101
|
Bocchio M, Fisher SP, Unal G, Ellender TJ, Vyazovskiy VV, Capogna M. Sleep and Serotonin Modulate Paracapsular Nitric Oxide Synthase Expressing Neurons of the Amygdala. eNeuro 2016; 3:ENEURO.0177-16.2016. [PMID: 27822504 PMCID: PMC5088777 DOI: 10.1523/eneuro.0177-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Unraveling the roles of distinct neuron types is a fundamental challenge to understanding brain function in health and disease. In the amygdala, a brain structure regulating emotional behavior, the diversity of GABAergic neurons has been only partially explored. We report a novel population of GABAergic amygdala neurons expressing high levels of neuronal nitric oxide synthase (nNOS). These cells are predominantly localized along basolateral amygdala (BLA) boundaries. Performing ex vivo patch-clamp recordings from nNOS+ neurons in Nos1-CreER;Ai9 mice, we observed that nNOS+ neurons located along the external capsule display distinctive electrophysiological properties, axonal and dendritic arborization, and connectivity. Examining their c-Fos expression, we found that paracapsular nNOS+ neurons are activated during a period of undisturbed sleep following sleep deprivation, but not during sleep deprivation. Consistently, we found that dorsal raphe serotonin [5-hydroxytryptamine (5-HT)] neurons, which are involved in sleep-wake regulation, innervate nNOS+ neurons. Bath application of 5-HT hyperpolarizes nNOS+ neurons via 5-HT1A receptors. This hyperpolarization produces a reduction in firing rate and, occasionally, a switch from tonic to burst firing mode, thereby contrasting with the classic depolarizing effect of 5-HT on BLA GABAergic cells reported so far. Thus, nNOS+ cells are a distinct cell type of the amygdala that controls the activity of downstream neurons in both amygdaloid and extra-amygdaloid regions in a vigilance state-dependent fashion. Given the strong links among mood, sleep deprivation, and 5-HT, the recruitment of paracapsular nNOS+ neurons following high sleep pressure may represent an important mechanism in emotional regulation.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Simon P. Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gunes Unal
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tommas J. Ellender
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
102
|
Ferri SL, Kreibich AS, Torre M, Piccoli CT, Dow H, Pallathra AA, Li H, Bilker WB, Gur RC, Abel T, Brodkin ES. Activation of basolateral amygdala in juvenile C57BL/6J mice during social approach behavior. Neuroscience 2016; 335:184-94. [PMID: 27520082 DOI: 10.1016/j.neuroscience.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022]
Abstract
There is a strong need to better understand the neurobiology of juvenile sociability (tendency to seek social interaction), a phenotype of central relevance to autism spectrum disorders (ASD). Although numerous genetic mouse models of ASD showing reduced sociability have been reported, and certain brain regions, such as the amygdala, have been implicated in sociability, there has been little emphasis on delineating brain structures and circuits activated during social interactions in the critical juvenile period of the mouse strain that serves as the most common genetic background for these models-the highly sociable C57BL/6J (B6) strain. We measured expression of the immediate early genes Fos and Egr-1 to map activation of brain regions following the Social Approach Test (SAT) in juvenile male B6 mice. We hypothesized that juvenile B6 mice would show activation of the amygdala during social interactions. The basolateral amygdala (BLA) was activated by social exposure in highly sociable, 4-week-old B6 mice. In light of these data, and the many lines of evidence indicating alteration of amygdala circuits in human ASD, future studies are warranted to assess structural and functional alterations in the BLA, particularly at BLA synapses, in various mouse models of ASD.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-6168, USA
| | - Arati S Kreibich
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Matthew Torre
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Cara T Piccoli
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Holly Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, 215 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 10 Gates Pavilion, Philadelphia, PA 19104-4283, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-6168, USA
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA.
| |
Collapse
|
103
|
Lee SC, Amir A, Headley DB, Haufler D, Pare D. Basolateral amygdala nucleus responses to appetitive conditioned stimuli correlate with variations in conditioned behaviour. Nat Commun 2016; 7:12275. [PMID: 27447354 PMCID: PMC4961864 DOI: 10.1038/ncomms12275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/17/2016] [Indexed: 01/06/2023] Open
Abstract
In the lateral amygdala (LA), training-induced increases in neuronal responsiveness to conditioned stimuli (CSs) reflect potentiated sensory responses that drive conditioned behaviours (CRs) via LA's targets. The basolateral nucleus of the amygdala (BL) receives LA inputs and projects to various subcortical sites that can drive aversive and appetitive CRs. Consistent with this, BL neurons also develop increased responses to CSs that predict rewarding or aversive outcomes. This increased BL activity is thought to reflect the potentiated sensory responses of LA neurons. Here we contrast the CS-related activity of BL neurons when rats produced the expected CR or not, to show that cells activated by appetitive CSs mainly encode behavioural output, not CS identity. The strong dependence of BL activity on behaviour irrespective of CS identity suggests that feedforward connectivity from LA to BL can be overridden by other BL inputs.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | - Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | - Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | - Darrell Haufler
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | - Denis Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| |
Collapse
|
104
|
Morrison DJ, Rashid AJ, Yiu AP, Yan C, Frankland PW, Josselyn SA. Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol Learn Mem 2016; 135:91-99. [PMID: 27422019 DOI: 10.1016/j.nlm.2016.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 11/19/2022]
Abstract
Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV+) interneurons of the amygdala. We find that silencing PV+ neurons during conditioning increases the size of the engram, especially in the dorsal subnucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability.
Collapse
Affiliation(s)
- Dano J Morrison
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Dept. Physiology, University of Toronto, Toronto, ON, Canada
| | - Asim J Rashid
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaide P Yiu
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Dept. Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Yan
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Dept. Physiology, University of Toronto, Toronto, ON, Canada
| | - Paul W Frankland
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Dept. Physiology, University of Toronto, Toronto, ON, Canada; Dept. Psychology, University of Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sheena A Josselyn
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Dept. Physiology, University of Toronto, Toronto, ON, Canada; Dept. Psychology, University of Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
105
|
Windels F, Yan S, Stratton PG, Sullivan R, Crane JW, Sah P. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons. PLoS One 2016; 11:e0155192. [PMID: 27171164 PMCID: PMC4865267 DOI: 10.1371/journal.pone.0155192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 11/18/2022] Open
Abstract
In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA) show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.
