101
|
Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 2006; 315:373-7. [PMID: 17158291 DOI: 10.1126/science.1133488] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The crystal structure of a putative metal-chelate-type adenosine triphosphate (ATP)-binding cassette (ABC) transporter encoded by genes HI1470 and HI1471 of Haemophilus influenzae has been solved at 2.4 angstrom resolution. The permeation pathway exhibits an inward-facing conformation, in contrast to the outward-facing state previously observed for the homologous vitamin B12 importer BtuCD. Although the structures of both HI1470/1 and BtuCD have been solved in nucleotide-free states, the pairs of ABC subunits in these two structures differ by a translational shift in the plane of the membrane that coincides with a repositioning of the membrane-spanning subunits. The differences observed between these ABC transporters involve relatively modest rearrangements and may serve as structural models for inward- and outward-facing conformations relevant to the alternating access mechanism of substrate translocation.
Collapse
Affiliation(s)
- H W Pinkett
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, MC 114-96, California Institute of Technology (Caltech), Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
102
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 551] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
103
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
104
|
Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti KG, Schuetz JD. Identification of a mammalian mitochondrial porphyrin transporter. Nature 2006; 443:586-9. [PMID: 17006453 DOI: 10.1038/nature05125] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/25/2006] [Indexed: 01/08/2023]
Abstract
The movement of anionic porphyrins (for example, haem) across intracellular membranes is crucial to many biological processes, but their mitochondrial translocation and coordination with haem biosynthesis is not understood. Transport of porphyrins into isolated mitochondria is energy-dependent, as expected for the movement of anions into a negatively charged environment. ATP-binding cassette transporters actively facilitate the transmembrane movement of substances. We found that the mitochondrial ATP-binding cassette transporter ABCB6 is upregulated (messenger RNA and protein in human and mouse cells) by elevation of cellular porphyrins and postulated that ABCB6 has a function in porphyrin transport. We also predicted that ABCB6 is functionally linked to haem biosynthesis, because its mRNA is found in both human bone marrow and CD71+ early erythroid cells (by database searching), and because our results show that ABCB6 is highly expressed in human fetal liver, and Abcb6 in mouse embryonic liver. Here we demonstrate that ABCB6 is uniquely located in the outer mitochondrial membrane and is required for mitochondrial porphyrin uptake. After ABCB6 is upregulated in response to increased intracellular porphyrin, mitochondrial porphyrin uptake activates de novo porphyrin biosynthesis. This process is blocked when the Abcb6 gene is silenced. Our results challenge previous assumptions about the intracellular movement of porphyrins and the factors controlling haem biosynthesis.
Collapse
Affiliation(s)
- Partha C Krishnamurthy
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Klingenberg M. Transport catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1229-36. [PMID: 16806051 DOI: 10.1016/j.bbabio.2006.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/06/2006] [Accepted: 04/07/2006] [Indexed: 11/24/2022]
Abstract
Carrier linked solute transport through biomembranes is analysed with the viewpoint of catalysis. Different from enzymes, in carriers the unchanged substrate induces optimum fit in the transition state. The enhanced intrinsic binding energy pays for the energy required of the global conformation changes, thus decreasing the activation energy barrier. This "induced transition fit" (ITF) explains several phenomena of carrier transport, e.g., high or low affinity substrate requirements for unidirectional versus exchange, external energy requirement for "low affinity" transport, the existence of side specific inhibitors to ground states of the carrier, the requirement of external energy in active transport to supplement catalytic energy in addition to generate electrochemical gradients.
Collapse
Affiliation(s)
- Martin Klingenberg
- Institute Physiological Chemistry, University of Munich, Schillerstr 44, 80336 München, Germany.
| |
Collapse
|
106
|
Pedersen PL. Transport ATPases: structure, motors, mechanism and medicine: a brief overview. J Bioenerg Biomembr 2006; 37:349-57. [PMID: 16691464 DOI: 10.1007/s10863-005-9470-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Today we know there are four different types of ATPases that operate within biological membranes with the purpose of moving many different types of ions or molecules across these membranes. Some of these ions or molecules are transported into cells, some out of cells, and some in or out of organelles within cells. These ATPases span the biological world from bacteria to eukaryotic cells and have become most simply and commonly known as "transport ATPases." The price that each cell type pays for transport work is counted in molecules of hydrolyzed ATP, a metabolic currency that is itself regenerated by a transport ATPase working in reverse, i.e., the ATP synthase. Four major classes of transport ATPases, the P, V, F, and ABC types are now known. In addition to being involved in many different types of biological/physiological processes, mutations in these proteins also account for a large number of diseases. The purpose of this introductory article to a mini-review series on transport ATPases is to provide the reader with a very brief and focused look at this important area of research that has an interesting history and bears significance to cell physiology, biochemistry, immunology, nanotechnology, and medicine, including drug discovery. The latter involves potential applications to a whole host of diseases ranging from cancer to those that affect bones (osteoporosis), ears (hearing), eyes (macromolecular degeneration), the heart (hypercholesterolemia/cardiac arrest,), immune system (immune deficiency disease), kidney (nephrotoxicity), lungs (cystic fibrosis), pancreas (diabetes and cystic fibrosis), skin (Darier disease), and stomach (ulcers).
