
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
122
|
Kimura KI, Sato C, Koganezawa M, Yamamoto D. Drosophila ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLoS One 2015; 10:e0126445. [PMID: 25955600 PMCID: PMC4425497 DOI: 10.1371/journal.pone.0126445] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Oviposition is a female-specific behavior that directly affects fecundity, and therefore fitness. If a fertilized female encounters another male that she has evaluated to be of better quality than her previous mate, it would be beneficial for her to remate with this male rather than depositing her eggs. Females who decided not to remate exhibited rejection behavior toward a courting male and engaged in oviposition. Although recent studies of Drosophila melanogaster identified sensory neurons and putative second-order ascending interneurons that mediate uterine afferents affecting female reproductive behavior, little is known about the brain circuitry that selectively activates rejection versus oviposition behaviors. We identified the sexually dimorphic pC2l and female-specific pMN2 neurons, two distinct classes of doublesex (dsx)-expressing neurons that can initiate ovipositor extension associated with rejection and oviposition behavior, respectively. pC2l interneurons, which induce ovipositor extrusion for rejection in females, have homologues that control courtship behavior in males. Activation of these two classes of neurons appears to be mutually exclusive and each governs hierarchical control of the motor program in the VNC either for rejection or oviposition, contributing centrally to the switching on or off of the alternative motor programs.
Collapse
Affiliation(s)
- Ken-ichi Kimura
- Laboratory of Biology, Hokkaido University of Education, Sapporo Campus, Sapporo, Japan
- * E-mail:
| | - Chiaki Sato
- Laboratory of Biology, Hokkaido University of Education, Sapporo Campus, Sapporo, Japan
| | - Masayuki Koganezawa
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
123
|
Avila FW, Mattei AL, Wolfner MF. Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:1-6. [PMID: 25783955 PMCID: PMC4430431 DOI: 10.1016/j.jinsphys.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 05/23/2023]
Abstract
The storage of sperm in mated females is important for efficient reproduction. After sperm are transferred to females during mating, they need to reach and enter into the site(s) of storage, be maintained viably within storage, and ultimately be released from storage to fertilize eggs. Perturbation of these events can have drastic consequences on fertility. In Drosophila melanogaster, females store sperm for up to 2 weeks after a single mating. For sperm to be released normally from storage, Drosophila females need to receive the seminal fluid protein (SFP) sex peptide (SP) during mating. SP, which binds to sperm in storage, signals through the sex peptide receptor (SPR) to elicit two other effects on mated females: the persistence of egg laying and a reduction in sexual receptivity. However, it is not known whether SPR is also needed to mediate SP's effect on sperm release. By phenotypic analysis of flies deleted for SPR, and of flies knocked down for SPR, ubiquitously or in specific tissues, we show that SPR is required to mediate SP's effects on sperm release from storage. We show that SPR expression in ppk(+) neurons is needed for proper sperm release; these neurons include those that mediate SP's effect on receptivity and egg laying. However, we find that SPR is also needed in the spermathecal secretory cells of the female reproductive tract for efficient sperm release. Thus, SPR expression is necessary in both the nervous system and in female reproductive tract cells to mediate the release of stored sperm.
Collapse
Affiliation(s)
- Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Alexandra L Mattei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
124
|
Kalinka AT. How did viviparity originate and evolve? Of conflict, co-option, and cryptic choice. Bioessays 2015; 37:721-31. [PMID: 25904118 DOI: 10.1002/bies.201400200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
I propose that the underlying adaptation enabling the reproductive strategy of birthing live young (viviparity) is retraction of the site of fertilization within the female reproductive tract, and that this evolved as a means of postcopulatory sexual selection. There are three conspicuous aspects associated with viviparity: (i) internal development is a complex trait often accompanied by a suite of secondary adaptations, yet it is unclear how the intermediate state of this trait - egg retention - could have evolved; (ii) viviparity often results in a reduction in fecundity; (iii) viviparity has evolved independently many times across a diverse array of animal groups. Focusing on the Diptera (true flies), I provide explanations for these observations. I further propose that fecundity is not traded-off to enable potential benefits of viviparity, but rather that loss of fecundity is directly selected and egg retention is an indirect consequence - a model that provides a unifying common basis for the ubiquity of viviparity.