Collapse
Affiliation(s)
- François Windels
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
- * E-mail:
| | - Shanzhi Yan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter G. Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Robert Sullivan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W. Crane
- School of Biomedical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, Brisbane, Queensland, Australia
| |
Collapse
|
106
|
Kim D, Samarth P, Feng F, Pare D, Nair SS. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct Funct 2016; 221:2163-82. [PMID: 25859631 PMCID: PMC4600426 DOI: 10.1007/s00429-015-1037-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
Competitive synaptic interactions between principal neurons (PNs) with differing intrinsic excitability were recently shown to determine which dorsal lateral amygdala (LAd) neurons are recruited into a fear memory trace. Here, we explored the contribution of these competitive interactions in determining the stimulus specificity of conditioned fear associations. To this end, we used a realistic biophysical computational model of LAd that included multi-compartment conductance-based models of 800 PNs and 200 interneurons. To reproduce the continuum of spike frequency adaptation displayed by PNs, the model included three subtypes of PNs with high, intermediate, and low spike frequency adaptation. In addition, the model network integrated spatially differentiated patterns of excitatory and inhibitory connections within LA, dopaminergic and noradrenergic inputs, extrinsic thalamic and cortical tone afferents to simulate conditioned stimuli as well as shock inputs for the unconditioned stimulus. Last, glutamatergic synapses in the model could undergo activity-dependent plasticity. Our results suggest that plasticity at both excitatory (PN-PN) and di-synaptic inhibitory (PN-ITN and, particularly, ITN-PN) connections are major determinants of the synaptic competition governing the assignment of PNs to the memory trace. The model also revealed that training-induced potentiation of PN-PN synapses promotes, whereas that of ITN-PN synapses opposes, stimulus generalization. Indeed, suppressing plasticity of PN-PN synapses increased, whereas preventing plasticity of interneuronal synapses decreased the CS specificity of PN recruitment. Overall, our results indicate that the plasticity configuration imprinted in the network by synaptic competition ensures memory specificity. Given that anxiety disorders are characterized by tendency to generalize learned fear to safe stimuli or situations, understanding how plasticity of intrinsic LAd synapses regulates the specificity of learned fear is an important challenge for future experimental studies.
Collapse
Affiliation(s)
- D Kim
- Electrical and Computer Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - P Samarth
- Electrical and Computer Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - F Feng
- Electrical and Computer Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA
| | - Satish S Nair
- Electrical and Computer Engineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
107
|
Vereczki VK, Veres JM, Müller K, Nagy GA, Rácz B, Barsy B, Hájos N. Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Front Neuroanat 2016; 10:20. [PMID: 27013983 PMCID: PMC4779893 DOI: 10.3389/fnana.2016.00020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Spike generation is most effectively controlled by inhibitory inputs that target the perisomatic region of neurons. Despite the critical importance of this functional domain, very little is known about the organization of the GABAergic inputs contacting the perisomatic region of principal cells (PCs) in the basolateral amygdala. Using immunocytochemistry combined with in vitro single-cell labeling we determined the number and sources of GABAergic inputs of PCs at light and electron microscopic levels in mice. We found that the soma and proximal dendrites of PCs were innervated primarily by two neurochemically distinct basket cell types expressing parvalbumin (PVBC) or cholecystokinin and CB1 cannabinoid receptors (CCK/CB1BC). The innervation of the initial segment of PC axons was found to be parceled out by PVBCs and axo-axonic cells (AAC), as the majority of GABAergic inputs onto the region nearest to the soma (between 0 and 10 μm) originated from PVBCs, while the largest portion of the axon initial segment was innervated by AACs. Detailed morphological investigations revealed that the three perisomatic region-targeting interneuron types significantly differed in dendritic and axonal arborization properties. We found that, although individual PVBCs targeted PCs via more terminals than CCK/CB1BCs, similar numbers (15–17) of the two BC types converge onto single PCs, whereas fewer (6–7) AACs innervate the axon initial segment of single PCs. Furthermore, we estimated that a PVBC and a CCK/CB1BC may target 800–900 and 700–800 PCs, respectively, while an AAC can innervate 600–650 PCs. Thus, BCs and AACs innervate ~10 and 20% of PC population, respectively, within their axonal cloud. Our results collectively suggest, that these interneuron types may be differently affiliated within the local amygdalar microcircuits in order to fulfill specific functions in network operation during various brain states.
Collapse
Affiliation(s)
- Viktória K Vereczki
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis UniversityBudapest, Hungary
| | - Judit M Veres
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis UniversityBudapest, Hungary
| | - Kinga Müller
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Gergö A Nagy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Szent István UniversityBudapest, Hungary; Electronmicroscopy Research Group, Faculty of Veterinary Science, Szent István UniversityBudapest, Hungary
| | - Boglárka Barsy
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Hájos
- Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
108
|
McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 2016; 95:797-820. [PMID: 26876924 DOI: 10.1002/jnr.23709] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
Abstract
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
109
|
Muller JF, Mascagni F, Zaric V, Mott DD, McDonald AJ. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis. J Comp Neurol 2016; 524:2400-17. [PMID: 26779591 DOI: 10.1002/cne.23959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Franco Mascagni
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Violeta Zaric
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - David D Mott
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| |
Collapse
|
110
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
111
|
Giustino TF, Maren S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front Behav Neurosci 2015; 9:298. [PMID: 26617500 PMCID: PMC4637424 DOI: 10.3389/fnbeh.2015.00298] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
112
|
Optodynamic simulation of β-adrenergic receptor signalling. Nat Commun 2015; 6:8480. [PMID: 26412387 PMCID: PMC4588095 DOI: 10.1038/ncomms9480] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/27/2015] [Indexed: 02/08/2023] Open
Abstract
Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. Optogenetic activation of β2-adrenergic receptors (β2-AR) has been achieved, but not characterized in detail. Here, Siuda et al. show that light-controlled opto-β2AR mimics endogenous β2AR activity in vitro and in vivo, and develop novel, optically active, functionally selective receptors to bias β2AR intracellular signaling mechanisms.