Collapse
Affiliation(s)
- Peter L Pedersen
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205-2185, USA.
| |
Collapse
|
107
|
Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, Holland IB, Schmitt L. A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 2006; 25:3432-43. [PMID: 16858415 PMCID: PMC1523178 DOI: 10.1038/sj.emboj.7601208] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 05/30/2006] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC)-transporter haemolysin (Hly)B, a central element of a Type I secretion machinery, acts in concert with two additional proteins in Escherichia coli to translocate the toxin HlyA directly from the cytoplasm to the exterior. The basic set of crystal structures necessary to describe the catalytic cycle of the isolated HlyB-NBD (nucleotide-binding domain) has now been completed. This allowed a detailed analysis with respect to hinge regions, functionally important key residues and potential energy storage devices that revealed many novel features. These include a structural asymmetry within the ATP dimer that was significantly enhanced in the presence of Mg2+, indicating a possible functional asymmetry in the form of one open and one closed phosphate exit tunnel. Guided by the structural analysis, we identified two amino acids, closing one tunnel by an apparent salt bridge. Mutation of these residues abolished ATP-dependent cooperativity of the NBDs. The implications of these new findings for the coupling of ATP binding and hydrolysis to functional activity are discussed.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine Oswald
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Thorsten Jumpertz
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Stefan Jenewein
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexander Wiedenmann
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - I Barry Holland
- Institut de Génétique et Microbiologie, Université de Paris XI, Orsay, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
108
|
Rudolph MG, Heissmann R, Wittmann JG, Klostermeier D. Crystal structure and nucleotide binding of the Thermus thermophilus RNA helicase Hera N-terminal domain. J Mol Biol 2006; 361:731-43. [PMID: 16890241 DOI: 10.1016/j.jmb.2006.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 02/06/2023]
Abstract
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Structural Biology, University of Göttingen, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
109
|
Guo X, Harrison RW, Tai PC. Nucleotide-dependent dimerization of the C-terminal domain of the ABC transporter CvaB in colicin V secretion. J Bacteriol 2006; 188:2383-91. [PMID: 16547024 PMCID: PMC1428426 DOI: 10.1128/jb.188.7.2383-2391.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.
Collapse
Affiliation(s)
- Xiangxue Guo
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, 402 Kell Hall, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
110
|
Ramaen O, Sizun C, Pamlard O, Jacquet E, Lallemand JY. Attempts to characterize the NBD heterodimer of MRP1: transient complex formation involves Gly771 of the ABC signature sequence but does not enhance the intrinsic ATPase activity. Biochem J 2006; 391:481-90. [PMID: 16014004 PMCID: PMC1276949 DOI: 10.1042/bj20050897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MRP1 (multidrug-resistance-associated protein 1; also known as ABCC1) is a member of the human ABC (ATP-binding cassette) transporter superfamily that confers cell resistance to chemotherapeutic agents. Considering the structural and functional similarities to the other ABC proteins, the interaction between its two NBDs (nucleotide-binding domains), NBD1 (N-terminal NBD) and NBD2 (C-terminal NBD), is proposed to be essential for the regulation of the ATP-binding/ATP-hydrolysis cycle of MRP1. We were interested in the ability of recombinant NBD1 and NBD2 to interact with each other and to influence ATPase activity. We purified NBD1 (Asn642-Ser871) and NBD2 (Ser1286-Val1531) as soluble monomers under native conditions. We measured extremely low intrinsic ATPase activity of NBD1 (10(-5) s(-1)) and NBD2 (6x10(-6) s(-1)) and no increase in the ATP-hydrolysis rate could be detected in an NBD1+NBD2 mixture, with concentrations up to 200 microM. Despite the fact that both monomers bind ATP, no stable NBD1.NBD2 heterodimer could be isolated by gel-filtration chromatography or native-PAGE, but we observed some significant modifications of the heteronuclear single-quantum correlation NMR spectrum of 15N-NBD1 in the presence of NBD2. This apparent NBD1.NBD2 interaction only occurred in the presence of Mg2+ and ATP. Partial sequential assignment of the NBD1 backbone resonances shows that residue Gly771 of the LSGGQ sequence is involved in NBD1.NBD2 complex formation. This is the first NMR observation of a direct interaction between the ABC signature and the opposite NBD. Our study also reveals that the NBD1.NBD2 heterodimer of MRP1 is a transient complex. This labile interaction is not sufficient to induce an ATPase co-operativity of the NBDs and suggests that other structures are required for the ATPase activation mechanism.
