101
|
Rempel V, Atzler K, Behrenswerth A, Karcz T, Schoeder C, Hinz S, Kaleta M, Thimm D, Kiec-Kononowicz K, Müller CE. Bicyclic imidazole-4-one derivatives: a new class of antagonists for the orphan G protein-coupled receptors GPR18 and GPR55. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00394a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GPR18 and GPR55 are orphan G protein-coupled receptors (GPCRs) that interact with certain cannabinoid (CB) receptor ligands.
Collapse
Affiliation(s)
- V. Rempel
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - K. Atzler
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - A. Behrenswerth
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - T. Karcz
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
- Department of Technology and Biotechnology of Drugs
| | - C. Schoeder
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - S. Hinz
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - M. Kaleta
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- Faculty of Pharmacy
- Kraków, Poland
| | - D. Thimm
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| | - K. Kiec-Kononowicz
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- Faculty of Pharmacy
- Kraków, Poland
| | - C. E. Müller
- PharmaCenter Bonn
- Pharmaceutical Institute
- Pharmaceutical Chemistry I
- D-53121 Bonn, Germany
| |
Collapse
|
102
|
Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2013; 54:227-49. [PMID: 24160705 DOI: 10.1146/annurev-pharmtox-011613-135921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters within the human body. They have much potential in the emerging field of synthetic biology, which is the rational, systematic design of biological systems with desired functionality. The responsiveness of GPCRs to a plethora of endogenous and exogenous ligands and stimuli make them ideal sensory receptor modules of synthetic gene networks. Such networks can activate target gene expression in response to a specific stimulus. Additionally, because GPCRs are important pharmacological targets of various human diseases, genes encoding their protein/peptide ligands can also be incorporated as target genes of the response output elements of synthetic gene networks. This review aims to critically examine the potential role of GPCRs in constructing therapeutic synthetic gene networks and to discuss various challenges in utilizing GPCRs for synthetic biology applications.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland;
| | | | | |
Collapse
|
103
|
Cridge BJ, Rosengren RJ. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag Res 2013; 5:301-13. [PMID: 24039449 PMCID: PMC3770515 DOI: 10.2147/cmar.s36105] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents.
Collapse
Affiliation(s)
- Belinda J Cridge
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
104
|
Mu L, Bieri D, Slavik R, Drandarov K, Müller A, Cermak S, Weber M, Schibli R, Krämer SD, Ametamey SM. Radiolabeling and in vitro /in vivo evaluation of N-(1-adamantyl)-8-methoxy-4-oxo-1-phenyl-1,4-dihydroquinoline-3-carboxamide as a PET probe for imaging cannabinoid type 2 receptor. J Neurochem 2013; 126:616-24. [PMID: 23795580 DOI: 10.1111/jnc.12354] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 11/30/2022]
Abstract
The cannabinoid type 2 (CB2) receptor plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s disease and is therefore a very promising target for therapeutic approaches as well as for imaging. Based on the literature, we identified one 4-oxoquinoline derivative(designated KD2) as the lead structure. It was synthesized, radiolabeled and evaluated as a potential imaging tracer for CB2. [11C]KD2 was obtained in 99% radiochemical purity.Moderate blood–brain barrier (BBB) passage was predicted for KD2 from an in vitro transport assay with P-glycoprotein-transfected Madin Darby canine kidney cells. No efflux of KD2 by P-glycoprotein was detected. In vitro autoradiography of rat and mouse spleen slices demonstrated that [11C]KD2 exhibits high specific binding towards CB2. High spleen uptake of [11C]KD2 was observed in dynamic positron emission tomography(PET) studies with Wistar rats and its specificity was confirmed by displacement study with a selective CB2 agonist, GW405833. A pilot autoradiography study with post-mortem spinal cord slices from amyotrophic lateral sclerosis (ALS)patients with [11C]KD2 suggested the presence of CB2 receptors under disease conditions. Specificity of [11C]KD2 binding could also be demonstrated on these human tissues. In conclusion, [11C]KD2 shows good in vitro and in vivo properties as a potential PET tracer for CB2.
Collapse
Affiliation(s)
- Linjing Mu
- Department of Nuclear Medicine, Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Rom S, Persidsky Y. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J Neuroimmune Pharmacol 2013; 8:608-20. [PMID: 23471521 PMCID: PMC3663904 DOI: 10.1007/s11481-013-9445-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA (USA)
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia PA (USA)
| |
Collapse
|
106
|
Rajasekaran M, Brents LK, Franks LN, Moran JH, Prather PL. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors. Toxicol Appl Pharmacol 2013; 269:100-8. [PMID: 23537664 DOI: 10.1016/j.taap.2013.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs.