Collapse
|
113
|
Vaz RP, Pereira PA, Madeira MD. Age effects on the nucleus of the lateral olfactory tract of the rat. J Comp Neurol 2015. [DOI: 10.1002/cne.23863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ricardo P. Vaz
- Department of Anatomy; Faculty of Medicine; University of Porto; Porto Portugal
- Otorhinolaryngology Department; Centro Hospitalar S. João, EPE; Porto Portugal
- Center for Health Technology and Services Research (CINTESIS); Porto Portugal
| | - Pedro A. Pereira
- Department of Anatomy; Faculty of Medicine; University of Porto; Porto Portugal
- Center for Health Technology and Services Research (CINTESIS); Porto Portugal
| | - M. Dulce Madeira
- Department of Anatomy; Faculty of Medicine; University of Porto; Porto Portugal
- Center for Health Technology and Services Research (CINTESIS); Porto Portugal
| |
Collapse
|
114
|
Melzer N, Budde T, Stork O, Meuth SG. Limbic Encephalitis: Potential Impact of Adaptive Autoimmune Inflammation on Neuronal Circuits of the Amygdala. Front Neurol 2015; 6:171. [PMID: 26284026 PMCID: PMC4522870 DOI: 10.3389/fneur.2015.00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022] Open
Abstract
Limbic encephalitis is characterized by adaptive autoimmune inflammation of the gray matter structures of the limbic system. It has recently been identified as a major cause of temporal lobe epilepsy accompanied by progressive declarative – mainly episodic – memory disturbance as well as a variety of rather poorly defined emotional and behavioral changes. While autoimmune inflammation of the hippocampus is likely to be responsible for declarative memory disturbance, consequences of autoimmune inflammation of the amygdala are largely unknown. The amygdala is central for the generation of adequate homoeostatic behavioral responses to emotionally significant external stimuli following processing in a variety of parallel neuronal circuits. Here, we hypothesize that adaptive cellular and humoral autoimmunity may target and modulate distinct inhibitory or excitatory neuronal networks within the amygdala, and thereby strongly impact processing of emotional stimuli and corresponding behavioral responses. This may explain some of the rather poorly understood neuropsychiatric symptoms in limbic encephalitis.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Münster , Münster , Germany
| | - Thomas Budde
- Institute of Physiology I, University of Münster , Münster , Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg , Magdeburg , Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster , Münster , Germany ; Department of Neuropathophysiology, Institute of Physiology I, University of Münster , Münster , Germany
| |
Collapse
|
115
|
Zhang J, Muller JF, McDonald AJ. Mu opioid receptor localization in the basolateral amygdala: An ultrastructural analysis. Neuroscience 2015; 303:352-63. [PMID: 26164501 DOI: 10.1016/j.neuroscience.2015.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. In the present investigation light and electron microscopy combined with immunohistochemistry was used to study the expression of MORs in the anterior basolateral nucleus (BLa). At the light microscopic level, light to moderate MOR-immunoreactivity (MOR-ir) was observed in a small number of cell bodies of nonpyramidal interneurons and in a small number of processes and puncta in the neuropil. At the electron microscopic level most MOR-ir was observed in dendritic shafts, dendritic spines, and axon terminals. MOR-ir was also observed in the Golgi apparatus of the cell bodies of pyramidal neurons (PNs) and interneurons. Some of the MOR-positive (MOR+) dendrites were spiny, suggesting that they belonged to PNs, while others received multiple asymmetrical synapses typical of interneurons. The great majority of MOR+ axon terminals (80%) that formed synapses made asymmetrical (excitatory) synapses; their main targets were spines, including some that were MOR+. The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - J F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| |
Collapse
|
116
|
Babaev O, Botta P, Meyer E, Müller C, Ehrenreich H, Brose N, Lüthi A, Krueger-Burg D. Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacology 2015; 100:56-65. [PMID: 26142252 DOI: 10.1016/j.neuropharm.2015.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Neuroligin 2 (Nlgn2) is a synaptic adhesion protein that plays a central role in the maturation and function of inhibitory synapses. Nlgn2 mutations have been associated with psychiatric disorders such as schizophrenia, and in mice, deletion of Nlgn2 results in a pronounced anxiety phenotype. To date, however, the molecular and cellular mechanisms linking Nlgn2 deletion to psychiatric phenotypes remain completely unknown. The aim of this study was therefore to define the role of Nlgn2 in anxiety-related neural circuits. To this end, we used a combination of behavioral, immunohistochemical, and electrophysiological approaches in Nlgn2 knockout (KO) mice to expand the behavioral characterization of these mice and to assess the functional consequences of Nlgn2 deletion in the amygdala. Moreover, we investigated the differential activation of anxiety-related circuits in Nlgn2 KO mice using a cFOS activation assay following exposure to an anxiogenic stimulus. We found that Nlgn2 is present at the majority of inhibitory synapses in the basal amygdala, where its deletion affects postsynaptic structures specifically at perisomatic sites and leads to impaired inhibitory synaptic transmission. Following exposure to an anxiogenic environment, Nlgn2 KO mice show a robust anxiety phenotype as well as exacerbated induction of cFOS expression specifically in CaMKII-positive projection neurons, but not in parvalbumin- or somatostatin-positive interneurons. Our data indicate that Nlgn2 deletion predominantly affects inhibitory synapses onto projection neurons in basal amygdala, resulting in decreased inhibitory drive onto these neurons and leading to their excessive activation under anxiogenic conditions. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Olga Babaev
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Paolo Botta
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Elisabeth Meyer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Christian Müller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| |
Collapse
|
117
|
Klenowski PM, Fogarty MJ, Belmer A, Noakes PG, Bellingham MC, Bartlett SE. Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala. J Neurophysiol 2015; 114:942-57. [PMID: 26041829 DOI: 10.1152/jn.00824.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Collapse
Affiliation(s)
- Paul M Klenowski
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Arnauld Belmer
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Selena E Bartlett
- Translational Research Institute and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia;
| |
Collapse
|
118
|
Abstract
In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.
Collapse
|
119
|
McDonald AJ, Zaric V. Extrinsic origins of the somatostatin and neuropeptide Y innervation of the rat basolateral amygdala. Neuroscience 2015; 294:82-100. [PMID: 25769940 DOI: 10.1016/j.neuroscience.2015.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/05/2023]
Abstract
The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY- neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories.
