101
|
Alvarez-Fischer D, Noelker C, Grünewald A, Vulinović F, Guerreiro S, Fuchs J, Lu L, Lombès A, Hirsch EC, Oertel WH, Michel PP, Hartmann A. Probenecid potentiates MPTP/MPP+toxicity by interference with cellular energy metabolism. J Neurochem 2013; 127:782-92. [DOI: 10.1111/jnc.12343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel Alvarez-Fischer
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany. Institute of Neurogenetics; University of Lübeck; Lübeck Germany. Department of Psychiatry; University of Lübeck; Lübeck Germany
| | - Carmen Noelker
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany
| | - Anne Grünewald
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Franca Vulinović
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Serge Guerreiro
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | - Julia Fuchs
- Collège de France; Center for Interdisciplinary Research in Biology (CIRB); CNRS UMR 7241/INSERM U1050; Paris France
| | - Lixia Lu
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany
| | - Anne Lombès
- Institut Cochin; INSERM UMRS 1016; CNRS UMR 8104; Université Paris Descartes; Paris France
| | - Etienne C. Hirsch
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | | | - Patrick P. Michel
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
| | - Andreas Hartmann
- UPMC Univ Paris 06; UMR_S 975 - UMR 7725; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Inserm U 975; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- CNRS; UMR 7225; Centre de Recherche en Neurosciences, ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- ICM; Therapeutique Experimentale de la Neurodegenerescence; Paris France
- Department of Neurology; Philipps-University Marburg; Marburg Germany. Département de Neurologie; Pôle des Maladies du Système Nerveux; Hôpital de la Pitié-Salpêtrière; Paris France
| |
Collapse
|
102
|
The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol 2013; 49:28-38. [PMID: 23783559 DOI: 10.1007/s12035-013-8483-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023]
Abstract
Neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies support the role of oxidative stress and inflammatory cascade in initiation and progression of PD. In Parkinson's disease pathophysiology, activated glia affects neuronal injury and death through production of neurotoxic factors like glutamate, S100B, tumor necrosis factor alpha (TNF-α), prostaglandins, and reactive oxygen and nitrogen species. As disease progresses, inflammatory secretions engage neighboring cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation leading to neurodegeneration. The exact mechanism of these inflammatory mediators in the disease progression is still poorly understood. In this review, we highlight and discuss the mechanisms of oxidative stress and inflammatory mediators by which they contribute to the disease progression. Particularly, we focus on the altered role of astroglial cells that presumably initiate and execute dopaminergic neurodegeneration in PD. In conclusion, we focus on the molecular mechanism of neurodegeneration, which contributes to the basic understanding of the role of neuroinflammation in PD pathophysiology.
Collapse
|
103
|
Khasnavis S, Ghosh A, Roy A, Pahan K. Castration induces Parkinson disease pathologies in young male mice via inducible nitric-oxide synthase. J Biol Chem 2013; 288:20843-20855. [PMID: 23744073 DOI: 10.1074/jbc.m112.443556] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS(-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.
Collapse
Affiliation(s)
- Saurabh Khasnavis
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Anamitra Ghosh
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Avik Roy
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Kalipada Pahan
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
104
|
Michel PP, Toulorge D, Guerreiro S, Hirsch EC. Specific needs of dopamine neurons for stimulation in order to survive: implication for Parkinson disease. FASEB J 2013; 27:3414-23. [PMID: 23699175 DOI: 10.1096/fj.12-220418] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson disease (PD) is a degenerative brain disorder characterized by motor symptoms that are unequivocally associated with the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although our knowledge of the mechanisms that contribute to DA cell death in both hereditary and sporadic forms of the disease has advanced significantly, the nature of the pathogenic process remains poorly understood. In this review, we present evidence that neurodegeneration occurs when the electrical activity and excitability of these neurons is reduced. In particular, we will focus on the specific need these neurons may have for stimulation in order to survive and on the molecular and cellular mechanisms that may be compromised when this need is no longer met in PD.
Collapse
Affiliation(s)
- Patrick P Michel
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Unité Mixte de Recherche (UMR) S975, Paris, France.
| | | | | | | |
Collapse
|
105
|
Evaluation of nigrostriatal neurodegeneration and neuroinflammation following repeated intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice, an experimental model of Parkinson's disease. Neurotox Res 2013; 25:24-32. [PMID: 23690159 DOI: 10.1007/s12640-013-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. The administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice is the most widely used approach to elucidate the mechanisms of cell death involved in PD. However, the magnitude of the PD-like neurodegeneration induced by MPTP depends on many variables, including the regimen of its administration. It has been demonstrated that intranasal (i.n.) administration of MPTP constitutes a new route of toxin delivery to the brain that mimics environmental exposure to neurotoxins. Previous data showed that mice submitted to chronic and acute i.n. MPTP treatment displayed a robust (~80%) and moderate (~55%) loss of striatal dopamine, respectively. However, little is known about the neurodegenerative and neuroinflammatory processes following a subacute i.n. MPTP administration in mice. Here, the C57BL/6 mice were infused intranasally with MPTP (1 mg/nostril/day) during 4 consecutive days. At 7 and 28 days after the last administration, the subacute i.n. MPTP regime decreased the tyrosine hydroxylase (TH)-labeling in the striatum (40-50%) and substantia nigra (25-30%) and increased the astrogliosis in such brain areas at both time points. Taken together, our data showed that the subacute administration of MPTP into the nasal cavity of C57BL/6 mice induces long-lasting neurodegeneration and neuroinflammation in the nigrostriatal pathway, thus representing a valuable animal model for the investigation of neuroprotective strategies in PD.
