101
|
Carrive P, Churyukanov M, Le Bars D. A reassessment of stress-induced "analgesia" in the rat using an unbiased method. Pain 2011; 152:676-686. [PMID: 21277086 DOI: 10.1016/j.pain.2010.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 12/01/2022]
Abstract
An increased tail-flick latency to noxious heat during or after stress in the rodent is usually interpreted as a stress-induced reduction in pain sensitivity and often described as a form of stress-induced "analgesia." However, this measure is an indirect and flawed measure of the change in nociceptive threshold to noxious heat. A major confound of the latency measure is the initial temperature of the tail, which can drop down to room temperature during stress, the consequence of a marked sympathetically mediated vasoconstriction in the skin of the extremities. We addressed this issue with tail-flick tests during contextual fear using infrared thermography to monitor temperature changes and a CO2 laser to deliver the heat stimulus. The experiment revealed a 4.2°C increase of the nociceptive threshold, confirming a true antinociceptive effect. However, its contribution to the increased withdrawal latency was less than two-thirds (63.2%). Nearly one-third (32.2%) was due to the drop in tail temperature (4.4°C), which also slowed conduction along sensory fibers (2.2%, included in the 32.2%). The remaining 4.6% was due to an increase in decisional/motor latency. This new unbiased method establishes beyond doubt that a conditioned stress response is associated with true antinociception to noxious heat. It also confirms that stress-induced changes in skin temperature can be a major confound in tail-flick tests. The present study shows, for the first time, the exact contribution of these two components of the tail-flick latency for a stress response. Less than two-thirds of the increase in tail-flick latency to noxious heat, evoked by conditioned fear, reflects true antinociception. The remaining is due to skin vasoconstriction.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, NSW 2052, Australia Department of Neurology, Moscow Medical Academy, Moscow 119021, Russia Team "Pain", INSERM UMRS 975, CNRS UMR 7225, Faculté de Médecine UPMC, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
102
|
Wagner AE. Effects of stress on pain in horses and incorporating pain scales for equine practice. Vet Clin North Am Equine Pract 2011; 26:481-92. [PMID: 21056295 DOI: 10.1016/j.cveq.2010.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The stress response represents an animal's attempt to reestablish the body's homeostasis after injury, intense physical activity, or psychological strain. Two different neuroendocrine pathways may be activated in stressful situations: the hypothalamic-pituitary-adrenocortical axis, leading to increased cortisol levels, and the sympathoadrenomedullar system, leading to increased catecholamine levels. By applying some of the evaluation methods described in this article in the appropriate clinical situations, equine veterinarians can almost certainly improve their ability to recognize and manage pain in horses.
Collapse
Affiliation(s)
- Ann E Wagner
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
103
|
Nijs J, Meeus M, Van Oosterwijck J, Roussel N, De Kooning M, Ickmans K, Matic M. Treatment of central sensitization in patients with 'unexplained' chronic pain: what options do we have? Expert Opin Pharmacother 2011; 12:1087-98. [PMID: 21254866 DOI: 10.1517/14656566.2011.547475] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Central sensitization accounts for chronic 'unexplained' pain in a wide variety of disorders, including chronic whiplash-associated disorders, temporomandibular disorders, chronic low back pain, osteoarthritis, fibromyalgia, chronic fatigue syndrome and chronic tension-type headache among others. Given the increasing evidence supporting the clinical significance of central sensitization in those with unexplained chronic pain, the awareness is growing that central sensitization should be a treatment target in these patients. AREAS COVERED This article provides an overview of the treatment options available for desensitizing the CNS in patients with chronic pain due to central sensitization. It focuses on those strategies that specifically target pathophysiological mechanisms known to be involved in central sensitization. In addition, pharmacological options, rehabilitation and neurotechnology options are discussed. EXPERT OPINION Acetaminophen, serotonin-reuptake inhibitor drugs, selective and balanced serototin and norepinephrine-reuptake inhibitor drugs, the serotonin precursor tryptophan, opioids, N-methyl-d-aspartate (NMDA)-receptor antagonists, calcium-channel alpha(2)delta (a2δ) ligands, transcranial magnetic stimulation, transcutaneous electric nerve stimulation (TENS), manual therapy and stress management each target central pain processing mechanisms in animals that - theoretically - desensitize the CNS in humans. To provide a comprehensive treatment for 'unexplained' chronic pain disorders characterized by central sensitization, it is advocated to combine the best evidence available with treatment modalities known to target central sensitization.
Collapse
Affiliation(s)
- Jo Nijs
- Artesis University College Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
104
|
Cathcart S, Winefield AH, Lushington K, Rolan P. Stress and tension-type headache mechanisms. Cephalalgia 2011; 30:1250-67. [PMID: 20873360 DOI: 10.1177/0333102410362927] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stress is widely demonstrated as a contributing factor in tension-type headache (TTH). The mechanisms underlying this remain unclear at present. Recent research indicates the importance of central pain processes in tension-type headache (TTH) pathophysiology. Concurrently, research with animals and healthy humans has begun to elucidate the relationship between stress and pain processing in the central nervous system, including central pain processes putatively dysfunctional in TTH. Combined, these two fields of research present new insights and hypotheses into possible mechanisms by which stress may contribute to TTH. To date, however, there has been no comprehensive review of this literature. The present paper provides such a review, which may be valuable in facilitating a broader understanding of the central mechanisms by which stress may contribute to TTH.
