101
|
Mitogen-induced B-cell proliferation activates Chk2-dependent G1/S cell cycle arrest. PLoS One 2014; 9:e87299. [PMID: 24498068 PMCID: PMC3907503 DOI: 10.1371/journal.pone.0087299] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
B-cell activation and proliferation can be induced by a variety of extracellular stimuli. The fate of an activated B cell following mitogen stimulation can be dictated by the strength or duration of the signal, the expression of downstream signaling components necessary to promote proliferation, and the cell intrinsic sensors and regulators of the proliferative program. Previously we have identified the DNA damage response (DDR) signaling pathway as a cell intrinsic sensor that is activated upon latent infection of primary human B cells by Epstein-Barr virus (EBV). Here we have assessed the role of the DDR as a limiting factor in the proliferative response to non-viral B-cell mitogens. We report that TLR9 activation through CpG-rich oligonucleotides induced B-cell hyper-proliferation and an ATM/Chk2 downstream signaling pathway. However, B-cell activation through the CD40 pathway coupled with interleukin-4 (IL-4) promoted proliferation less robustly and only a modest DDR. These two mitogens, but not EBV, modestly induced intrinsic apoptosis that was independent from the DDR. However, all three mitogens triggered a DDR-dependent G1/S phase cell cycle arrest preventing B-cell proliferation. The extent of G1/S arrest, as evidenced by release through Chk2 inhibition, correlated with B-cell proliferation rates. These findings have implications for the regulation of extra-follicular B-cell activation as it may pertain to the development of auto-immune diseases or lymphoma.
Collapse
|
102
|
Esser PR, Kimber I, Martin SF. Correlation of contact sensitizer potency with T cell frequency and TCR repertoire diversity. ACTA ACUST UNITED AC 2014; 104:101-14. [PMID: 24214621 DOI: 10.1007/978-3-0348-0726-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allergic contact dermatitis is a T cell-mediated skin disease. Many hundreds of organic chemicals and some metal ions are contact sensitizers. They induce an innate inflammatory immune response in the skin that results in the priming of contact sensitizer-specific T cells by dendritic cells in the draining lymph nodes. The factors that determine the strength of this T cell response and thereby define the potency of a contact sensitizer are largely unknown. This chapter highlights different variables such as precursor frequency of antigen-specific T cells, possible bystander activation, and T cell receptor diversity or avidity of the TCR/peptide-MHC interactions, which might impact the quality and strength of T cell responses to contact sensitizers. In addition, different methods available to determine both the frequency of antigen-specific T cells and T cell receptor repertoires are discussed. Identification of the factors determining potency may allow for the development of suitable in vitro assays for potency assessment of contact sensitizers.
Collapse
Affiliation(s)
- Philipp R Esser
- Allergy Research Group, Department of Dermatology and Venereology, University Medical Center Freiburg, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
103
|
Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep 2014; 4:3792. [PMID: 24445780 PMCID: PMC3896912 DOI: 10.1038/srep03792] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs), as innate immunity sensors, play critical roles in immune responses. Six SNPs of TLR3, TLR7, and TLR8 were genotyped to determine their associations with systemic lupus erythematosus (SLE) and clinical manifestations of SLE. TLR7 SNP rs3853839 was independently associated with SLE susceptibility in females (G vs. C: p = 0.0051). TLR7 rs3853839-G (G vs. C: p = 0.0100) and TLR8 rs3764880-G (recessive model: p = 0.0173; additive model: p = 0.0161) were associated with pericardial effusion in females relative to healthy females. Anti-SSA positive cases were more likely to have the dominant TLR7 rs179010-T allele than normal controls (p = 0.0435). TLR3 rs3775296-T was associated with photosensitivity (p = 0.0020) and anemia (p = 0.0082). The “G-G” haplotype of TLR7 rs3853839 and TLR8 rs3764880 increased risk of SLE in females (age adjusted p = 0.0032). These findings suggest that TLR variations that modify gene expression affect risk for SLE susceptibility, clinical phenotype development, and production of autoantibodies.
Collapse
|
104
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lamagna C, Hu Y, DeFranco AL, Lowell CA. B cell-specific loss of Lyn kinase leads to autoimmunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:919-28. [PMID: 24376269 DOI: 10.4049/jimmunol.1301979] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Lyn tyrosine kinase regulates inhibitory signaling in B and myeloid cells: loss of Lyn results in a lupus-like autoimmune disease with hyperactive B cells and myeloproliferation. We have characterized the relative contribution of Lyn-regulated signaling pathways in B cells specifically to the development of autoimmunity by crossing the novel lyn(flox/flox) animals with mice carrying the Cre recombinase under the control of the Cd79a promoter, resulting in deletion of Lyn in B cells. The specific deletion of Lyn in B cells is sufficient for the development of immune complex-mediated glomerulonephritis. The B cell-specific Lyn-deficient mice have no defects in early bone marrow B cell development but have reduced numbers of mature B cells with poor germinal centers, as well as increased numbers of plasma and B1a cells, similar to the lyn(-/-) animals. Within 8 mo of life, B cell-specific Lyn mutant mice develop high titers of IgG anti-Smith Ag ribonucleoprotein and anti-dsDNA autoantibodies, which deposit in their kidneys, resulting in glomerulonephritis. B cell-specific Lyn mutant mice also develop myeloproliferation, similar to the lyn(-/-) animals. The additional deletion of MyD88 in B cells, achieved by crossing lyn(flox/flox)Cd79a-cre mice with myd88(flox/flox) animals, reversed the autoimmune phenotype observed in B cell-specific Lyn-deficient mice by blocking production of class-switched pathogenic IgG autoantibodies. Our results demonstrate that B cell-intrinsic Lyn-dependent signaling pathways regulate B cell homeostasis and activation, which in concert with B cell-specific MyD88 signaling pathways can drive the development of autoimmune disease.