Collapse
Affiliation(s)
- Odile Ramaen
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Pamlard
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- To whom correspondence should be addressed (email )
| | - Jean-Yves Lallemand
- Institut de Chimie des Substances Naturelles, UPR 2301, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
111
|
Callaghan R, Ford RC, Kerr ID. The translocation mechanism of P-glycoprotein. FEBS Lett 2005; 580:1056-63. [PMID: 16380120 DOI: 10.1016/j.febslet.2005.11.083] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 01/04/2023]
Abstract
Multidrug transporters are involved in mediating the failure of chemotherapy in treating several serious diseases. The archetypal multidrug transporter P-glycoprotein (P-gp) confers resistance to a large number of chemically and functionally unrelated anti-cancer drugs by mediating efflux from cancer cells. The ability to efflux such a large number of drugs remains a biological enigma and the lack of mechanistic understanding of the translocation pathway used by P-gp prevents rational design of compounds to inhibit its function. The translocation pathway is critically dependent on ATP hydrolysis and drug interaction with P-gp is possible at one of a multitude of allosterically linked binding sites. However, aspects such as coupling stoichiometry, molecular properties of binding sites and the nature of conformational changes remain unresolved or the centre of considerable controversy. The present review attempts to utilise the available data to generate a detailed sequence of events in the translocation pathway for this dexterous protein.
Collapse
Affiliation(s)
- Richard Callaghan
- Nuffield Department of Clinical Laboratory Sciences, Level 4, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| | | | | |
Collapse
|
112
|
Ambudkar SV, Kim IW, Sauna ZE. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci 2005; 27:392-400. [PMID: 16352426 DOI: 10.1016/j.ejps.2005.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022]
Abstract
Members of the superfamily of ATP-binding cassette (ABC) transporters mediate the movement of a variety of substrates including simple ions, complex lipids and xenobiotics. At least 18 ABC transport proteins are associated with disease conditions. P-glycoprotein (Pgp, ABCB1) is the archetypical mammalian ABC transport protein and its mechanism of action has received considerable attention. There is strong biochemical evidence that Pgp moves molecular cargo against a concentration gradient using the energy of ATP hydrolysis. However, the molecular details of how the energy of ATP hydrolysis is coupled to transport remain in dispute and it has not been possible to reconcile the data from various laboratories into a single model. The functional unit of Pgp consists of two nucleotide binding domains (NBDs) and two trans-membrane domains which are involved in the transport of drug substrates. Considerable progress has been made in recent years in characterizing these functionally and spatially distinct domains of Pgp. In addition, our understanding of the domains has been augmented by the resolution of structures of several non-mammalian ABC proteins. This review considers: (i) the role of specific conserved amino acids in ATP hydrolysis mediated by Pgp; (ii) emerging insights into the dimensions of the drug binding pocket and the interactions between Pgp and the transport substrates and (iii) our current understanding of the mechanisms of coupling between energy derived from ATP binding and/or hydrolysis and efflux of drug substrates.
Collapse
Affiliation(s)
- Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
113
|
Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 2005; 580:1023-35. [PMID: 16375896 DOI: 10.1016/j.febslet.2005.11.079] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.
Collapse
Affiliation(s)
- Esther Biemans-Oldehinkel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
114
|
Dean M, Annilo T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 2005; 6:123-42. [PMID: 16124856 DOI: 10.1146/annurev.genom.6.080604.162122] [Citation(s) in RCA: 460] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ATP-binding cassette (ABC) superfamily of genes encode membrane proteins that transport a diverse set of substrates across membranes. Mutations in ABC transporters cause or contribute to many different Mendelian and complex disorders including adrenoleukodystrophy, cystic fibrosis, retinal degeneration, hypercholesterolemia, and cholestasis. The genes play important roles in protecting organisms from xenobiotics and transport compounds across the intestine, blood-brain barrier, and the placenta. There are 48 ABC genes in the human genome divided into seven subfamilies based on amino acid sequence similarities and phylogeny. These seven subfamilies are represented in all eukaryotic genomes and are therefore of ancient origin. Sequencing the genomes of numerous vertebrate organisms has allowed the complement of ABC transporters to be characterized and the evolution of the genes to be assessed. Most ABC transporters are conserved in all vertebrates, but there are also several examples of recent duplication and gene loss. For genes with a conserved ortholog, animal models have been identified or developed that can be used to probe the function and regulation of selected genes. Genes that are restricted to a specific group of animals may represent specialized functions that could provide insight into unique biological properties of that organism. Further characterization of all ABC transporters from the human genome and from model organisms will lead to additional insights into normal physiology and human disease.