Collapse
Affiliation(s)
- A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| | - V Zaric
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| |
Collapse
|
120
|
Strobel C, Marek R, Gooch HM, Sullivan RKP, Sah P. Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala. Cell Rep 2015; 10:1435-1442. [PMID: 25753409 DOI: 10.1016/j.celrep.2015.02.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/17/2015] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The basolateral amygdala (BLA) and prefrontal cortex (PFC) are partners in fear learning and extinction. Intercalated (ITC) cells are inhibitory neurons that surround the BLA. Lateral ITC (lITC) neurons provide feed-forward inhibition to BLA principal neurons, whereas medial ITC (mITC) neurons form an inhibitory interface between the BLA and central amygdala (CeA). Notably, infralimbic prefrontal (IL) input to mITC neurons is thought to play a key role in fear extinction. Here, using targeted optogenetic stimulation, we show that lITC neurons receive auditory input from cortical and thalamic regions. IL inputs innervate principal neurons in the BLA but not mITC neurons. These results suggest that (1) these neurons may play a more central role in fear learning as both lITCs and mITCs receive auditory input and that (2) mITC neurons cannot be driven directly by the IL, and their role in fear extinction is likely mediated via the BLA.
Collapse
Affiliation(s)
- Cornelia Strobel
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Roger Marek
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen M Gooch
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert K P Sullivan
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
121
|
Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala. J Neurosci 2015; 34:16194-206. [PMID: 25471561 DOI: 10.1523/jneurosci.2232-14.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axo-axonic cells (AACs) in cortical regions selectively innervate the axon initial segments (AISs) of principal cells (PCs), where the action potentials are generated. These GABAergic interneurons can alter the activity of PCs, but how the efficacy of spike control correlates with the number of output synapses remains unclear. Moreover, the relationship between the spatial distribution of GABAergic synapses and the action potential initiation site along the AISs is not well defined. Using paired recordings obtained in the mouse basolateral amygdala, we found that AACs powerfully inhibited or delayed the timing of PC spiking by 30 ms, if AAC output preceded PC spiking with no more than 80 ms. By correlating the number of synapses and the probability of spiking, we revealed that larger numbers of presynaptic AAC boutons giving rise to larger postsynaptic responses provided more effective inhibition of PC spiking. At least 10-12 AAC synapses, which could originate from 2-3 AACs on average, were necessary to veto the PC firing under our recording conditions. Furthermore, we determined that the threshold for the action potential generation along PC axons is the lowest between 20 and 40 μm from soma, which axonal segment received the highest density of GABAergic inputs. Single AACs preferentially innervated this narrow portion of the AIS where action potentials were generated with the highest likelihood, regardless of the number of synapses forming a given connection. Our results uncovered a fine organization of AAC innervation maximizing their inhibitory efficacy by strategically positioning synapses along the AISs.
Collapse
|
122
|
Abstract
The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions.
Collapse
|
123
|
Pathophysiological mechanisms underlying increased anxiety after soman exposure: reduced GABAergic inhibition in the basolateral amygdala. Neurotoxicology 2014; 44:335-43. [PMID: 25150775 DOI: 10.1016/j.neuro.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 11/21/2022]
Abstract
The recent sarin attack in Syria killed 1429 people, including 426 children, and left countless more to deal with the health consequences of the exposure. Prior to the Syrian chemical assault, nerve agent attacks in Japan left many victims suffering from neuropsychiatric illnesses, particularly anxiety disorders, more than a decade later. Uncovering the neuro-pathophysiological mechanisms underlying the development of anxiety after nerve agent exposure is necessary for successful treatment. Anxiety is associated with hyperexcitability of the basolateral amygdala (BLA). The present study sought to determine the nature of the nerve agent-induced alterations in the BLA, which could explain the development of anxiety. Rats were exposed to soman, at a dose that induced prolonged status epilepticus. Twenty-four hours and 14-days after exposure, neurons from the BLA were recorded using whole-cell patch-clamp techniques. At both the 24h and 14-day post-exposure time-points, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) in the BLA were reduced, along with reduction in the frequency but not amplitude of miniature IPSCs. In addition, activation of α7-nicotinic acetylcholine receptors, a cholinergic receptor that participates in the regulation of BLA excitability and is involved in anxiety, increased spontaneous excitatory postsynaptic currents (sEPSCs) in both soman-exposed rats and controls, but was less effective in increasing sIPSCs in soman-exposed rats. Despite the loss of both interneurons and principal cells after soman-induced status epilepticus, the frequency of sEPSCs was increased in the soman-exposed rats. Impaired function and cholinergic modulation of GABAergic inhibition in the BLA may underlie anxiety disorders that develop after nerve agent exposure.
Collapse
|
124
|
Abstract
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Collapse
|
125
|
Prager EM, Aroniadou-Anderjaska V, Almeida-Suhett CP, Figueiredo TH, Apland JP, Rossetti F, Olsen CH, Braga MFM. The recovery of acetylcholinesterase activity and the progression of neuropathological and pathophysiological alterations in the rat basolateral amygdala after soman-induced status epilepticus: relation to anxiety-like behavior. Neuropharmacology 2014; 81:64-74. [PMID: 24486384 PMCID: PMC4005290 DOI: 10.1016/j.neuropharm.2014.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/12/2013] [Accepted: 01/21/2014] [Indexed: 02/05/2023]
Abstract
Organophosphorus nerve agents are powerful neurotoxins that irreversibly inhibit acetylcholinesterase (AChE) activity. One of the consequences of AChE inhibition is the generation of seizures and status epilepticus (SE), which cause brain damage, resulting in long-term neurological and behavioral deficits. Increased anxiety is the most common behavioral abnormality after nerve agent exposure. This is not surprising considering that the amygdala, and the basolateral nucleus of the amygdala (BLA) in particular, plays a central role in anxiety, and this structure suffers severe damage by nerve agent-induced seizures. In the present study, we exposed male rats to the nerve agent soman, at a dose that induce SE, and determined the time course of recovery of AChE activity, along with the progression of neuropathological and pathophysiological alterations in the BLA, during a 30-day period after exposure. Measurements were taken at 24 h, 7 days, 14 days, and 30 days after exposure, and at 14 and 30 days, anxiety-like behavior was also evaluated. We found that more than 90% of AChE is inhibited at the onset of SE, and AChE inhibition remains at this level 24 h later, in the BLA, as well as in the hippocampus, piriform cortex, and prelimbic cortex, which we analyzed for comparison. AChE activity