Collapse
Affiliation(s)
- Alex T Kalinka
- Institute of Population genetics, Vetmeduni, Vienna, Austria
| |
Collapse
|
125
|
Discovery and structure–activity relationships of pyrazolodiazepine derivatives as the first small molecule agonists of the Drosophila sex peptide receptor. Bioorg Med Chem 2015; 23:1808-16. [DOI: 10.1016/j.bmc.2015.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
126
|
Deady LD, Shen W, Mosure SA, Spradling AC, Sun J. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. PLoS Genet 2015; 11:e1004989. [PMID: 25695427 PMCID: PMC4335033 DOI: 10.1371/journal.pgen.1004989] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023] Open
Abstract
Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells (“trimming”) and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a “corpus luteum (CL)” at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2), a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals. Sexual reproduction is thought to be a highly divergent process due to fast evolution and speciation. For example, sperm from one species can seldom fertilize eggs from another species, indicating that different molecular machinery for fertilization is applied in different species. In contrast to this divergent view, ovulation, the process of liberating mature eggs from the ovary, is a general phenomenon throughout the Metazoa. We provide evidence that basic mechanisms of ovulation are conserved. Like mammalian follicles, Drosophila follicles consist of single oocytes surrounded by a layer of follicle cells. Drosophila follicles degrade their posterior follicle cells to allow the oocyte to rupture into the oviduct during ovulation. The residual postovulatory follicles reside in the ovary, accumulate yellowish pigmentation, and produce the steroid hormone ecdysone, features which resemble the mammalian corpus luteum. We also showed that matrix metalloproteinase, a type of proteinase proposed to degrade the mammalian follicle wall during ovulation, is required in Drosophila for posterior follicle cell degradation and ovulation. These findings are particularly important because this simple genetic model system will speed up the identification of many conserved regulators required for regulating matrix metalloproteinase activity and ovulation in human, processes that influence ovarian cancer formation and cancer metastasis.
Collapse
Affiliation(s)
- Lylah D. Deady
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Wei Shen
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Sarah A. Mosure
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Allan C. Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- * E-mail: (ACS); (JS)
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- * E-mail: (ACS); (JS)
| |
Collapse
|
127
|
Bontonou G, Shaik HA, Denis B, Wicker-Thomas C. Acp70A regulates Drosophila pheromones through juvenile hormone induction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 56:36-49. [PMID: 25484200 DOI: 10.1016/j.ibmb.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Mated Drosophila melanogaster females show a decrease in mating receptivity, enhanced ovogenesis, egg-laying and activation of juvenile hormone (JH) production. Components in the male seminal fluid, especially the sex peptide ACP70A stimulate these responses in females. Here we demonstrate that ACP70A is involved in the down-regulation of female sex pheromones and hydrocarbon (CHC) production. Drosophila G10 females which express Acp70A under the control of the vitellogenin gene yp1, produced fewer pheromones and CHCs. There was a dose-dependent relationship between the number of yp1-Acp70A alleles and the reduction of these compounds. Similarly, a decrease in CHCs and diene pheromones was observed in da > Acp70A flies that ubiquitously overexpress Acp70A. Quantitative-PCR experiments showed that the expression of Acp70A in G10 females was the same as in control males and 5 times lower than in da > Acp70A females. Three to four days after injection with 4.8 pmol ACP70A, females from two different strains, exhibited a significant decrease in CHC and pheromone levels. Similar phenotypes were observed in ACP70A injected flies whose ACP70A receptor expression was knocked-down by RNAi and in flies which overexpress ACP70A N-terminal domain. These results suggest that the action of ACP70A on CHCs could be a consequence of JH activation. Female flies exposed to a JH analog had reduced amounts of pheromones, whereas genetic ablation of the corpora allata or knock-down of the JH receptor Met, resulted in higher amounts of both CHCs and pheromonal dienes. Mating had negligible effects on CHC levels, however pheromone amounts were slightly reduced 3 and 4 days post copulation. The physiological significance of ACP70A on female pheromone synthesis is discussed.