Collapse
|
106
|
Benskey M, Lee KY, Parikh K, Lookingland KJ, Goudreau JL. Sustained resistance to acute MPTP toxicity by hypothalamic dopamine neurons following chronic neurotoxicant exposure is associated with sustained up-regulation of parkin protein. Neurotoxicology 2013; 37:144-53. [PMID: 23643664 DOI: 10.1016/j.neuro.2013.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Hypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed following acute exposure to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the resistance of TIDA neurons to MPTP is associated with increased expression of parkin and ubiquitin carboxy-terminal hydrolase L-1 (UCHL-1). In the present study, the response of TIDA and NSDA neurons to acute MPTP administration following chronic MPTP exposure was examined. Mice were treated with ten injections of either MPTP (20mg/kg; s.c.; every 3.5 days) or saline vehicle (10 ml/kg; s.c.; every 3.5 days). Following a 21 day recovery period, chronic saline- and MPTP-treated mice received an additional injection of either saline (10 ml/kg; s.c.) or MPTP (20mg/kg; s.c.) and were sacrificed 24h later. NSDA neurons displayed significant axon terminal degeneration (as reflected by decreases in DA, tyrosine hydroxylase (TH) and DA transporter concentrations in the striatum) as well as loss of TH-immunoreactive (IR) neurons in the substantia nigra (SN) following MPTP, whereas TIDA neurons revealed no overt axon terminal pathology or loss of TH-IR cell bodies. NSDA neuronal pathology was associated with transient decreases in concentrations of parkin and UCHL-1 protein in the SN, which returned to normal levels by 21 days following cessation of chronic neurotoxicant exposure. Resistance of TIDA neurons to MPTP toxicity was correlated with a transient increase in UCHL-1 and a sustained elevation in parkin in the arcuate nucleus. TIDA neurons represent a DA neuron population with a unique and inherent ability to adapt to acute and chronic toxicant administration with a sustained elevation of the neuroprotective protein parkin. The correlation between the ability to increase parkin and UCHL-1 expression and the resistance of DA neurons to neurotoxicant exposure is consistent with a functional link between these features and an underlying differential susceptibility to toxicant-associated neurodegeneration.
Collapse
Affiliation(s)
- Matthew Benskey
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
107
|
Alvarez-Fischer D, Noelker C, Vulinović F, Grünewald A, Chevarin C, Klein C, Oertel WH, Hirsch EC, Michel PP, Hartmann A. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model. PLoS One 2013; 8:e61700. [PMID: 23637888 PMCID: PMC3630120 DOI: 10.1371/journal.pone.0061700] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/17/2013] [Indexed: 12/19/2022] Open
Abstract
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.
Collapse
Affiliation(s)
- Daniel Alvarez-Fischer
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University of Lübeck, Lübeck, Germany
| | - Carmen Noelker
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Franca Vulinović
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Caroline Chevarin
- Unité Mixte de Recherche S677, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Etienne C. Hirsch
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
| | - Patrick P. Michel
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
| | - Andreas Hartmann
- Université Pierre et Marie Curie-Paris 6, UMR_S 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- ICM, Therapeutique Experimentale de la Neurodegenerescence, Paris, France
- Département de Neurologie, Pôle des Maladies du Système Nerveux, Hôpital de la Pitié-Salpêtrière, Paris, France
- * E-mail:
| |
Collapse
|
108
|
De Miranda BR, Miller JA, Hansen RJ, Lunghofer PJ, Safe S, Gustafson DL, Colagiovanni D, Tjalkens RB. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson's disease. J Pharmacol Exp Ther 2013; 345:125-38. [PMID: 23318470 DOI: 10.1124/jpet.112.201558] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are currently no registered drugs that slow the progression of neurodegenerative diseases, in part because translation from animal models to the clinic has been hampered by poor distribution to the brain. The present studies examined a selected series of para-phenyl-substituted diindolylmethane (C-DIM) compounds that display anti-inflammatory and neuroprotective efficacy in vitro. We postulated that the pharmacokinetic behavior of C-DIM compounds after oral administration would correlate with neuroprotective efficacy in vivo in a mouse model of Parkinson's disease. Pharmacokinetics and metabolism of 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (C-DIM5), 1,1-bis(3'-indolyl)-1-(phenyl)methane, 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (C-DIM8), and 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) were determined in plasma and brain of C57Bl/6 mice after oral and intravenous administration at 10 and 1 mg/Kg, respectively. Putative metabolites were measured in plasma, liver, and urine. C-DIM compounds given orally displayed the highest area under the curve, Cmax, and Tmax levels, and C-DIM12 exhibited the most favorable pharmacokinetics of the compounds tested. Oral bioavailability of each compound ranged from 6% (C-DIM8) to 42% (C-DIM12). After pharmacokinetic studies, the neuroprotective efficacy of C-DIM5, C-DIM8, and C-DIM12 (50 mg/Kg per oral) was examined in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid for 14 days, a model of progressive neurodegeneration with a strong neuroinflammatory component. C-DIM5 and C-DIM12 given orally once daily after one week of exposure to MPTP and probenecid prevented further loss of dopaminergic neurons in the substantia nigra pars compacta and striatal dopamine terminals, indicating that these compounds could be effective therapeutic agents to prevent neurodegeneration.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Animal Cancer Center, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Hare DJ, Adlard PA, Doble PA, Finkelstein DI. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Metallomics 2013; 5:91-109. [DOI: 10.1039/c2mt20164j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
110
|
Pienaar IS, Chinnery PF. Existing and emerging mitochondrial-targeting therapies for altering Parkinson's disease severity and progression. Pharmacol Ther 2013; 137:1-21. [DOI: 10.1016/j.pharmthera.2012.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/07/2012] [Indexed: 02/07/2023]
|
111
|
Lindgren HS, Dunnett SB. Cognitive dysfunction and depression in Parkinson's disease: what can be learned from rodent models? Eur J Neurosci 2012; 35:1894-907. [PMID: 22708601 DOI: 10.1111/j.1460-9568.2012.08162.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) has for decades been considered a pure motor disorder and its cardinal motor symptoms have been attributed to the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and to nigral Lewy body pathology. However, there has more recently been a shift in the conceptualization of the disease, and its pathological features have now been recognized as involving several other areas of the brain and indeed even outside the central nervous system. There are a corresponding variety of intrinsic non-motor symptoms such as autonomic dysfunction, cognitive impairment, sleep disturbances and neuropsychiatric problems, which cannot be explained exclusively by nigral pathology. In this review, we will focus on cognitive impairment and affective symptoms in PD, and we will consider whether, and how, these deficits can best be modelled in rodent models of the disorder. As only a few of the non-motor symptoms respond to standard DA replacement therapies, the quest for a broader therapeutic approach remains a major research effort, and success in this area in particular will be strongly dependent on appropriate rodent models. In addition, better understanding of the different models, as well as the advantages and disadvantages of the available behavioural tasks, will result in better tools for evaluating new treatment strategies for PD patients suffering from these neuropsychological symptoms.