recovered by day 7 in the BLA and day 14 in the other three regions. Significant neuronal loss and neurodegeneration were present in the BLA at 24 h and throughout the 30-day period. There was no significant loss of GABAergic interneurons in the BLA at 24 h post-exposure. However, by day 7, the number of GABAergic interneurons in the BLA was reduced, and at 14 and 30 days after soman, the ratio of GABAergic interneurons to the total number of neurons was lower compared to controls. Anxiety-like behavior in the open-field and the acoustic startle response tests was increased at 14 and 30 days post-exposure. Accompanying pathophysiological alterations in the BLA - studied in in vitro brain slices - included a reduction in the amplitude of field potentials evoked by stimulation of the external capsule, along with prolongation of their time course and an increase in the paired-pulse ratio. Long-term potentiation was impaired at 24 h, 7 days, and 14 days post-exposure. The loss of GABAergic interneurons in the BLA and the decreased interneuron to total number of neurons ratio may be the primary cause of the development of anxiety after nerve agent exposure.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Camila P Almeida-Suhett
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - James P Apland
- Neurotoxicology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Franco Rossetti
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Cara H Olsen
- Biostatistics Consulting Center, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
126
|
Unal G, Paré JF, Smith Y, Paré D. Cortical inputs innervate calbindin-immunoreactive interneurons of the rat basolateral amygdaloid complex. J Comp Neurol 2014; 522:1915-28. [PMID: 24285470 PMCID: PMC3984626 DOI: 10.1002/cne.23511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
The present study was undertaken to shed light on the synaptic organization of the rat basolateral amygdala (BLA). The BLA contains multiple types of GABAergic interneurons that are differentially connected with extrinsic afferents and other BLA cells. Previously, it was reported that parvalbumin immunoreactive (PV(+) ) interneurons receive strong excitatory inputs from principal BLA cells but very few cortical inputs, implying a prevalent role in feedback inhibition. However, because prior physiological studies indicate that cortical afferents do trigger feedforward inhibition in principal cells, the present study aimed to determine whether a numerically important subtype of interneurons, expressing calbindin (CB(+) ), receives cortical inputs. Rats received injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) in the perirhinal cortex or adjacent temporal neocortex. Light and electron microscopic observations of the relations between cortical inputs and BLA neurons were performed in the lateral (LA) and basolateral (BL) nuclei. Irrespective of the injection site (perirhinal or temporal neocortex) and target nucleus (LA or BL), ~90% of cortical axon terminals formed asymmetric synapses with dendritic spines of principal BLA neurons, while 10% contacted the dendritic shafts of presumed interneurons, half of which were CB(+) . Given the previously reported pattern of CB coexpression among GABAergic interneurons of the BLA, these results suggest that a subset of PV-immunonegative cells that express CB, most likely the somatostatin-positive interneurons, are important mediators of cortically evoked feedforward inhibition in the BLA.
Collapse
Affiliation(s)
- Gunes Unal
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| | - Jean-Francois Paré
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, 954 Gatewood Road, Atlanta, GA 30329
| | - Denis Paré
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102
| |
Collapse
|
127
|
Wolff SBE, Gründemann J, Tovote P, Krabbe S, Jacobson GA, Müller C, Herry C, Ehrlich I, Friedrich RW, Letzkus JJ, Lüthi A. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 2014; 509:453-8. [DOI: 10.1038/nature13258] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
|
128
|
Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol 2014; 5:68. [PMID: 24782772 PMCID: PMC3988395 DOI: 10.3389/fphar.2014.00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and “remaining” nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
129
|
Hübner C, Bosch D, Gall A, Lüthi A, Ehrlich I. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci 2014; 8:64. [PMID: 24634648 PMCID: PMC3943336 DOI: 10.3389/fnbeh.2014.00064] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/13/2014] [Indexed: 12/03/2022] Open
Abstract
Many lines of evidence suggest that a reciprocally interconnected network comprising the amygdala, ventral hippocampus (vHC), and medial prefrontal cortex (mPFC) participates in different aspects of the acquisition and extinction of conditioned fear responses and fear behavior. This could at least in part be mediated by direct connections from mPFC or vHC to amygdala to control amygdala activity and output. However, currently the interactions between mPFC and vHC afferents and their specific targets in the amygdala are still poorly understood. Here, we use an ex-vivo optogenetic approach to dissect synaptic properties of inputs from mPFC and vHC to defined neuronal populations in the basal amygdala (BA), the area that we identify as a major target of these projections. We find that BA principal neurons (PNs) and local BA interneurons (INs) receive monosynaptic excitatory inputs from mPFC and vHC. In addition, both these inputs also recruit GABAergic feedforward inhibition in a substantial fraction of PNs, in some neurons this also comprises a slow GABAB-component. Amongst the innervated PNs we identify neurons that project back to subregions of the mPFC, indicating a loop between neurons in mPFC and BA, and a pathway from vHC to mPFC via BA. Interestingly, mPFC inputs also recruit feedforward inhibition in a fraction of INs, suggesting that these inputs can activate dis-inhibitory circuits in the BA. A general feature of both mPFC and vHC inputs to local INs is that excitatory inputs display faster rise and decay kinetics than in PNs, which would enable temporally precise signaling. However, mPFC and vHC inputs to both PNs and INs differ in their presynaptic release properties, in that vHC inputs are more depressing. In summary, our data describe novel wiring, and features of synaptic connections from mPFC and vHC to amygdala that could help to interpret functions of these interconnected brain areas at the network level.
Collapse
Affiliation(s)
- Cora Hübner
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany ; Graduate School of Neural and Behavioral Sciences, IMPRS Tuebingen, Germany
| | - Daniel Bosch
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany
| | - Andrea Gall
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research Basel, Switzerland
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
130
|
Capogna M. GABAergic cell type diversity in the basolateral amygdala. Curr Opin Neurobiol 2014; 26:110-6. [PMID: 24486420 DOI: 10.1016/j.conb.2014.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 11/20/2022]
Abstract
Here I review the diversity of GABAergic neurons in the rodent basolateral amygdala (BLA). In spite of the recent identification of the role played by certain neurons of BLA in learning and memory of fear, the diversity of GABAergic neurons has not been fully explored. I describe analogies and differences between GABAergic neurons in BLA and cerebral cortex. Emphasis is given to a comprehensive functional, neurochemical and anatomical classification of GABAergic neuron types.