Collapse
Affiliation(s)
| | - Haq Abdul Shaik
- CNRS UPR 9034, Université de Paris Sud, 91198 Gif sur Yvette, France
| | - Béatrice Denis
- CNRS UPR 9034, Université de Paris Sud, 91198 Gif sur Yvette, France
| | | |
Collapse
|
128
|
Sirot LK, Wong A, Chapman T, Wolfner MF. Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions. Cold Spring Harb Perspect Biol 2014; 7:a017533. [PMID: 25502515 DOI: 10.1101/cshperspect.a017533] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sexual reproduction requires coordinated contributions from both sexes to proceed efficiently. However, the reproductive strategies that the sexes adopt often have the potential to give rise to sexual conflict because they can result in divergent, sex-specific costs and benefits. These conflicts can occur at many levels, from molecular to behavioral. Here, we consider sexual conflict mediated through the actions of seminal fluid proteins. These proteins provide many excellent examples in which to trace the operation of sexual conflict from molecules through to behavior. Seminal fluid proteins are made by males and provided to females during mating. As agents that can modulate egg production at several steps, as well as reproductive behavior, sperm "management," and female feeding, activity, and longevity, the actions of seminal proteins are prime targets for sexual conflict. We review these actions in the context of sexual conflict. We discuss genomic signatures in seminal protein (and related) genes that are consistent with current or previous sexual conflict. Finally, we note promising areas for future study and highlight real-world practical situations that will benefit from understanding the nature of sexual conflicts mediated by seminal proteins.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Biology, College of Wooster, Wooster, Ohio 44691
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
129
|
Lebreton S, Grabe V, Omondi AB, Ignell R, Becher PG, Hansson BS, Sachse S, Witzgall P. Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci Rep 2014; 4:7119. [PMID: 25406576 PMCID: PMC4236738 DOI: 10.1038/srep07119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/04/2014] [Indexed: 01/29/2023] Open
Abstract
In Drosophila, the male sex pheromone cis-vaccenyl acetate (cVA) elicits aggregation and courtship, through the odorant receptor Or67d. Long-lasting exposure to cVA suppresses male courtship, via a second channel, Or65a. In females, the role of Or65a has not been studied. We show that, shortly after mating, Drosophila females are no longer attracted to cVA and that activation of olfactory sensory neurons (OSNs) expressing Or65a generates this behavioral switch: when silencing Or65a, mated females remain responsive to cVA. Neurons expressing Or67d converge into the DA1 glomerulus in the antennal lobe, where they synapse onto projection neurons (PNs), that connect to higher neural circuits generating the attraction response to cVA. Functional imaging of these PNs shows that the DA1 glomerulus is inhibited by simultaneous activation of Or65a OSNs, which leads to a suppression of the attraction response to cVA. The behavioral role of postmating cVA exposure is substantiated by the observation that matings with starved males, which produce less cVA, do not alter the female response. Moreover, exposure to synthetic cVA abolishes attraction and decreases sexual receptivity in unmated females. Taken together, Or65a mediates an aversive effect of cVA and may accordingly regulate remating, through concurrent behavioral modulation in males and females.
Collapse
Affiliation(s)
- Sébastien Lebreton
- 1] Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden [2] Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Aman B Omondi
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Rickard Ignell
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Paul G Becher
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Peter Witzgall
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Unit, 230 53 Alnarp, Sweden
| |
Collapse
|
130
|
Kairamkonda S, Nongthomba U. Beadex function in the motor neurons is essential for female reproduction in Drosophila melanogaster. PLoS One 2014; 9:e113003. [PMID: 25396431 PMCID: PMC4232528 DOI: 10.1371/journal.pone.0113003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
131
|
|
132
|
Abraham S, Nuñez-Beverido N, Contreras-Navarro Y, Pérez-Staples D. Female receptivity in Anastrepha ludens (Diptera: Tephritidae) is not modulated by male accessory gland products. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:41-48. [PMID: 25205478 DOI: 10.1016/j.jinsphys.2014.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
In numerous insects, accessory gland products (AGPs) transferred from males to females during mating are responsible for female sexual inhibition, but these products can be affected by male condition. Here, we investigated the effect of AGPs on female receptivity of the Mexican fruit fly Anastrepha ludens (Loew), and the effect of male and female strain, male irradiation, AGP dose and sexual activity period on the effectiveness of these AGPs in inhibiting female remating. Injections of aqueous extracts of male accessory glands into the abdomen of females did not reduce their receptivity either at 0.2 or 0.8 male equivalent. Females injected with AGPs behaved like virgin females and not as mated females. Neither male origin, female origin (wild versus mass-reared), nor male irradiation (sterile versus fertile males) had an effect in inhibiting female remating. Also, injections of glands obtained during the sexual calling period of males, or obtained during the morning when males are not sexually active had no effect on female remating behavior. Mated mass-reared females were more likely to remate than wild females. We conclude that inhibition of female sexual receptivity of A. ludens is mediated by factors other than AGPs, such as the number of sperm stored by females, the stimulus of copulation per se or more probably, mediated by a combination of factors. More research is needed to elucidate the role of AGPs in this species.