Collapse
Affiliation(s)
- Michael Dean
- Human Genetics Section, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | |
Collapse
|
115
|
Kitaoka S, Wada K, Hasegawa Y, Minami Y, Fukuyama K, Takahashi Y. Crystal structure of Escherichia coli SufC, an ABC-type ATPase component of the SUF iron-sulfur cluster assembly machinery. FEBS Lett 2005; 580:137-43. [PMID: 16364320 DOI: 10.1016/j.febslet.2005.11.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 11/24/2005] [Accepted: 11/24/2005] [Indexed: 02/07/2023]
Abstract
SufC is an ATPase component of the SUF machinery, which is involved in the biosynthesis of Fe-S clusters. To gain insight into the function of this protein, we have determined the crystal structure of Escherichia coli SufC at 2.5A resolution. Despite the similarity of the overall structure with ABC-ATPases (nucleotide-binding domains of ABC transporters), some key differences were observed. Glu171, an invariant residue involved in ATP hydrolysis, is rotated away from the nucleotide-binding pocket to form a SufC-specific salt bridge with Lys152. Due to this salt bridge, D-loop that follows Glu171 is flipped out to the molecular surface, which may sterically inhibit the formation of an active dimer. Thus, the salt bridge may play a critical role in regulating ATPase activity and preventing wasteful ATP hydrolysis. Furthermore, SufC has a unique Q-loop structure on its surface, which may form a binding site for its partner proteins, SufB and/or SufD.
Collapse
Affiliation(s)
- Shintaro Kitaoka
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
116
|
Dalmas O, Orelle C, Foucher AE, Geourjon C, Crouzy S, Di Pietro A, Jault JM. The Q-loop Disengages from the First Intracellular Loop during the Catalytic Cycle of the Multidrug ABC Transporter BmrA. J Biol Chem 2005; 280:36857-64. [PMID: 16107340 DOI: 10.1074/jbc.m503266200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette is the most abundant family of transporters including many medically relevant members and gathers both importers and exporters involved in the transport of a wide variety of substrates. Although three high resolution three-dimensional structures have been obtained for a prototypic exporter, MsbA, two have been subjected to much criticism. Here, conformational changes of BmrA, a multidrug bacterial transporter structurally related to MsbA, have been studied. A three-dimensional model of BmrA, based on the "open" conformation of Escherichia coli MsbA, was probed by simultaneously introducing two cysteine residues, one in the first intracellular loop of the transmembrane domain and the other in the Q-loop of the nucleotide-binding domain (NBD). Intramolecular disulfide bonds could be created in the absence of any effectors, which prevented both drug transport and ATPase activity. Interestingly, addition of ATP/Mg plus vanadate strongly prevented this bond formation in a cysteine double mutant, whereas ATP/Mg alone was sufficient when the ATPase-inactive E504Q mutation was also introduced, in agreement with additional BmrA models where the ATP-binding sites are positioned at the NBD/NBD interface. Furthermore, cross-linking between the two cysteine residues could still be achieved in the presence of ATP/Mg plus vanadate when homobifunctional cross-linkers separated by more than 13 Angstrom were added. Altogether, these results give support to the existence, in the resting state, of a monomeric conformation of BmrA similar to that found within the open MsbA dimer and show that a large motion is required between intracellular loop 1 and the nucleotide-binding domain for the proper functioning of a multidrug ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Olivier Dalmas
- Institut de Biologie et Chimie des Protéines, Unité Mixte de Recherche 5086 CNRS-UCBL1 and IFR 128, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
117
|
Watanabe S, Kita A, Miki K. Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8. J Mol Biol 2005; 353:1043-54. [PMID: 16216272 DOI: 10.1016/j.jmb.2005.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/19/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