Collapse
Affiliation(s)
- Marco Capogna
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
131
|
Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder. J Neurosci 2013; 33:13805-19. [PMID: 23966701 DOI: 10.1523/jneurosci.1457-13.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intellectual disorders (IDs) have been regularly associated with morphological and functional deficits at glutamatergic synapses in both humans and rodents. How these synaptic deficits may lead to the variety of learning and memory deficits defining ID is still unknown. Here we studied the functional and behavioral consequences of the ID gene il1rapl1 deficiency in mice and reported that il1rapl1 constitutive deletion alters cued fear memory formation. Combined in vivo and in vitro approaches allowed us to unveil a causal relationship between a marked inhibitory/excitatory (I/E) imbalance in dedicated amygdala neuronal subcircuits and behavioral deficits. Cell-targeted recordings further demonstrated a morpho-functional impact of the mutation at thalamic projections contacting principal cells, whereas the same afferents on interneurons are unaffected by the lack of Il1rapl1. We thus propose that excitatory synapses have a heterogeneous vulnerability to il1rapl1 gene constitutive mutation and that alteration of a subset of excitatory synapses in neuronal circuits is sufficient to generate permanent cognitive deficits.
Collapse
|
132
|
Pidoplichko VI, Prager EM, Aroniadou-Anderjaska V, Braga MFM. α7-Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. J Neurophysiol 2013; 110:2358-69. [PMID: 24004528 DOI: 10.1152/jn.01030.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral amygdala (BLA) plays a key role in fear-related learning and memory, in the modulation of cognitive functions, and in the overall regulation of emotional behavior. Pathophysiological alterations involving hyperexcitability in this brain region underlie anxiety and other emotional disorders as well as some forms of epilepsy. GABAergic interneurons exert a tight inhibitory control over the BLA network; understanding the mechanisms that regulate their activity is necessary for understanding physiological and disordered BLA functions. The BLA receives dense cholinergic input from the basal forebrain, affecting both normal functions and dysfunctions of the amygdala, but the mechanisms involved in the cholinergic regulation of inhibitory activity in the BLA are unclear. Using whole cell recordings in rat amygdala slices, here we demonstrate that the α(7)-containing nicotinic acetylcholine receptors (α(7)-nAChRs) are present on somatic or somatodendritic regions of BLA interneurons. These receptors are active in the basal state enhancing GABAergic inhibition, and their further, exogenous activation produces a transient but dramatic increase of spontaneous inhibitory postsynaptic currents in principal BLA neurons. In the absence of AMPA/kainate receptor antagonists, activation of α(7)-nAChRs in the BLA network increases both GABAergic and glutamatergic spontaneous currents in BLA principal cells, but the inhibitory currents are enhanced significantly more than the excitatory currents, reducing overall excitability. The anxiolytic effects of nicotine as well as the role of the α(7)-nAChRs in seizure activity involving the amygdala and in mental illnesses, such as schizophrenia and Alzheimer's disease, may be better understood in light of the present findings.
Collapse
Affiliation(s)
- Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
133
|
Pedraza C, Sánchez-López J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, García-Fernández M, Rodriguez de Fonseca F, Chun J, Santín LJ, Estivill-Torrús G. Fear extinction and acute stress reactivity reveal a role of LPA(1) receptor in regulating emotional-like behaviors. Brain Struct Funct 2013; 219:1659-72. [PMID: 23775489 DOI: 10.1007/s00429-013-0592-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intercellular signaling molecule. It has been proposed that this receptor has a role in controlling anxiety-like behaviors and in the detrimental consequences of stress. Here, we sought to establish the involvement of the LPA1 receptor in emotional regulation. To this end, we examined fear extinction in LPA1-null mice, wild-type and LPA1 antagonist-treated animals. In LPA1-null mice we also characterized the morphology and GABAergic properties of the amygdala and the medial prefrontal cortex. Furthermore, the expression of c-Fos protein in the amygdala and the medial prefrontal cortex, and the corticosterone response following acute stress were examined in both genotypes. Our data indicated that the absence of the LPA1 receptor significantly inhibited fear extinction. Treatment of wild-type mice with the LPA1 antagonist Ki16425 mimicked the behavioral phenotype of LPA1-null mice, revealing that the LPA1 receptor was involved in extinction. Immunohistochemistry studies revealed a reduction in the number of neurons, GABA+ cells, calcium-binding proteins and the volume of the amygdala in LPA1-null mice. Following acute stress, LPA1-null mice showed increased corticosterone and c-Fos expression in the amygdala. In conclusion, LPA1 receptor is involved in emotional behaviors and in the anatomical integrity of the corticolimbic circuit, the deregulation of which may be a susceptibility factor for anxiety disorders and a potential therapeutic target for the treatment of these diseases.
Collapse
Affiliation(s)
- C Pedraza
- Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, 29071, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 2013; 230:427-39. [PMID: 23591691 DOI: 10.1007/s00221-013-3512-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 01/23/2023]
Abstract
The amygdaloid complex and hippocampal region contribute to emotional activities, learning, and memory. Mounting evidence suggests a primary role for serotonin (5-HT) in the physiological basis of memory and its pathogenesis by modulating directly the activity of these two areas and their cross-talk. Indeed, both the amygdala and the hippocampus receive remarkably dense serotoninergic inputs from the dorsal and median raphe nuclei. Anatomical, behavioral and electrophysiological evidence indicates the 5-HT2A receptor as one of the principal postsynaptic targets mediating 5-HT effects. In fact, the 5-HT2A receptor is the most abundant 5-HT receptor expressed in these brain structures and is expressed on both amygdalar and hippocampal pyramidal glutamatergic neurons as well as on γ-aminobutyric acid (GABA)-containing interneurons. 5-HT2A receptors on GABAergic interneurons stimulate GABA release, and thereby have an important role in regulating network activity and neural oscillations in the amygdala and hippocampal region. This review will focus on the distribution and physiological functions of the 5-HT2A receptor in the amygdala and hippocampal region. Taken together the results discussed here suggest that 5-HT2A receptor may be a potential therapeutic target for those disorders related to hippocampal and amygdala dysfunction.