Collapse
Affiliation(s)
- Solana Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI, Tucumán, Argentina; CONICET, Argentina.
| | | | - Yair Contreras-Navarro
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz Cp. 91090, Mexico
| | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz Cp. 91090, Mexico
| |
Collapse
|
133
|
Oh Y, Yoon SE, Zhang Q, Chae HS, Daubnerová I, Shafer OT, Choe J, Kim YJ. A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide. PLoS Biol 2014; 12:e1001974. [PMID: 25333796 PMCID: PMC4204809 DOI: 10.1371/journal.pbio.1001974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Sleep, a reversible quiescent state found in both invertebrate and vertebrate animals, disconnects animals from their environment and is highly regulated for coordination with wakeful activities, such as reproduction. The fruit fly, Drosophila melanogaster, has proven to be a valuable model for studying the regulation of sleep by circadian clock and homeostatic mechanisms. Here, we demonstrate that the sex peptide receptor (SPR) of Drosophila, known for its role in female reproduction, is also important in stabilizing sleep in both males and females. Mutants lacking either the SPR or its central ligand, myoinhibitory peptide (MIP), fall asleep normally, but have difficulty in maintaining a sleep-like state. Our analyses have mapped the SPR sleep function to pigment dispersing factor (pdf) neurons, an arousal center in the insect brain. MIP downregulates intracellular cAMP levels in pdf neurons through the SPR. MIP is released centrally before and during night-time sleep, when the sleep drive is elevated. Sleep deprivation during the night facilitates MIP secretion from specific brain neurons innervating pdf neurons. Moreover, flies lacking either SPR or MIP cannot recover sleep after the night-time sleep deprivation. These results delineate a central neuropeptide circuit that stabilizes the sleep state by feeding a slow-acting inhibitory input into the arousal system and plays an important role in sleep homeostasis.
Collapse
Affiliation(s)
- Yangkyun Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Qi Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hyo-Seok Chae
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Ivana Daubnerová
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Orie T. Shafer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- * E-mail: (JC); (Y-JK)
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- * E-mail: (JC); (Y-JK)
| |
Collapse
|
134
|
Gou B, Liu Y, Guntur AR, Stern U, Yang CH. Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Rep 2014; 9:522-30. [PMID: 25373900 DOI: 10.1016/j.celrep.2014.09.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/23/2014] [Accepted: 09/17/2014] [Indexed: 12/21/2022] Open
Abstract
Selecting a suitable site to deposit their eggs is an important reproductive need of Drosophila females. Although their choosiness toward egg-laying sites is well documented, the specific neural mechanism that activates females' search for attractive egg-laying sites is not known. Here, we show that distention and contraction of females' internal reproductive tract triggered by egg delivery through the tract plays a critical role in activating such search. We found that females start to exhibit acetic acid (AA) attraction prior to depositing each egg but no attraction when they are not laying eggs. Artificially distending the reproductive tract triggers AA attraction in non-egg-laying females, whereas silencing the mechanosensitive neurons we identified that can sense the contractile status of the tract eliminates such attraction. Our work uncovers the circuit basis of an important reproductive need of Drosophila females and provides a simple model for dissecting the neural mechanism that underlies a reproductive need-induced behavioral modification.