Collapse
Affiliation(s)
- Hanna S Lindgren
- Brain Repair Group, School of Biosciences, Cardiff University, Life Sciences Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| | | |
Collapse
|
112
|
Sung YH, Kim SC, Hong HP, Park CY, Shin MS, Kim CJ, Seo JH, Kim DY, Kim DJ, Cho HJ. Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson's disease mice. Life Sci 2012; 91:1309-16. [PMID: 23069581 DOI: 10.1016/j.lfs.2012.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/19/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
AIMS Parkinson's disease is a debilitating neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons. We investigated the effects of treadmill exercise on dopaminergic neuronal loss and microglial activation using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P)-induced Parkinson's disease mice. MAIN METHODS Parkinson's disease was induced in mice by injection of MPTP/P. The mice in the exercise groups were put on a treadmill to run for 30min/day, five times per week for four weeks. Motor balance and coordination was measured using rota-rod test. Expressions of inducible nitric oxide synthase (iNOS) and phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated NH(2)-terminal kinase (p-JNK), phosphorylated p-38 (p-p38), CD200, and CD200 receptor were determined by western blotting. Expressions of tyrosine hydroxylase (TH) and CD11b were evaluated by immunohistochemistry. KEY FINDINGS Parkinson's disease mice displayed poor motor balance and coordination with loss of nigrostriatal dopaminergic neurons. iNOS expression was enhanced via up-regulation of phosphorylated mitogen-activated protein kinases (p-MAPKs) signaling, such as p-ERK, p-JNK, and p-p-38 in the Parkinson's disease mice. Microglial activation was also observed in the Parkinson's disease mice, showing increased CD11b expression with suppressed CD200 and CD200 receptor expressions. Treadmill exercise prevented the loss of nigrostriatal dopaminergic neurons, and ameliorated the motor balance and coordination dysfunction in the Parkinson's disease mice. Treadmill exercise suppressed iNOS expression via down-regulation of MAPKs and also inhibited microglial activation in the Parkinson's disease mice. SIGNIFICANCE Treadmill exercise prevented dopaminergic neuronal loss by inhibiting brain inflammation through suppression of microglial activation in the Parkinson's disease mice.
Collapse
Affiliation(s)
- Yun-Hee Sung
- Department of Physical Therapy, Kyungnam University, Changwon 631-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Salama M, Arias-Carrión O. Natural toxins implicated in the development of Parkinson's disease. Ther Adv Neurol Disord 2012; 4:361-73. [PMID: 22164190 DOI: 10.1177/1756285611413004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Experimental models of Parkinson's disease (PD) are of great importance for improving the design of future clinical trials. Various neurotoxic models are available, including 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), paraquat and rotenone. However, no model is considered perfect; each has its own limitations. Based on epidemiological data, a new trend of using environmental toxins in PD modeling seems attractive and has dominated public discussions of the disease etiology. A search for new environmental toxin-based models would improve our knowledge of the pathology of the condition. Here, we discuss some toxins of natural origin (e.g. cycad-derived toxins, epoxomicin, Nocardia asteroides bacteria, Streptomyces venezuelae bacteria, annonacin and DOPAL) that possibly represent a contributory environmental component to PD.
Collapse
|
114
|
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov Disord 2012; 28:61-70. [PMID: 22753348 DOI: 10.1002/mds.25108] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/26/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022] Open
Abstract
Over the last two decades, significant strides has been made toward acquiring a better knowledge of both the etiology and pathogenesis of Parkinson's disease (PD). Experimental models are of paramount importance to obtain greater insights into the pathogenesis of the disease. Thus far, neurotoxin-based animal models have been the most popular tools employed to produce selective neuronal death in both in vitro and in vivo systems. These models have been commonly referred to as the pathogenic models. The current trend in modeling PD revolves around what can be called the disease gene-based models or etiologic models. The value of utilizing multiple models with a different mechanism of insult rests on the premise that dopamine-producing neurons die by stereotyped cascades that can be activated by a range of insults, from neurotoxins to downregulation and overexpression of disease-related genes. In this position article, we present the relevance of both pathogenic and etiologic models as well as the concept of clinically relevant designs that, we argue, should be utilized in the preclinical development phase of new neuroprotective therapies before embarking into clinical trials.