Collapse
|
135
|
Song C, Xu XB, He Y, Liu ZP, Wang M, Zhang X, Li BM, Pan BX. Stuttering interneurons generate fast and robust inhibition onto projection neurons with low capacity of short term modulation in mouse lateral amygdala. PLoS One 2013; 8:e60154. [PMID: 23527307 PMCID: PMC3602081 DOI: 10.1371/journal.pone.0060154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
The stuttering interneurons (STi) represent one minor subset of interneuron population and exhibit characteristic stuttering firing upon depolarization current injection. While it has been long held that the GABAergic inhibitory transmission largely varies with the subtype identity of presynaptic interneurons, whether such a rule also applies to STi is largely unknown. Here, by paired recording of interneuron and their neighboring projection neuron in lateral amygdala, we found that relative to the fast spiking and late spiking interneurons, the STi-evoked unitary postsynaptic currents onto the projection neurons had markedly larger amplitude, shorter onset latency and faster rising and decay kinetics. The quantal content and the number of vesicles in the readily releasable pool were also larger in synapses made by STi versus other interneurons. Moreover, the short-term plasticity, as reflected by the paired pulse depression and depolarization-induced suppression of inhibition, was the least prominent in the output synapses of STi. Thus, the fast and robust inhibition together with its low capacity of short term modulation may suggest an important role for STi in preventing the overexcitation of the projection neurons and thus gating the information traffic in amygdala.
Collapse
Affiliation(s)
- Chen Song
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Xiao-Bin Xu
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Ye He
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
- Department of Pharmacology, Nanchang University, Nanchang, China
| | - Zhi-Peng Liu
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Min Wang
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Xin Zhang
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Bao-Ming Li
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorder, Institute of Life Science, Nanchang University, Nanchang, China
- * E-mail:
| |
Collapse
|
136
|
Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 2013; 591:2381-91. [PMID: 23420655 DOI: 10.1113/jphysiol.2012.248575] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fear conditioning and fear extinction are Pavlovian conditioning paradigms extensively used to study the mechanisms that underlie learning and memory formation. The neural circuits that mediate this learning are evolutionarily conserved, and seen in virtually all species from flies to humans. In mammals, the amygdala and medial prefrontal cortex are two structures that play a key role in the acquisition, consolidation and retrieval of fear memory, as well extinction of fear. These two regions have extensive bidirectional connections, and in recent years, the neural circuits that mediate fear learning and fear extinction are beginning to be elucidated. In this review, we provide an overview of our current understanding of the neural architecture within the amygdala and medial prefrontal cortex. We describe how sensory information is processed in these two structures and the neural circuits between them thought to mediate different aspects of fear learning. Finally, we discuss how changes in circuits within these structures may mediate fear responses following fear conditioning and extinction.
Collapse
Affiliation(s)
- Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
137
|
Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine. J Neurosci 2013; 32:14815-20. [PMID: 23077066 DOI: 10.1523/jneurosci.2997-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) in the basolateral amygdala (BLA) promotes fear learning by disinhibiting principal neurons (PNs) and enabling synaptic plasticity in their sensory inputs. While BLA interneurons (INs) are heterogeneous, it is unclear which interneuron subtypes decrease GABAergic input to PNs in the presence of DA. Here, using cell type-selective photostimulation by channelrhodopsin 2 in BLA slices from mouse brain, we examined the role of parvalbumin-positive INs (PV-INs), the major interneuronal subpopulation in BLA, in the disinhibitory effect of DA. We found that DA selectively suppressed GABAergic transmission from PV-INs to PNs by acting on presynaptic D(2) receptors, and this effect was mimicked by Rp-cAMP, an inhibitor of cAMP-dependent signaling. In contrast, DA did not alter GABA release from PV-INs to INs. Furthermore, neither suppressing cAMP-dependent signaling by Rp-cAMP nor enhancing it by forskolin altered GABA release from PV-INs to BLA INs. Overall, DA disinhibits BLA, at least in part, by suppressing GABA release from PV-INs in the target cell-specific manner that results from differential control of this release by cAMP-dependent signaling.
Collapse
|
138
|
Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2426-43. [PMID: 22826343 DOI: 10.1098/rstb.2012.0039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry (MP), Laboratory of Translational Neuroscience (LTN), Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, , Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
139
|
Waider J, Proft F, Langlhofer G, Asan E, Lesch KP, Gutknecht L. GABA concentration and GABAergic neuron populations in limbic areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. Histochem Cell Biol 2012; 139:267-81. [PMID: 23052836 DOI: 10.1007/s00418-012-1029-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
While tryptophan hydroxylase-2 (Tph2) null mutant (Tph2(-/-)) mice are completely deficient in brain serotonin (5-HT) synthesis, the formation of serotonergic neurons and pathfinding of their projections are not impaired. However, 5-HT deficiency, during development and in the adult, might affect morphological and functional parameters of other neural systems. To assess the influence of 5-HT deficiency on γ-amino butyric acid (GABA) systems, we carried out measurements of GABA concentrations in limbic brain regions of adult male wildtype (wt), heterozygous (Tph2(+/-)) and Tph2(-/-) mice. In addition, unbiased stereological estimation of GABAergic interneuron numbers and density was performed in subregions of amygdala and hippocampus. Amygdala and prefrontal cortex displayed significantly increased and decreased GABA concentrations, respectively, exclusively in Tph2(+/-) mice while no changes were detected between Tph2(-/-) and wt mice. In contrast, in the hippocampus, increased GABA concentrations were found in Tph2(-/-) mice. While total cell density in the anterior basolateral amygdala did not differ between genotypes, the number and density of the GABAergic interneurons were significantly decreased in Tph2(-/-) mice, with the group of parvalbumin (PV)-immunoreactive (ir) interneurons contributing somewhat less to the decrease than that of non-PV-ir GABAergic interneurons. Major morphological changes were also absent in the dorsal hippocampus, and only a trend toward reduced density of PV-ir cells was observed in the CA3 region of Tph2(-/-) mice. Our findings are the first to document that life-long reduction or complete lack of brain 5-HT transmission causes differential changes of GABA systems in limbic regions which are key players in emotional learning and memory processes. The changes likely reflect a combination of developmental alterations and functional adaptations of emotion circuits to balance the lack of 5-HT, and may underlie altered emotional behavior in 5-HT-deficient mice. Taken together, our findings provide further insight into the mechanisms how life-long 5-HT deficiency impacts the pathogenesis of anxiety- and fear-related disorders.
Collapse
Affiliation(s)
- Jonas Waider
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
140
|
Bienvenu TCM, Busti D, Magill PJ, Ferraguti F, Capogna M. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo. Neuron 2012; 74:1059-74. [PMID: 22726836 PMCID: PMC3391683 DOI: 10.1016/j.neuron.2012.04.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 11/25/2022]
Abstract
Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.