Collapse
Affiliation(s)
- Bin Gou
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ying Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ananya R Guntur
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Chung-Hui Yang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
135
|
Feng K, Palfreyman MT, Häsemeyer M, Talsma A, Dickson BJ. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 2014; 83:135-48. [PMID: 24991958 DOI: 10.1016/j.neuron.2014.05.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/17/2022]
Abstract
Mating induces pronounced changes in female reproductive behavior, typically including a dramatic reduction in sexual receptivity. In Drosophila, postmating behavioral changes are triggered by sex peptide (SP), a male seminal fluid peptide that acts via a receptor (SPR) expressed in sensory neurons (SPSNs) of the female reproductive tract. Here, we identify second-order neurons that mediate the behavioral changes induced by SP. These SAG neurons receive synaptic input from SPSNs in the abdominal ganglion and project to the dorsal protocerebrum. Silencing SAG neurons renders virgin females unreceptive, whereas activating them increases the receptivity of females that have already mated. Physiological experiments demonstrate that SP downregulates the excitability of the SPSNs, and hence their input onto SAG neurons. These data thus provide a physiological correlate of mating status in the female central nervous system and a key entry point into the brain circuits that control sexual receptivity.
Collapse
Affiliation(s)
- Kai Feng
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Mark T Palfreyman
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| | - Martin Häsemeyer
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Aaron Talsma
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | - Barry J Dickson
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
136
|
Abstract
Before consenting to copulate, a female fruit fly gauges both her mating status and her suitor's quality. Three recent studies, Bussell et al. (2014) in Current Biology and Feng et al. (2014) and Zhou et al. (2014) in this issue of Neuron, dissected the receptivity circuit of female Drosophila, providing insights into how she integrates courtship cues, assesses her internal state, and directs the motor programs that facilitate copulation.
Collapse
|
137
|
Lim J, Sabandal PR, Fernandez A, Sabandal JM, Lee HG, Evans P, Han KA. The octopamine receptor Octβ2R regulates ovulation in Drosophila melanogaster. PLoS One 2014; 9:e104441. [PMID: 25099506 PMCID: PMC4123956 DOI: 10.1371/journal.pone.0104441] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Oviposition is induced upon mating in most insects. Ovulation is a primary step in oviposition, representing an important target to control insect pests and vectors, but limited information is available on the underlying mechanism. Here we report that the beta adrenergic-like octopamine receptor Octβ2R serves as a key signaling molecule for ovulation and recruits protein kinase A and Ca2+/calmodulin-sensitive kinase II as downstream effectors for this activity. We found that the octβ2r homozygous mutant females are sterile. They displayed normal courtship, copulation, sperm storage and post-mating rejection behavior but were unable to lay eggs. We have previously shown that octopamine neurons in the abdominal ganglion innervate the oviduct epithelium. Consistently, restored expression of Octβ2R in oviduct epithelial cells was sufficient to reinstate ovulation and full fecundity in the octβ2r mutant females, demonstrating that the oviduct epithelium is a major site of Octβ2R’s function in oviposition. We also found that overexpression of the protein kinase A catalytic subunit or Ca2+/calmodulin-sensitive protein kinase II led to partial rescue of octβ2r’s sterility. This suggests that Octβ2R activates cAMP as well as additional effectors including Ca2+/calmodulin-sensitive protein kinase II for oviposition. All three known beta adrenergic-like octopamine receptors stimulate cAMP production in vitro. Octβ1R, when ectopically expressed in the octβ2r’s oviduct epithelium, fully reinstated ovulation and fecundity. Ectopically expressed Octβ3R, on the other hand, partly restored ovulation and fecundity while OAMB-K3 and OAMB-AS that increase Ca2+ levels yielded partial rescue of ovulation but not fecundity deficit. These observations suggest that Octβ2R have distinct signaling capacities in vivo and activate multiple signaling pathways to induce egg laying. The findings reported here narrow the knowledge gap and offer insight into novel strategies for insect control.