Collapse
Affiliation(s)
- Stuart Cathcart
- Centre for Applied Psychological Research, School of Psychology, University of South Australia, Adelaide, Australia.
| | | | | | | |
Collapse
|
105
|
Heinricher MM, Maire JJ, Lee D, Nalwalk JW, Hough LB. Physiological basis for inhibition of morphine and improgan antinociception by CC12, a P450 epoxygenase inhibitor. J Neurophysiol 2010; 104:3222-30. [PMID: 20926616 PMCID: PMC3007650 DOI: 10.1152/jn.00681.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/06/2010] [Indexed: 12/29/2022] Open
Abstract
Many analgesic drugs, including μ-opioids, cannabinoids, and the novel nonopioid analgesic improgan, produce antinociception by actions in the rostral ventromedial medulla (RVM). There they activate pain-inhibiting neurons, termed "OFF-cells," defined by a nociceptive reflex-related pause in activity. Based on recent functional evidence that neuronal P450 epoxygenases are important for the central antinociceptive actions of morphine and improgan, we explored the convergence of opioid and nonopioid analgesic drug actions in RVM by studying the effects of the P450 epoxygenase inhibitor CC12 on the analgesic drug-induced activation of these OFF-cells and on behavioral antinociception. In rats lightly anesthetized with isoflurane, we recorded the effects of intraventricular morphine and improgan, with and without CC12 pretreatment, on tail flick latency and activity of identified RVM neurons: OFF-cells, ON-cells (pronociceptive neurons), and neutral cells (unresponsive to analgesic drugs). CC12 pretreatment preserved reflex-related changes in OFF-cell firing and blocked the analgesic actions of both drugs, without interfering with the increase in spontaneous firing induced by improgan or morphine. CC12 blocked suppression of evoked ON-cell firing by improgan, but not morphine. CC12 pretreatment had no effect by itself on RVM neurons or behavior. These data show that the epoxygenase inhibitor CC12 works downstream from receptors for both μ-opioid and improgan, at the inhibitory input mediating the OFF-cell pause. This circuit-level analysis thus provides a cellular basis for the convergence of opioid and nonopioid analgesic actions in the RVM. A presynaptic P450 epoxygenase may therefore be an important target for development of clinically useful nonopioid analgesic drugs.
Collapse
MESH Headings
- Action Potentials/drug effects
- Analgesics/antagonists & inhibitors
- Animals
- Cimetidine/analogs & derivatives
- Cimetidine/antagonists & inhibitors
- Cytochrome P-450 CYP2J2
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System
- Imidazoles/pharmacology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/physiology
- Models, Neurological
- Morphine/antagonists & inhibitors
- Pain Perception/drug effects
- Pain Perception/physiology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Signal Transduction/drug effects
- Sulfides/pharmacology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Mary M Heinricher
- Department of Neurological Surgery, CR-137, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
106
|
Ruff RL. Interesting Findings in an Initial Clinical Study of Neuropeptides and Pain. PAIN MEDICINE 2010; 11:1440-2. [DOI: 10.1111/j.1526-4637.2010.00945.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Jiménez-Velázquez G, López-Muñoz FJ, Fernández-Guasti A. Parallel anxiolytic-like and antinociceptive actions of diazepam in the anterior basolateral amygdala and dorsal periaqueductal gray. Brain Res 2010; 1349:11-20. [DOI: 10.1016/j.brainres.2010.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 01/10/2023]
|
108
|
Rivat C, Becker C, Blugeot A, Zeau B, Mauborgne A, Pohl M, Benoliel JJ. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 2010; 150:358-368. [PMID: 20573451 DOI: 10.1016/j.pain.2010.05.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 12/25/2022]
Abstract
Chronic stressful events induce biochemical, physiological and psychological changes, resulting in stress-related neuropsychiatric disorders, such as anxiety or depression. Using repeated social defeat as a stressful event model, we show that this preclinical paradigm induces a transient increase in the expression of the genes encoding the pro-inflammatory molecules iNOS and COX-2. We provide the first demonstration that chronic stress affects spinal plasticity through a mechanism involving local neuroinflammation. The functional consequences of such neuroinflammation are associated with a transient decrease in the mechanical nociceptive threshold. Administration of the cholecystokinin(CCK)-2 receptor antagonist, CI-988, directly into the Rostral Ventromedial Medulla reverses the chronic stress-induced decrease in the nociceptive threshold. These data strongly suggest that chronic stress induces a spinal neuroinflammation associated with transient sensory hypersensitivity involving the activation of CCK-dependent nociceptive descending facilitatory pathways. Pharmacological data show that chronic social stress-induced long-lasting state of anxiety is not responsible for maintaining the spinal neuroinflammation and, therefore, for the associated sensory hypersensitivity. Conversely, an evaluation of pain-related behavior in the formalin model indicates that anxiety is directly related to prolonged hyperalgesia prevented by systemic benzodiazepine or CCK-2 receptor antagonist treatments. The present study highlights the adverse effects of chronic stress on spinal neuroinflammation triggering sensory hypersensitivity. Exploration of this phenomenon points out the divergence between pain sensitivity and anxiety-induced hyperalgesia, which is in agreement with clinical observations. Altogether, these data open up new perspectives for clinical research devoted to the evaluation and treatment of pain in anxio-depressive patients.