Collapse
Affiliation(s)
- Erwan Bezard
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | | | | | | |
Collapse
|
115
|
Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. J Chem Neuroanat 2012; 44:76-85. [DOI: 10.1016/j.jchemneu.2012.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 12/12/2022]
|
116
|
Roy A, Ghosh A, Jana A, Liu X, Brahmachari S, Gendelman HE, Pahan K. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS One 2012; 7:e38113. [PMID: 22723850 PMCID: PMC3377667 DOI: 10.1371/journal.pone.0038113] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac), but not p21(ras), attenuated the production of ROS from activated microglia. Inhibition of both p21(ras) and p21(rac) activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras) and p21(rac)in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras) and p21(rac), protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Anamitra Ghosh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Arundhati Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Xiaojuan Liu
- Section of Neuroscience, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, United States of America
| | - Saurav Brahmachari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
- Section of Neuroscience, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, United States of America
| |
Collapse
|
117
|
Lesemann A, Reinel C, Hühnchen P, Pilhatsch M, Hellweg R, Klaissle P, Winter C, Steiner B. MPTP-induced hippocampal effects on serotonin, dopamine, neurotrophins, adult neurogenesis and depression-like behavior are partially influenced by fluoxetine in adult mice. Brain Res 2012; 1457:51-69. [DOI: 10.1016/j.brainres.2012.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
|
118
|
Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2012; 164:1357-91. [PMID: 21486284 DOI: 10.1111/j.1476-5381.2011.01426.x] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Animal models of Parkinson's disease (PD) have proved highly effective in the discovery of novel treatments for motor symptoms of PD and in the search for clues to the underlying cause of the illness. Models based on specific pathogenic mechanisms may subsequently lead to the development of neuroprotective agents for PD that stop or slow disease progression. The array of available rodent models is large and ranges from acute pharmacological models, such as the reserpine- or haloperidol-treated rats that display one or more parkinsonian signs, to models exhibiting destruction of the dopaminergic nigro-striatal pathway, such as the classical 6-hydroxydopamine (6-OHDA) rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models. All of these have provided test beds in which new molecules for treating the motor symptoms of PD can be assessed. In addition, the emergence of abnormal involuntary movements (AIMs) with repeated treatment of 6-OHDA-lesioned rats with L-DOPA has allowed for examination of the mechanisms responsible for treatment-related dyskinesia in PD, and the detection of molecules able to prevent or reverse their appearance. Other toxin-based models of nigro-striatal tract degeneration include the systemic administration of the pesticides rotenone and paraquat, but whilst providing clues to disease pathogenesis, these are not so commonly used for drug development. The MPTP-treated primate model of PD, which closely mimics the clinical features of PD and in which all currently used anti-parkinsonian medications have been shown to be effective, is undoubtedly the most clinically-relevant of all available models. The MPTP-treated primate develops clear dyskinesia when repeatedly exposed to L-DOPA, and these parkinsonian animals have shown responses to novel dopaminergic agents that are highly predictive of their effect in man. Whether non-dopaminergic drugs show the same degree of predictability of response is a matter of debate. As our understanding of the pathogenesis of PD has improved, so new rodent models produced by agents mimicking these mechanisms, including proteasome inhibitors such as PSI, lactacystin and epoximycin or inflammogens like lipopolysaccharide (LPS) have been developed. A further generation of models aimed at mimicking the genetic causes of PD has also sprung up. Whilst these newer models have provided further clues to the disease pathology, they have so far been less commonly used for drug development. There is little doubt that the availability of experimental animal models of PD has dramatically altered dopaminergic drug treatment of the illness and the prevention and reversal of drug-related side effects that emerge with disease progression and chronic medication. However, so far, we have made little progress in moving into other pharmacological areas for the treatment of PD, and we have not developed models that reflect the progressive nature of the illness and its complexity in terms of the extent of pathology and biochemical change. Only when this occurs are we likely to make progress in developing agents to stop or slow the disease progression. The overarching question that draws all of these models together in the quest for better drug treatments for PD is how well do they recapitulate the human condition and how predictive are they of successful translation of drugs into the clinic? This article aims to clarify the current position and highlight the strengths and weaknesses of available models.
Collapse
Affiliation(s)
- Susan Duty
- King's College London, Wolfson Centre for Age-Related Disease, London, UK.
| | | |
Collapse
|
119
|
Goldberg NR, Fields V, Pflibsen L, Salvatore MF, Meshul CK. Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis 2012; 45:1051-67. [DOI: 10.1016/j.nbd.2011.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/29/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022] Open
|
120
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
121
|
Westin JE, Janssen MLF, Sager TN, Temel Y. Automated gait analysis in bilateral parkinsonian rats and the role of L-DOPA therapy. Behav Brain Res 2011; 226:519-28. [PMID: 22008381 DOI: 10.1016/j.bbr.2011.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/01/2022]
Abstract
Gait disturbances and postural instability represent major sources of morbidity in Parkinson's disease (PD), and respond poorly to current treatment options. Some aspects of gait disturbances can be observed in rodent models of PD; however, knowledge regarding the stability of rodent gait patterns over time is lacking. Here we investigated the temporal constancy and reproducibility of gait patterns in neurologically intact and bilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, by using an automated quantitative gait analysis method (CatWalk). The bilateral neurotoxin injections into the medial forebrain bundle resulted in an average dopamine (DA) loss of 70% in each striata, which corresponds to the DA levels observed in moderate-mid stage human PD. Rats were tested weekly during one month, and we found that in intact rats all parameters investigated remained constant over multiple tests. The 6-OHDA lesioned rats were impaired in several aspects of gait, such as stride length, swing speed, stance duration, step cycle duration, and base of support. However the stance and step cycle deficits were transient, the performance of 6-OHDA lesioned rats were indistinguishable from control rats by the last test session with regard to these parameters. Finally, we found that administration of a single dose of levodopa (L-DOPA) to the 6-OHDA lesioned rats could counteract all but one observed deficits. Based on these findings we conclude that the gait pattern of intact rats is highly reproducible, 6-OHDA lesioned rats display impairments in gait, and L-DOPA can counteract most deficits seen in this model of experimental PD.
Collapse
Affiliation(s)
- J E Westin
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark.
| | | | | | | |
Collapse
|
122
|
Antony PMA, Diederich NJ, Balling R. Parkinson's disease mouse models in translational research. Mamm Genome 2011; 22:401-19. [PMID: 21559878 PMCID: PMC3151483 DOI: 10.1007/s00335-011-9330-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
Abstract
Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research.