Collapse
Affiliation(s)
- Junghwa Lim
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Paul R. Sabandal
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ana Fernandez
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - John Martin Sabandal
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Hyun-Gwan Lee
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Peter Evans
- The Inositide Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Kyung-An Han
- Department of Biological Sciences, Border Biomedical Research Center/Neuroscience and Metabolic Disorders, University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
138
|
Technau GM, Rogulja-Ortmann A, Berger C, Birkholz O, Rickert C. Composition of a Neuromere and Its Segmental Diversification under the Control ofHoxGenes in the Embryonic CNS ofDrosophila. J Neurogenet 2014; 28:171-80. [DOI: 10.3109/01677063.2013.868459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
139
|
Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB. Abdominal-B neurons control Drosophila virgin female receptivity. Curr Biol 2014; 24:1584-1595. [PMID: 24998527 PMCID: PMC4476023 DOI: 10.1016/j.cub.2014.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Female sexual receptivity offers an excellent model for complex behavioral decisions. The female must parse her own reproductive state, the external environment, and male sensory cues to decide whether to copulate. In the fly Drosophila melanogaster, virgin female receptivity has received relatively little attention, and its neural circuitry and individual behavioral components remain unmapped. Using a genome-wide neuronal RNAi screen, we identify a subpopulation of neurons responsible for pausing, a novel behavioral aspect of virgin female receptivity characterized in this study. RESULTS We show that Abdominal-B (Abd-B), a homeobox transcription factor, is required in developing neurons for high levels of virgin female receptivity. Silencing adult Abd-B neurons significantly decreased receptivity. We characterize two components of receptivity that are elicited in sexually mature females by male courtship: pausing and vaginal plate opening. Silencing Abd-B neurons decreased pausing but did not affect vaginal plate opening, demonstrating that these two components of female sexual behavior are functionally separable. Synthetic activation of Abd-B neurons increased pausing, but male courtship song alone was not sufficient to elicit this behavior. CONCLUSIONS Our results provide an entry point to the neural circuit controlling virgin female receptivity. The female integrates multiple sensory cues from the male to execute discrete motor programs prior to copulation. Abd-B neurons control pausing, a key aspect of female sexual receptivity, in response to male courtship.
Collapse
Affiliation(s)
- Jennifer J Bussell
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Nilay Yapici
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Stephen X Zhang
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA
| | - Barry J Dickson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY 10065, USA; Howard Hughes Medical Institute.
| |
Collapse
|
140
|
Zhou C, Pan Y, Robinett C, Meissner G, Baker B. Central Brain Neurons Expressing doublesex Regulate Female Receptivity in Drosophila. Neuron 2014; 83:149-63. [DOI: 10.1016/j.neuron.2014.05.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
|
141
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
142
|
Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr Biol 2014; 24:725-30. [PMID: 24631243 DOI: 10.1016/j.cub.2013.12.051] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 11/23/2022]
Abstract
Mating elicits profound behavioral and physiological changes in many species that are crucial for reproductive success. After copulation, Drosophila melanogaster females reduce their sexual receptivity and increase egg laying [1, 2]. Transfer of male sex peptide (SP) during copulation mediates these postmating responses [1, 3-6] via SP sensory neurons in the uterus defined by coexpression of the proprioceptive neuronal marker pickpocket (ppk) and the sex-determination genes doublesex (dsx) and fruitless (fru) [7-9]. Although neurons expressing dsx downstream of SP signaling have been shown to regulate postmating behaviors [9], how the female nervous system coordinates the change from pre- to postcopulatory states is unknown. Here, we show a role of the neuromodulator octopamine (OA) in the female postmating response. Lack of OA disrupts postmating responses in mated females, while increase of OA induces postmating responses in virgin females. Using a novel dsx(FLP) allele, we uncovered dsx neuronal elements associated with OA signaling involved in modulation of postmating responses. We identified a small subset of sexually dimorphic OA/dsx(+) neurons (approximately nine cells in females) in the abdominal ganglion. Our results are consistent with a model whereby OA neuronal signaling increases after copulation, which in turn modulates changes in female behavior and physiology in response to reproductive state.