Collapse
Affiliation(s)
- Cyril Rivat
- Université Pierre et Marie Curie-Paris 6, UMRS 975, PAIN team, Paris 75013, France INSERM, U 975, Paris 75013, France CNRS, UMR 7225, Paris 75013, France Biochimie Métabolique, Endocrinienne et Oncologique, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, 91, Boulevard de l'Hôpital, 75634 Paris Cedex 13, France Université Paris Descartes, 45, rue des Saints-Pères, 75006 Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Imbe H, Okamoto K, Donishi T, Senba E, Kimura A. Involvement of descending facilitation from the rostral ventromedial medulla in the enhancement of formalin-evoked nocifensive behavior following repeated forced swim stress. Brain Res 2010; 1329:103-12. [PMID: 20226771 DOI: 10.1016/j.brainres.2010.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/16/2010] [Accepted: 03/03/2010] [Indexed: 01/20/2023]
Abstract
In the present study we examined whether the descending facilitation from the rostral ventromedial medulla (RVM) is required for the enhancement of formalin-evoked nocifensive behavior following repeated forced swim stress. Rats were subjected to forced or sham swim stress for 3days. Withdrawal latency to noxious thermal stimuli and mechanical withdrawal threshold to von Frey filaments did not change significantly in both groups at 24h after the last stress session. The forced swim stress showed significantly enhanced nocifensive behavior to the subcutaneous administration of formalin at 2days after the last stress session (1330.1+/-62.8s), compared to the sham swim (1076+/-102.4s, p<0.05) and naive groups (825.9+/-83.2s, p<0.01). The destruction of the RVM with ibotenic acid led to prevent the enhancement of formalin-evoked nocifensive behavior in the forced swim group. These findings suggest that the descending facilitation from the RVM may be involved in the enhancement of formalin-evoked nocifensive behavior following the forced swim stress.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan.
| | | | | | | | | |
Collapse
|
110
|
Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? THE JOURNAL OF PAIN 2010; 10:1113-20. [PMID: 19878862 DOI: 10.1016/j.jpain.2009.09.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/19/2009] [Indexed: 01/20/2023]
Abstract
UNLABELLED In this review, we present data from functional, structural, and molecular imaging studies in patients and animals supporting the notion that it might be time to reconsider chronic pain as a disease. Across a range of chronic pain conditions, similar observations have been made regarding changes in structure and function within the brains of patients. We discuss these observations within the framework of the current definition of a disease. PERSPECTIVE Neuroimaging studies have made a significant scientific impact in the study of pain. Knowledge of nociceptive processing in the noninjured and injured central nervous system has grown considerably over the past 2 decades. This review examines the information from these functional, structural, and molecular studies within the framework of a disease state.
Collapse
Affiliation(s)
- Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Anaesthetics, University of Oxford, John Radcliffe Hospital, Headington, England, UK.
| | | |
Collapse
|
111
|
Cathcart S. A neural hypothesis for stress-induced headache. Med Hypotheses 2009; 73:1011-3. [DOI: 10.1016/j.mehy.2009.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/25/2022]
|
112
|
Cetas JS, Lee DR, Alkayed NJ, Wang R, Iliff JJ, Heinricher MM. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage. Neuroscience 2009; 163:719-29. [PMID: 19539726 DOI: 10.1016/j.neuroscience.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- J S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|
113
|
The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 2009; 47:987-94. [PMID: 19481610 DOI: 10.1016/j.neuroimage.2009.05.059] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/17/2009] [Accepted: 05/22/2009] [Indexed: 12/11/2022] Open
Abstract
The idea that pain can lead to feelings of frustration, worry, anxiety and depression seems obvious, particularly if it is of a chronic nature. However, there is also evidence for the reverse causal relationship in which negative mood and emotion can lead to pain or exacerbate it. Here, we review findings from studies on the modulation of pain by experimentally induced mood changes and clinical mood disorders. We discuss possible neural mechanisms underlying this modulatory influence focusing on the periaqueductal grey (PAG), amygdala, anterior cingulate cortex (ACC) and anterior insula as key players in both, pain and affective processing.
Collapse
|