Collapse
Affiliation(s)
- Maheswari Rajasekaran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
107
|
Application of HaloTag technology to expression and purification of cannabinoid receptor CB2. Protein Expr Purif 2013; 89:62-72. [PMID: 23470778 DOI: 10.1016/j.pep.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/22/2022]
Abstract
Expression of milligram quantities of functional, stable G protein-coupled receptors (GPCR) for high-resolution structural studies remains a challenging task. The goal of this work was to evaluate the usefulness of the HaloTag system (Promega) for expression and purification of the human cannabinoid receptor CB(2), an important target for development of drugs for treatment of immune disorders, inflammation, and pain. Here we investigated expression in Escherichia coli cells of the integral membrane receptor CB(2) as a fusion with the 34 kDa HaloTag at N- or C-terminal location, either in the presence or in the absence of the N-terminal maltose-binding protein (MBP). The CB(2) was flanked at both ends by the tobacco etch virus (TEV) protease cleavage sites to allow for subsequent removal of expression partners. Expression by induction with either IPTG (in E. coli BL21(DE3) cell cultures) or by auto-induction (in E. coli KRX cells) were compared. While the N-terminal location of the HaloTag resulted in high levels of expression of the fusion CB(2), the recombinant receptor was not functional. However, when the HaloTag was placed in the C-terminal location, a fully active receptor was produced irrespective of induction method or bacterial strain used. For purification, the fusion protein was captured onto HaloLink resin in the presence of detergents. Treatment with specific TEV protease released the CB(2) upon washing. To our knowledge, this study represents the first example of expression, surface immobilization and purification of a functional GPCR using HaloTag technology.
Collapse
|
108
|
Leussink VI, Husseini L, Warnke C, Broussalis E, Hartung HP, Kieseier BC. Symptomatic therapy in multiple sclerosis: the role of cannabinoids in treating spasticity. Ther Adv Neurol Disord 2012; 5:255-66. [PMID: 22973422 DOI: 10.1177/1756285612453972] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A large proportion of patients with multiple sclerosis (MS) have spasticity, which has a marked impact on their quality of life. Anecdotal evidence suggests a beneficial effect of cannabis on spasticity as well as pain. Recently, randomized, double-blind, placebo-controlled studies have confirmed the clinical efficacy of cannabinoids for the treatment of spasticity in patients with MS. Based on these data, nabiximols (Sativex), a 1:1 mix of Δ-9-tetrahydrocannabinol and cannabidiol extracted from cloned Cannabis sativa chemovars, received approval for treating MS-related spasticity in various countries around the globe. In this article we review the current understanding of cannabinoid biology and the value of cannabinoids as a symptomatic treatment option addressing spasticity in patients with MS.
Collapse
|
109
|
Signaling through cannabinoid receptor 2 suppresses murine dendritic cell migration by inhibiting matrix metalloproteinase 9 expression. Blood 2012; 120:3741-9. [PMID: 22972984 DOI: 10.1182/blood-2012-06-435362] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Administration of cannabinoid receptor 2 (CB2R) agonists in inflammatory and autoimmune disease and CNS injury models results in significant attenuation of clinical disease, and reduction of inflammatory mediators. Previous studies reported that CB2R signaling also reduces leukocyte migration. Migration of dendritic cells (DCs) to various sites is required for their activation and for the initiation of adaptive immune responses. Here, we report for the first time that CB2R signaling affects DC migration in vitro and in vivo, primarily through the inhibition of matrix metalloproteinase 9 (MMP-9) expression. Reduced MMP-9 production by DCs results in decreased migration to draining lymph nodes in vivo and in vitro in the matrigel migration assay. The effect on Mmp-9 expression is mediated through CB2R, resulting in reduction in cAMP levels, subsequent decrease in ERK activation, and reduced binding of c-Fos and c-Jun to Mmp-9 promoter activator protein 1 sites. We postulate that, by dampening production of MMP-9 and subsequent MMP-9-dependent DC migration, cannabinoids contribute to resolve acute inflammation and to reestablish homeostasis. Selective CB2R agonists might be valuable future therapeutic agents for the treatment of chronic inflammatory conditions by targeting activated immune cells, including DCs.
Collapse
|