Collapse
Affiliation(s)
- Paul M A Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
| | | | | |
Collapse
|
123
|
The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis. INVERTEBRATE NEUROSCIENCE 2011; 11:43-51. [PMID: 21523449 DOI: 10.1007/s10158-011-0116-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022]
Abstract
Studies have suggested that neuronal loss in Parkinson's disease (PD) could be related to the pacemaker activity of the substantia nigra pars compacta generated by L-type Ca(v) 1.3 calcium channels, which progressively substitute voltage-dependent sodium channels in this region during aging. Besides this mechanism, which leads to increases in intracellular calcium, other factors are also known to play a role in dopaminergic cell death due to overproduction of reactive oxygen species. Thus, dihydropyridines, a class of calcium channel blockers, and resveratrol, a polyphenol that presents antioxidant properties, may represent therapeutic alternatives for the prevention of PD. In the present study, we tested the effects of the dihydropyridines, isradipine, nifedipine, and nimodipine and of resveratrol upon locomotor behavior in Drosophila melanogaster. As previously described, paraquat induced parkinsonian-like motor deficits. Moreover, none of the drugs tested were able to prevent the motor deficits produced by paraquat. Additionally, isradipine, nifedipine, resveratrol, and ethanol (vehicle), when used in isolation, induced motor deficits in flies. This study is the first demonstration that dyhidropyridines and resveratrol are unable to reverse the locomotor impairments induced by paraquat in Drosophila melanogaster.
Collapse
|
124
|
Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav 2011; 98:286-91. [DOI: 10.1016/j.pbb.2011.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/06/2011] [Accepted: 01/16/2011] [Indexed: 11/17/2022]
|
125
|
Hutter-Saunders JAL, Gendelman HE, Mosley RL. Murine motor and behavior functional evaluations for acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. J Neuroimmune Pharmacol 2011; 7:279-88. [PMID: 21431472 DOI: 10.1007/s11481-011-9269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces nigrostriatal neurodegeneration that reflects Parkinson's disease (PD) pathobiology. The model is commonly used for rodent studies of PD pathogenesis and diagnostics and for developmental therapeutics. However, tests of motor function in MPTP-intoxicated mice have yielded mixed results. This unmet need reflects, in part, lesion severity, animal variability, and the overall test sensitivity and specificity. In attempts to standardize rodent motor function and behavioral tests, mice were trained on the rotarod or habituated in an open field test chamber, and baseline performance measurements were collected prior to MPTP intoxication. One week following MPTP intoxication, motor function and behavior were assessed and baseline measurements applied to post-MPTP measurements with normalization to PBS controls. Rotarod and open field tests assessed in this manner demonstrated significant differences between MPTP- and saline-treated mice, while tests of neuromuscular strength and endurance did not. We conclude that the rotarod and open field tests provide reliable measures of motor function for MPTP-intoxicated mice.
Collapse
Affiliation(s)
- Jessica A L Hutter-Saunders
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
126
|
Vivacqua G, Casini A, Vaccaro R, Fornai F, Yu S, D’Este L. Different sub-cellular localization of alpha-synuclein in the C57BL\6J mouse's central nervous system by two novel monoclonal antibodies. J Chem Neuroanat 2011; 41:97-110. [DOI: 10.1016/j.jchemneu.2010.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/30/2010] [Accepted: 12/13/2010] [Indexed: 12/24/2022]
|
127
|
Goldberg NRS, Haack AK, Lim NS, Janson OK, Meshul CK. Dopaminergic and behavioral correlates of progressive lesioning of the nigrostriatal pathway with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 2011; 180:256-71. [PMID: 21335067 DOI: 10.1016/j.neuroscience.2011.02.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 01/31/2023]
Abstract
A number of neurotoxin- and gene-based rodent models of acute neurodegeneration of nigrostriatal dopamine (DA) neurons are used to study Parkinson's disease (PD). The rapid degeneration achieved by many of these current models limits the capacity of the model to develop pathogenic mechanisms and display the various stages of motor degradation representative of the human Parkinsonian condition. Chronic rodent models have been the only ones to reproduce these characteristics, yet do not show correlated progress of DA loss with multiple stepwise behavioral deficits as seen in humans. In the present study, we have developed a progressive model of increasing DA loss and motor dysfunction via progressively increased administration of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), in the C57Bl/6J mouse. Mice were administered a daily (5 d/wk) dose of MPTP that increased weekly over the course of 4 weeks (4 mg/kg, 8 mg/kg, 16 mg/kg and 32 mg/kg). Each treatment group was tested for exploratory and motor behavioral changes after every week leading up to their final dose, as well as changes in tyrosine hydroxylase immunoreactivity (TH-ir) of the substantia nigra pars compacta (SNpc) and caudate putamen (CPu). We detected a 24% decrease in the mean number of TH-ir SNpc neurons/section after 1 week, and a 62% decrease after 4 weeks as compared to the vehicle group. CPu TH-ir began at a 35% loss after 1 week and increased to a 74% loss after 4 weeks compared to the vehicle group. CPu DA content showed an initial decrease of 20% after 1 week, and a final decrease of 70% following week 4 versus the vehicle group. Free-standing rears (versus wall-assisted rears, in a cylinder), decreased from 35% to 8% of total rears as the dose of MPTP increased from 4 mg/kg to 32 mg/kg, respectively. However, motor impairment as measured by a Parallel Rod Activity Chamber test was not significant until week 4 at 32 mg/kg compared to the vehicle group. The present study is the first to show stepwise progression of behavioral deficits which correlate with gradual dopaminergic decline in the nigrostriatal pathway. This progressive lesioning regiment may be appropriate for future investigation of pathogenic mechanisms and various intervention therapies in PD.
Collapse
|
128
|
Yong J, Lacan G, Dang H, Hsieh T, Middleton B, Wasserfall C, Tian J, Melega WP, Kaufman DL. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease. PLoS One 2011; 6:e16610. [PMID: 21304945 PMCID: PMC3031604 DOI: 10.1371/journal.pone.0016610] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/28/2010] [Indexed: 12/14/2022] Open
Abstract
There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.