Collapse
|
143
|
Heifetz Y, Lindner M, Garini Y, Wolfner MF. Mating regulates neuromodulator ensembles at nerve termini innervating the Drosophila reproductive tract. Curr Biol 2014; 24:731-7. [PMID: 24631240 DOI: 10.1016/j.cub.2014.02.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/31/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Upon mating, regions of the female reproductive tract mature and alter their function [1-3], for example to facilitate storage of sperm or control the release of eggs [4-6]. The female's nervous system and neuromodulators play important roles in her responses to mating [7-13]. However, it is difficult to reconcile the reproductive tract's many changing but coordinated events with the small set of neuromodulators present [14-18]. We hypothesized that each part of the reproductive tract contains a characteristic combination of neuromodulators that confer unique identities on each region and that postmating changes in these combinations coordinate subsequent actions. We examined the presence, locations, and levels of neuromodulators and related molecules ("signaling molecules") in the reproductive tract of Drosophila melanogaster females before and after mating: the biogenic amine octopamine, which regulates ovulation rate in Drosophila and locusts [7, 14-20]; serotonin, which regulates muscle contraction in locust oviducts [21]; and the FMRF amide dromyosuppressin, which regulates contraction of Drosophila heart muscle [22] and may regulate muscle contractions in the reproductive tract, if it is expressed there. We find that separate aspects of mating (sperm, seminal proteins, and physical effects) independently modulate the release of signaling molecules. Each reproductive tract subregion displays a characteristic combination of signaling molecule release, resulting in a unique functional identity. These patterns, and thus functions, change reproducibly after mating. Thus, one event (mating) promotes new combinations of signaling molecules that endow different parts of the reproductive tract with unique temporal and spatial identities that facilitate many aspects of fertilization.
Collapse
Affiliation(s)
- Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610000, Israel.
| | - Moshe Lindner
- Physics Department and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yuval Garini
- Physics Department and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, 423 Biotechnology Building, 526 Campus Drive, Ithaca, NY 14853, USA.
| |
Collapse
|
144
|
Isaac RE, Kim YJ, Audsley N. The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides 2014; 53:258-64. [PMID: 24398368 DOI: 10.1016/j.peptides.2013.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 01/31/2023]
Abstract
The male sex peptide (SP) of Drosophila melanogaster has wide ranging effects on females, including rejection of courting males, increased egg production, changes to the feeding habit, increased synthesis of antimicrobial peptides and elevated locomotor activity during day-time. The peptide activates receptors in sensory neurons of the female reproductive tract and can also traverse into the hemolymph and reach the central nervous system. The SP receptor involved in rejection and egg-laying responses has been shown to be identical to the receptor for the evolutionary conserved myoinhibitory peptides (MIPs) that function as neuropeptides in both males and females. Intriguingly, MIPs cannot substitute for SP when either expressed in the male accessory glands or injected into virgin females. MIPs are linear peptides with an amidated C-terminus which protects them from cleavage by carboxypeptidases, but leaves them exposed to potential attack from aminopeptidase and endopeptidase activities. In contrast, the SP region responsible for eliciting the post-mating response is cyclic and has several hydroxyproline residues N-terminal to the disulfide bridge which is expected to protect the biological activity of SP from peptidases of the male accessory gland and seminal fluid. We now present in vitro data showing that SP is metabolically stable, whereas MIPs are much more susceptible to degradation by peptidases of the male accessory gland and the hemolymph of virgin female D. melanogaster. SP has evolved relatively recently as a MIP receptor ligand that is particularly well adapted to surviving in the hostile degradome of the male accessory gland and seminal fluid.
Collapse
Affiliation(s)
- R Elwyn Isaac
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Young-Joon Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Neil Audsley
- The Food and Environmental Research Agency, Sand Hutton, York, YO41 1LZ, UK
| |
Collapse
|
145
|
Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet 2014; 10:e1004108. [PMID: 24453993 PMCID: PMC3894160 DOI: 10.1371/journal.pgen.1004108] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. Reproduction requires more than a sperm and an egg. In animals with internal fertilization, other proteins in the seminal fluid and the female are essential for full fertility. Although hundreds of such reproductive proteins are known, our ability to understand how they interact remains limited. In this study, we investigated whether shared patterns of protein sequence evolution were predictive of functional interactions by focusing on a small network of proteins that control fertility and female post-mating behavior in the fruit fly, Drosophila melanogaster. We first showed that the six proteins already known to act in this network display correlated patterns of evolution across the Drosophila phylogeny. We then screened hundreds of otherwise uncharacterized male and female reproductive proteins and identified those with patterns of evolution most similar to those of the known network proteins. We tested each of these candidate genes and found six new network members that are each required for long-term fertility. Using molecular genetics, we also observed that the steps in the network at which these new proteins act are consistent with their strongest evolutionary correlations. Our results suggest that patterns of coevolution may be broadly useful for predicting protein interactions in a variety of biological processes.