SufC, a cytoplasmic ABC-ATPase, is one of the most conserved Suf proteins. SufC forms a stable complex with SufB and SufD, and the SufBCD complex interacts with other Suf proteins in the Fe-S cluster assembly. We have determined the crystal structure of SufC from Thermus thermophilus HB8 in nucleotide-free and ADP-Mg-bound states at 1.7A and 1.9A resolution, respectively. The overall architecture of the SufC structure is similar to other ABC ATPases structures, but there are several specific motifs in SufC. Three residues following the end of the Walker B motif form a novel 3(10) helix which is not observed in other ABC ATPases. Due to the novel 3(10) helix, a conserved glutamate residue involved in ATP hydrolysis is flipped out. Although this unusual conformation is unfavorable for ATP hydrolysis, salt-bridges formed by conserved residues and a strong hydrogen-bonding network around the novel 3(10) helix suggest that the novel 3(10) helix of SufC is a rigid conserved motif. Compared to other ABC-ATPase structures, a significant displacement occurs at a linker region between the ABC alpha/beta domain and the alpha-helical domain. The linker conformation is stabilized by a hydrophobic interaction between conserved residues around the Q loop. The molecular surfaces of SufC and the C-terminal helices of SufD (PDB code: 1VH4) suggest that the unusual linker conformation conserved among SufC proteins is probably suitable for interacting with SufB and SufD.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
118
|
|
119
|
Cuthbertson L, Powers J, Whitfield C. The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 2005; 280:30310-9. [PMID: 15980069 DOI: 10.1074/jbc.m504371200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polymannan O-antigenic polysaccharides (O-PSs) of Escherichia coli O8 and O9a are synthesized via an ATP-binding cassette (ABC) transporter-dependent pathway. The group 2 capsular polysaccharides of E. coli serve as prototypes for polysaccharide synthesis and export via this pathway. Here, we show that there are some fundamental differences between the ABC transporter-dependent pathway for O-PS biosynthesis and the capsular polysaccharide paradigm. In the capsule system, mutants lacking the ABC transporter are viable, and membranes isolated from these strains are no longer able to synthesize polymer using an endogenous acceptor. In contrast, E. coli strains carrying mutations in the membrane component (Wzm) and/or the nucleotide-binding component (Wzt) of the O8 and O9a polymannan transporters are nonviable under conditions permissive to O-PS biosynthesis and take on an aberrant elongated cell morphology. Whereas the ABC transporters for capsular polysaccharides with different structures are functionally interchangeable, the O8 and O9a exporters are specific for their cognate polymannan substrates. The E. coli O8 and O9a Wzt proteins contain a C-terminal domain not present in the corresponding nucleotide-binding protein (KpsT) from the capsule exporter. Whereas the Wzm components are functionally interchangeable, albeit with reduced efficiency, the Wzt components are not, indicating a specific role for Wzt in substrate specificity. Chimeric Wzt proteins were constructed in order to localize the region involved in substrate specificity to the C-terminal domain.
Collapse
Affiliation(s)
- Leslie Cuthbertson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
120
|
Harvat EM, Zhang YM, Tran CV, Zhang Z, Frank MW, Rock CO, Saier MH. Lysophospholipid Flipping across the Escherichia coli Inner Membrane Catalyzed by a Transporter (LplT) Belonging to the Major Facilitator Superfamily. J Biol Chem 2005; 280:12028-34. [PMID: 15661733 DOI: 10.1074/jbc.m414368200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.
Collapse
Affiliation(s)
- Edgar M Harvat
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Tian Q, Zhang J, Chan E, Duan W, Zhou S. Multidrug resistance proteins (MRPs) and implication in drug development. Drug Dev Res 2005. [DOI: 10.1002/ddr.10427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
122
|
Abstract
The ATP-binding cassette (ABC) superfamily consists of membrane proteins that transport a wide variety of substrates across membranes. Mutations in ABC transporters cause or contribute to a number of different Mendelian disorders, including adrenoleukodystrophy, cystic fibrosis, retinal degeneration, cholesterol, and bile transport defects. In addition, the genes are involved in an increasing number of complex disorders. The proteins play essential roles in the protection of organisms from toxic metabolites and compounds in the diet and are involved in the transport of compounds across the intestine, blood-brain barrier, and the placenta. There are 48 ABC genes in the human genome divided into seven subfamilies based in gene structure, amino acid alignment, and phylogenetic analysis. These seven subfamilies are found in all other sequenced eukaryotic genomes and are of ancient origin. Further characterization of all ABC genes from humans and model organisms will lead to additional insights into normal physiology and human disease.
Collapse
Affiliation(s)
- Michael Dean
- Human Genetics Section, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|