Collapse
Affiliation(s)
- Jing Yong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Goran Lacan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Terry Hsieh
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Clive Wasserfall
- Department of Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - William P. Melega
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
129
|
Abstract
Parkinson disease (PD) is second only to Alzheimer disease as the most common neurodegenerative disorder in humans. Despite intense investigations, no effective therapy is available to halt the progression of PD. Although statins are widely used cholesterol-lowering drugs throughout the world, recent studies suggest that these drugs modulate neurodegeneration-related signaling processes and may be beneficial for PD. Simvastatin is the most potent statin in crossing the blood-brain barrier, and this particular statin drug negatively correlates with the incidence of PD and shows efficacy in animal models of PD. However, PD mainly occurs in the aging population, who are more vulnerable to cholesterol or lipid-related disorders, raising questions whether this possible beneficial effect of statins in PD patients is cholesterol dependent or cholesterol independent. This article presents data on the therapeutic efficacy of simvastatin in a chronic MPTP model of PD, reviews recent literature, and discusses the pros and cons of statin therapy in PD.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
130
|
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Despite the substantial progress that has been achieved, the precise mechanisms involved in the development of this disease are still not fully understood. The most common concepts relate to the genetic background and environmental/toxic effects. A number of model systems have been introduced, which mimic the human disease to varying extents. In this chapter, we introduce some of the most widely accepted protocols of the pharmacological models of Parkinson's disease.
Collapse
Affiliation(s)
- Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
131
|
Cho SR. Animal Models of Neurodegenerative Diseases. BRAIN & NEUROREHABILITATION 2011. [DOI: 10.12786/bn.2011.4.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| |
Collapse
|
132
|
Martella G, Madeo G, Schirinzi T, Tassone A, Sciamanna G, Spadoni F, Stefani A, Shen J, Pisani A, Bonsi P. Altered profile and D2-dopamine receptor modulation of high voltage-activated calcium current in striatal medium spiny neurons from animal models of Parkinson's disease. Neuroscience 2010; 177:240-51. [PMID: 21195752 DOI: 10.1016/j.neuroscience.2010.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022]
Abstract
In the present work we analyzed the profile of high voltage-activated (HVA) calcium (Ca2+) currents in freshly isolated striatal medium spiny neurons (MSNs) from rodent models of both idiopathic and familial forms of Parkinson's disease (PD). MSNs were recorded from reserpine-treated and 6-hydroxydopamine (6-OHDA)-lesioned rats, and from DJ-1 and PINK1 (PTEN induced kinase 1) knockout (-/-) mice. Our analysis showed no significant changes in total HVA Ca2+ current. However, we recorded a net increase in the L-type fraction of HVA Ca2+ current in dopamine-depleted rats, and of both N- and P-type components in DJ-1-/- mice, whereas no significant change in Ca2+ current profile was observed in PINK1-/- mice. Dopamine modulates HVA Ca2+ channels in MSNs, thus we also analyzed the effect of D1 and D2 receptor activation. The effect of the D1 receptor agonist SKF 83822 on Ca2+ current was not significantly different among MSNs from control animals or PD models. However, in both dopamine-depleted rats and DJ-1-/- mice the D2 receptor agonist quinpirole inhibited a greater fraction of HVA Ca2+ current than in the respective controls. Conversely, in MSNs from PINK1-/- mice we did not observe alterations in the effect of D2 receptor activation. Additionally, in both reserpine-treated and 6-OHDA-lesioned rats, the effect of quinpirole was occluded by the selective L-type Ca2+ channel blocker nifedipine, while in DJ-1-/- mice it was mostly occluded by ω-conotoxin GVIA, blocker of N-type channels. These results demonstrate that both dopamine depletion and DJ-1 deletion induce a rearrangement in the HVA Ca2+ channel profile, specifically involving those channels that are selectively modulated by D2 receptors.
Collapse
Affiliation(s)
- G Martella
- Department of Neuroscience, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Sgadò P, Viaggi C, Pinna A, Marrone C, Vaglini F, Pontis S, Mercuri NB, Morelli M, Corsini GU. Behavioral, neurochemical, and electrophysiological changes in an early spontaneous mouse model of nigrostriatal degeneration. Neurotox Res 2010; 20:170-81. [PMID: 21104462 DOI: 10.1007/s12640-010-9232-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 11/25/2022]
Abstract
In idiopathic Parkinson's disease, clinical symptoms do not emerge until consistent neurodegeneration has occurred. The late appearance of symptoms implies the existence of a relatively long preclinical period during which several disease-induced neurochemical changes take place to mask the existence of the disease and delay its clinical manifestations. The aim of this study was to examine the neurochemical, neurophysiological, and behavioral changes induced by the loss of nigrostriatal innervation in the En1+/-;En2-/- mouse, in the 10 months following degeneration, compared to En2 null mutant mice. Behavioral analysis (Pole-test, Beam-walking test, and Inverted grid test) and field potential recordings in the striatum indicated that loss of ~70% of nigrostriatal neurons produced no significant functional effects until 8 months of age, when En1+/-;En2-/- animals started to show frank motor deficits and electrophysiological alterations in corticostriatal plasticity. Similarly, alterations in dopamine homeostasis, dopamine turnover, and dopamine innervation were observed in aged animals compared to young En1+/-;En2-/- mice. These data suggests that in En1+/-;En2-/- mice nigrostriatal degeneration in the substantia nigra is functionally compensated.
Collapse
Affiliation(s)
- Paola Sgadò
- Department of Neuroscience, Section of Pharmacology, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Spieles-Engemann AL, Collier TJ, Sortwell CE. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. Eur J Neurosci 2010; 32:1092-9. [DOI: 10.1111/j.1460-9568.2010.07416.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
135
|
Parkinson's disease: is it a toxic syndrome? Neurol Res Int 2010; 2010:103094. [PMID: 21152209 PMCID: PMC2989867 DOI: 10.1155/2010/103094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/05/2010] [Accepted: 07/26/2010] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is one of the neurodegenerative diseases which we can by certainty identify its pathology, however, this confidence disappeares when talking about the cause. A long history of trials, suggestions, and theories tried linking PD to a specific causation. In this paper, a new suggestion is trying to find its way, could it be toxicology? Can we—in the future—look to PD as an occupational disease, in fact, many clues point to the possible toxic responsibility—either total or partial—in causing this disease. Searching for possible toxic causes for PD would help in designing perfect toxic models in animals.