Collapse
|
146
|
Laturney M, Billeter JC. Neurogenetics of female reproductive behaviors in Drosophila melanogaster. ADVANCES IN GENETICS 2014; 85:1-108. [PMID: 24880733 DOI: 10.1016/b978-0-12-800271-1.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.
Collapse
Affiliation(s)
- Meghan Laturney
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
147
|
Sakurai A, Koganezawa M, Yasunaga KI, Emoto K, Yamamoto D. Select interneuron clusters determine female sexual receptivity in Drosophila. Nat Commun 2013; 4:1825. [PMID: 23652013 PMCID: PMC3674241 DOI: 10.1038/ncomms2837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/05/2013] [Indexed: 11/09/2022] Open
Abstract
Female Drosophila with the spinster mutation repel courting males and rarely mate. Here we show that the non-copulating phenotype can be recapitulated by the elimination of spinster functions from either spin-A or spin-D neuronal clusters, in the otherwise wild-type (spinster heterozygous) female brain. Spin-D corresponds to the olfactory projection neurons with dendrites in the antennal lobe VA1v glomerulus that is fruitless-positive, sexually dimorphic and responsive to fly odour. Spin-A is a novel local neuron cluster in the suboesophageal ganglion, which is known to process contact chemical pheromone information and copulation-related signals. A slight reduction in spinster expression to a level with a minimal effect is sufficient to shut off female sexual receptivity if the dominant-negative mechanistic target of rapamycin is simultaneously expressed, although the latter manipulation alone has only a marginal effect. We propose that spin-mediated mechanistic target of rapamycin signal transduction in these neurons is essential for females to accept the courting male. The protein spinster is implicated in Drosophila courtship behaviour. Sakurai and colleagues identify two clusters of spinster-expressing interneurons, and show that these cells are required for female receptivity to male advances.
Collapse
Affiliation(s)
- Akira Sakurai
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
148
|
Abstract
The detection of nutrients, both in food and within the body, is crucial for the regulation of feeding behavior, growth, and metabolism. While the molecular basis for sensing food chemicals by the taste system has been firmly linked to specific taste receptors, relatively little is known about the molecular nature of the sensors that monitor nutrients internally. Recent reports of taste receptors expressed in other organ systems, foremost in the gastrointestinal tract of mammals and insects, has led to the proposition that some taste receptors may also be used as sensors of internal nutrients. Indeed, we provided direct evidence that the Drosophila gustatory receptor 43a (Gr43a) plays a critical role in sensing internal fructose levels in the fly brain. In addition to the brain and the taste system, Gr43a is also expressed in neurons of the proventricular ganglion and the uterus. Here, we discuss the multiple potential roles of Gr43a in the fly. We also provide evidence that its activation in the brain is likely mediated by the neuropeptide Corazonin. Finally, we posit that Gr43a may represent only a precedent for other taste receptors that sense internal nutrients, not only in flies but, quite possibly, in other animals, including mammals.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station, TX USA
| | - Hubert Amrein
- Department of Molecular and Cellular Medicine; Texas A&M Health Science Center; College Station, TX USA
| |
Collapse
|
149
|
Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci 2013; 17:81-8. [PMID: 24241395 PMCID: PMC3995170 DOI: 10.1038/nn.3581] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
Abstract
Intraspecific male-male aggression, which is important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral assay in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel ppk29 and was mediated by male-specific GABAergic neurons acting on the GABAA receptor RDL in target cells. Silencing or activating this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression.
Collapse
|
150
|
Castellanos MC, Tang JCY, Allan DW. Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility. Development 2013; 140:3915-26. [PMID: 23981656 DOI: 10.1242/dev.094714] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila.
Collapse
Affiliation(s)
- Monica C Castellanos
- Department of Cellular and Physiological Sciences, 2401 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|