Collapse
Affiliation(s)
- Thomas C M Bienvenu
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | |
Collapse
|
141
|
Mańko M, Bienvenu TCM, Dalezios Y, Capogna M. Neurogliaform cells of amygdala: a source of slow phasic inhibition in the basolateral complex. J Physiol 2012; 590:5611-27. [PMID: 22930272 DOI: 10.1113/jphysiol.2012.236745] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synaptic inhibition in the amygdala actively participates in processing emotional information. To improve the understanding of interneurons in amygdala networks it is necessary to characterize the GABAergic cell types, their connectivity and physiological roles. We used a mouse line expressing a green fluorescent protein (GFP) under the neuropeptide Y (NPY) promoter. Paired recordings between presynaptic NPY-GFP-expressing (+) cells and postsynaptic principal neurons (PNs) of the basolateral amygdala (BLA) were performed. The NPY-GFP+ neurons displayed small somata and short dendrites embedded in a cloud of highly arborized axon, suggesting a neurogliaform cell (NGFC) type. We discovered that a NPY-GFP+ cell evoked a GABA(A) receptor-mediated slow inhibitory postsynaptic current (IPSC) in a PN and an autaptic IPSC. The slow kinetics of these IPSCs was likely caused by the low concentration and spillover of extracellular GABA. We also report that NGFCs of the BLA fired action potentials phase-locked to hippocampal theta oscillations in anaesthetized rats. When this firing was re-played in NPY+-NGFCs in vitro, it evoked a transient depression of the IPSCs. Presynaptic GABA(B) receptors and functional depletion of synaptic vesicles determined this short-term plasticity. Synaptic contacts made by recorded NGFCs showed close appositions, and rarely identifiable classical synaptic structures. Thus, we report here a novel interneuron type of the amygdala that generates volume transmission of GABA. The peculiar functional mode of NGFCs makes them unique amongst all GABAergic cell types of the amygdala identified so far.
Collapse
Affiliation(s)
- Mirosława Mańko
- MRC Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK
| | | | | | | |
Collapse
|
142
|
Sreepathi H, Ferraguti F. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents. Neuroscience 2012; 203:59-77. [PMID: 22210508 PMCID: PMC3280357 DOI: 10.1016/j.neuroscience.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
Abstract
Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ~35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ~75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ~25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses.
Collapse
Key Words
- nk1 receptor
- amygdala
- interneuron
- glutamate
- parvalbumin
- ba, basal nucleus of the amygdala
- bla, basolateral complex of the amygdala
- bp, band pass
- camkiiα, calcium/calmodulin kinase iiα
- cb, calbindin-d28k
- cbp, calcium binding protein
- cr, calretinin
- dab, 3,3′-diaminobenzidine
- gad67, glutamate decarboxylase isoform of 67 kda
- hrp, horseradish peroxidase
- la, lateral nucleus of the amygdala
- li, like immunoreactivity
- ngs, normal goat serum
- nk1, neurokinin 1
- pbs, phosphate buffered saline
- pv, parvalbumin
- rt, room temperature
- sp, substance p
- tbs, tris-buffered saline
- tbs-t, 0.1% v/v triton x-100 in tbs
- vglut, vesicular glutamate transporter
Collapse
Affiliation(s)
| | - F. Ferraguti
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
143
|
Strømme P, Dobrenis K, Sillitoe RV, Gulinello M, Ali NF, Davidson C, Micsenyi MC, Stephney G, Ellevog L, Klungland A, Walkley SU. X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction. Brain 2011; 134:3369-83. [PMID: 21964919 PMCID: PMC3212719 DOI: 10.1093/brain/awr250] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/13/2011] [Accepted: 07/30/2011] [Indexed: 11/15/2022] Open
Abstract
Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium-hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium-hydrogen exchanger 6 deficiency would most likely disrupt the endosomal-lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium-hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium-hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal-lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations.
Collapse
Affiliation(s)
- Petter Strømme
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- 2 Women and Children's Division, Department of Clinical Neurosciences for Children, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Kostantin Dobrenis
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roy V. Sillitoe
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- 4 Behavioural Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nafeeza F. Ali
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cristin Davidson
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew C. Micsenyi
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gloria Stephney
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Linda Ellevog
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- 5 Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Arne Klungland
- 3 Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
- 5 Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
| | - Steven U. Walkley
- 1 Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Centre, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
144
|
Lange MD, Doengi M, Lesting J, Pape HC, Jüngling K. Heterosynaptic long-term potentiation at interneuron-principal neuron synapses in the amygdala requires nitric oxide signalling. J Physiol 2011; 590:131-43. [PMID: 22041183 DOI: 10.1113/jphysiol.2011.221317] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Long-lasting changes of synaptic efficacy are thought to be a prerequisite for memory formation and maintenance. In the basolateral complex of the amygdala (BLA), one of the main regions for fear and extinction learning of the brain, various forms of long-term potentiation (LTP) have been described for excitatory glutamatergic synapses. In contrast, little is known about the mechanisms of LTP at inhibitory GABAergic synapses. Here we provide evidence that (1) LTP at inhibitory GABAergic synapses (LTP(i)) between inhibitory interneurons and principal neurons (PNs) can be induced by theta-burst stimulation (TBS), (2) this LTP(i) is prevented by AMPA- or NMDA-receptor antagonists, and (3) this LTP(i) is abolished by the NO synthase (NOS) inhibitor L-NAME or the NO scavenger PTIO, and thus is critically dependent on nitric oxide (NO) signalling. These findings are corroborated by immunocytochemical stainings for neuronal (n) NOS, which revealed the existence of nNOS-positive neurons and fibres in the BLA. We conclude that LTP of GABAergic synaptic transmission to PNs is induced by activation of AMPA and NMDA receptors at glutamatergic synapses and subsequent retrograde NO signalling to enhance GABAergic transmission. This form of LTP at GABAergic synapses comprises a novel form of heterosynaptic plasticity within the BLA, apt to shape conditioned fear responses.
Collapse
Affiliation(s)
- M D Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | |
Collapse
|
145
|
Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast 2011; 2011:649325. [PMID: 21876820 PMCID: PMC3159129 DOI: 10.1155/2011/649325] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022] Open
Abstract
A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.
Collapse
|
146
|
Kullmann DM, Lamsa KP. LTP and LTD in cortical GABAergic interneurons: Emerging rules and roles. Neuropharmacology 2011; 60:712-9. [DOI: 10.1016/j.neuropharm.2010.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 12/02/2010] [Accepted: 12/15/2010] [Indexed: 11/27/2022]
|