Collapse
|
136
|
Melrose HL, Dächsel JC, Behrouz B, Lincoln SJ, Yue M, Hinkle KM, Kent CB, Korvatska E, Taylor JP, Witten L, Liang YQ, Beevers JE, Boules M, Dugger BN, Serna VA, Gaukhman A, Yu X, Castanedes-Casey M, Braithwaite AT, Ogholikhan S, Yu N, Bass D, Tyndall G, Schellenberg GD, Dickson DW, Janus C, Farrer MJ. Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 2010; 40:503-17. [PMID: 20659558 DOI: 10.1016/j.nbd.2010.07.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/16/2010] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene, first described in 2004 have now emerged as the most important genetic finding in both autosomal dominant and sporadic Parkinson's disease (PD). While a formidable research effort has ensued since the initial gene discovery, little is known of either the normal or the pathological role of LRRK2. We have created lines of mice that express human wild-type (hWT) or G2019S Lrrk2 via bacterial artificial chromosome (BAC) transgenesis. In vivo analysis of the dopaminergic system revealed abnormal dopamine neurotransmission in both hWT and G2019S transgenic mice evidenced by a decrease in extra-cellular dopamine levels, which was detected without pharmacological manipulation. Immunopathological analysis revealed changes in localization and increased phosphorylation of microtubule binding protein tau in G2019S mice. Quantitative biochemical analysis confirmed the presence of differential phospho-tau species in G2019S mice but surprisingly, upon dephosphorylation the tau isoform banding pattern in G2019S mice remained altered. This suggests that other post-translational modifications of tau occur in G2019S mice. We hypothesize that Lrrk2 may impact on tau processing which subsequently leads to increased phosphorylation. Our models will be useful for further understanding of the mechanistic actions of LRRK2 and future therapeutic screening.
Collapse
Affiliation(s)
- H L Melrose
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Grealish S, Mattsson B, Draxler P, Björklund A. Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 2010; 31:2266-78. [DOI: 10.1111/j.1460-9568.2010.07265.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
138
|
Kosloski LM, Ha DM, Hutter JAL, Stone DK, Pichler MR, Reynolds AD, Gendelman HE, Mosley RL. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem 2010; 114:1261-76. [PMID: 20524958 DOI: 10.1111/j.1471-4159.2010.06834.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed.
Collapse
Affiliation(s)
- Lisa M Kosloski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease. Mol Neurodegener 2010; 5:14. [PMID: 20388210 PMCID: PMC2867960 DOI: 10.1186/1750-1326-5-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022] Open
Abstract
The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1) the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2) evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3) the possibility that enhancing lysosomal function may provide a disease modifying therapy.
Collapse
Affiliation(s)
- Lonnie Schneider
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA.
| | | |
Collapse
|
140
|
Singh K, Singh S, Singhal NK, Sharma A, Parmar D, Singh MP. Nicotine- and caffeine-mediated changes in gene expression patterns of MPTP-lesioned mouse striatum: Implications in neuroprotection mechanism. Chem Biol Interact 2010; 185:81-93. [DOI: 10.1016/j.cbi.2010.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/27/2010] [Accepted: 03/07/2010] [Indexed: 01/21/2023]
|
141
|
Boger HA, Granholm AC, McGinty JF, Middaugh LD. A dual-hit animal model for age-related parkinsonism. Prog Neurobiol 2010; 90:217-29. [PMID: 19853012 PMCID: PMC3991553 DOI: 10.1016/j.pneurobio.2009.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/08/2009] [Accepted: 10/09/2009] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is a neurological disorder which afflicts an increasing number of individuals. If the wider complex of extrapyramidal symptoms referred to as "age-related parkinsonism" is included, the incidence is near 50% of the population above 80 years of age. This review summarizes recent studies from our laboratories as well as other research groups in the quest to explore the multi-faceted etiology of age-related neurodegeneration, in general, and degeneration of the substantia nigra dopaminergic neurons, in particular. Our work during recent years has focused on assessment of potential interactive effects of a reduction in glial cell line-derived neurotrophic factor (GDNF) and the aging process (intrinsic factors) and early neurotoxin exposure (an extrinsic factor) on dopamine (DA) systems and the behaviors they mediate. The guiding hypothesis directing the research to be described was that a combination of the two factors would exacerbate the decline in the DA transmitter system function that occurs during aging. The results obtained were consistent with the well-established aging-related decline in function and structure of neurons utilizing DA as a transmitter and motor function, and extended knowledge by establishing that the genetic reduction of Gdnf exacerbated these aging related changes. Thus, GDNF reduction appears to increase the vulnerability of the DA neurons to the many different challenges associated with the aging process. Assessment of methamphetamine effects on young Gdnf(+/-) mice indicated that reduced GDNF availability increased the vulnerability of DA systems to this well-established neurotoxin. The work discussed in this review is consistent with earlier work demonstrating the importance of GDNF for maintenance of DA neurons and also provides a novel model for progressive DA degeneration and motor dysfunction.
Collapse
Affiliation(s)
- Heather A Boger
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | | | | | | |
Collapse
|
142
|
Xu G, Xiong Z, Yong Y, Wang Z, Ke Z, Xia Z, Hu Y. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 2010; 167:174-84. [PMID: 20123001 DOI: 10.1016/j.neuroscience.2010.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/18/2010] [Accepted: 01/23/2010] [Indexed: 11/16/2022]
Abstract
The protective effect of an iridoid catalpol extracted and purified from the traditional Chinese medicinal herb Rehmannia glutinosa on the neuronal degeneration of nigral-striatal dopaminergic pathway was studied in a chronic 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP)/probenecid C57BL/6 mouse model and in 1-methyl-4-phenylpyridimium (MPP(+)) intoxicated cultured mesencephalic neurons. Rotarod performance revealed that the locomotor ability of mice was significantly impaired after completion of model production and maintained thereafter for at least 4 weeks. Catalpol orally administered for 8 weeks (starting from the second week of model production) dose dependently improved the locomotor ability. HPLC revealed that catalpol significantly elevated striatal dopamine levels without changing the metabolite/dopamine ratios. Nor did it bind to dopamine receptors. Therefore it is unlikely that catalpol resembles any of the known compounds for treating Parkinsonism. Instead, catalpol dose dependently raised the tyrosine hydroxylase (TH) neuron number in substantia nigra pars compacta (SNpc), the striatal dopamine transporter (DAT) density and the striatal glial cell derived neurotrophic factor (GDNF) protein level. Linear regression revealed that both the TH neuron number and DAT density were positively correlated to the GDNF level. In the cultured mesencephalic neurons, MPP(+) decreased the dopaminergic neuron number and shortened the neurite length, whereas catalpol showed protective effect dose dependently. Furthermore, the expression of GDNF mRNA was up-regulated by catalpol to a peak nearly double of normal control in neurons intoxicated with MPP(+) for 24 h but not in normal neurons. The GDNF receptor tyrosine kinase RET inhibitor 4-amino-5-(4-methyphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]pyrimidine (PP1) abolished the protective effect of catalpol either partially (TH positive neuron number) or completely (neurite length). Taken together, catalpol improves locomotor ability by attenuating the neuronal degeneration of nigral-striatal dopaminergic pathway, and this attenuation is at least partially through elevating the striatal GDNF expression.
Collapse
Affiliation(s)
- G Xu
- Research Laboratory of Cell Regulation, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Chronic inflammation is associated with many neurodegenerative diseases, including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Increasing evidence that neuroinflammation contributes to disease severity has generated considerable interest in determining whether inhibition of inflammation pathways might be of therapeutic benefit. One potential avenue of intervention is provided by members of the nuclear receptor superfamily of ligand-dependent transcription factors that exert anti-inflammatory effects in many cell types. Here, we review recent studies providing insights into the distinct mechanisms that enable nuclear receptors to modulate immune responses, describe inflammatory components of neurodegenerative diseases, and discuss recent literature relevant to roles of nuclear receptors in influencing these processes.
Collapse
|
144
|
Cooper O, Astradsson A, Hallett P, Robertson H, Mendez I, Isacson O. Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients. J Neurol 2009; 256 Suppl 3:310-6. [PMID: 19711122 DOI: 10.1007/s00415-009-5242-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies.
Collapse
Affiliation(s)
- Oliver Cooper
- Center for Neuroregeneration Research, NINDS Udall Parkinson's Disease Research Center of Excellence, McLean Hospital, Harvard Medical School, Harvard University, MRC 130, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | | | |
Collapse
|
145
|
Caudle WM, Zhang J. Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 2009; 220:230-3. [PMID: 19815009 DOI: 10.1016/j.expneurol.2009.09.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/17/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Affiliation(s)
- W Michael Caudle
- Department of Pathology, University of Washington School of Medicine, HMC Box 359635, 325 9th Ave., Seattle, WA 98104, USA
| | | |
Collapse
|
146
|
Gubellini P, Picconi B, Di Filippo M, Calabresi P. Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2009; 1802:151-61. [PMID: 19683569 DOI: 10.1016/j.bbadis.2009.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 07/22/2009] [Accepted: 08/06/2009] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunctions have been implicated in the cellular processes underlying several neurodegenerative disorders affecting the basal ganglia. These include Huntington's chorea and Parkinson's disease, two highly debilitating motor disorders for which recent research has also involved gene mutation linked to mitochondrial deficits. Experimental models of basal ganglia diseases have been developed by using toxins able to disrupt mitochondrial function: these molecules act by selectively inhibiting mitochondrial respiratory complexes, uncoupling cellular respiration. This in turn leads to oxidative stress and energy deficit that trigger critical downstream mechanisms, ultimately resulting in neuronal vulnerability and loss. Here we review the molecular and cellular downstream effects triggered by mitochondrial dysfunction, and the different experimental models that are obtained by the administration of selective mitochondrial toxins or by the expression of mutant genes.
Collapse
Affiliation(s)
- Paolo Gubellini
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216 (CNRS/Université de la Méditerranée), Marseille, France.
| | | | | | | |
Collapse
|
147
|
Luchtman DW, Shao D, Song C. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson's disease. Physiol Behav 2009; 98:130-8. [DOI: 10.1016/j.physbeh.2009.04.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 01/19/2023]
|
148
|
Gibrat C, Saint-Pierre M, Bousquet M, Lévesque D, Rouillard C, Cicchetti F. Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and α-synuclein inclusions. J Neurochem 2009; 109:1469-82. [DOI: 10.1111/j.1471-4159.2009.06072.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
149
|
Progressive Dopaminergic Degeneration in the Chronic MPTPp Mouse Model of Parkinson’s Disease. Neurotox Res 2009; 16:127-39. [DOI: 10.1007/s12640-009-9061-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/09/2009] [Accepted: 05/12/2009] [Indexed: 11/27/2022]
|
150
|
Lima MMS, Reksidler ABB, Vital MABF. The neurobiology of the substantia nigra pars compacta: from motor to sleep regulation. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:135-45. [PMID: 20411774 DOI: 10.1007/978-3-211-92660-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical characteristics of Parkinson's disease (PD) are the result of the degeneration of the neurons of the substantia nigra pars compacta (SNpc). Several mechanisms are implicated in the degeneration of nigrostriatal neurons such as oxidative stress, mitochondrial dysfunction, protein misfolding, disturbances of dopamine (DA) metabolism and transport, neuroinflammation, and necrosis/apoptosis. The literature widely explores the neurotoxic models elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA). Because of the models, it is known that basal ganglia, particularly substantia nigra, have been related to a diversity of functions, from motor to sleep regulation. Nevertheless, a current debate concerning the role of DA on the sleep-wake cycle is in progress. In summary, it is suggested that the dopaminergic system is implicated in the physiology of sleep, with particular regard to the influence of the SNpc neurons. The understanding of the functioning and connectivity of the SNpc neurons has become fundamental to discovering the neurobiology of these neurons.
Collapse
Affiliation(s)
- Marcelo M S Lima
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis SC 88049-900, Brazil.
| | | | | |
Collapse
|