Collapse
Affiliation(s)
- Chrystelle Lamagna
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | | | | | | |
Collapse
|
106
|
Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2013; 25:147-56. [PMID: 24433987 DOI: 10.1016/j.cytogfr.2013.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
TRAF3 is an adapter protein that serves and regulates the functions of several types of receptors, located both inside the cell and at the plasma membrane. These include members of the TNF receptor superfamily (TNFR-SF), toll-like receptors (TLR), and cytokine receptors. It has become increasingly evident that the roles and functions of TRAF3 are highly context-dependent. TRAF3 can serve distinct roles for different receptors in the same cell, and also has highly cell-type-dependent functions. This review focuses upon the current state of knowledge regarding how TRAF3 regulates the biology and effector functions of B and T lymphocytes, two major cell types of the adaptive immune response in which TRAF3 has markedly distinct roles.
Collapse
|
107
|
Giltiay NV, Chappell CP, Sun X, Kolhatkar N, Teal TH, Wiedeman AE, Kim J, Tanaka L, Buechler MB, Hamerman JA, Imanishi-Kari T, Clark EA, Elkon KB. Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. ACTA ACUST UNITED AC 2013; 210:2773-89. [PMID: 24145511 PMCID: PMC3832927 DOI: 10.1084/jem.20122798] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transgenic expression of TLR7 results in the expansion and hyperactivation of T1 B cells in response to endogenous RNA complexes, leading to increased autoantibody production. Toll-like receptor (TLR), a ligand for single-stranded RNA, has been implicated in the development of pathogenic anti-RNA autoantibodies both in systemic lupus erythematous (SLE) patients and in murine models of lupus. It is still unclear, however, where and how TLR7-mediated interactions affect the development of autoreactive B cells. We found that overexpression of TLR7 in transgenic mice (TLR7.1Tg) leads to marked alterations of transitional (T1) B cells, associated with their expansion and proliferation within the splenic red pulp (RP). This phenotype was intrinsic to the T1 subset of B cells and occurred independently of type 1 IFN signals. Overexpression of RNase in TLR7.1Tg mice significantly limited the expansion and proliferation of T1 cells, indicating that endogenous RNA complexes are driving their activation. TLR7.1Tg T1 cells were hyper-responsive to anti-IgM and TLR7 ligand stimulation in vitro and produced high concentrations of class-switched IgG2b and IgG2c, including anti-RNA antibodies. Our results demonstrate that initial TLR7 stimulation of B cells occurs at the T1 stage of differentiation in the splenic RP and suggest that dysregulation of TLR7 expression in T1 cells can result in production of autoantibodies.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology and 2 Division of Rheumatology, School of Medicine, University of Washington, Seattle, WA 98195
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Rubtsova K, Rubtsov AV, van Dyk LF, Kappler JW, Marrack P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc Natl Acad Sci U S A 2013; 110:E3216-24. [PMID: 23922396 PMCID: PMC3752276 DOI: 10.1073/pnas.1312348110] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IgG2a is known to be the most efficient antibody isotype for viral clearance. Here, we demonstrate a unique pathway of B-cell activation, leading to IgG2a production, and involving synergistic stimulation via B-cell antigen receptors, toll-like receptor 7 (TLR7), and IFNγ receptors on B cells. This synergistic stimulation leads to induction of T-box transcription factor T-bet expression in B cells, which, in turn, drives expression of CD11b and CD11c on B cells. T-bet/CD11b/CD11c positive B cells appear during antiviral responses and produce high titers of antiviral IgG2a antibodies that are critical for efficient viral clearance. The results thus demonstrate a previously unknown role for T-bet expression in B cells during viral infections. Moreover, the appearance of T-bet(+) B cells during antiviral responses and during autoimmunity suggests a possible link between these two processes.
Collapse
Affiliation(s)
- Kira Rubtsova
- Howard HughesMedical Institute, Denver, CO 80206
- Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO 80206
| | - Anatoly V. Rubtsov
- Howard HughesMedical Institute, Denver, CO 80206
- Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO 80206
| | - Linda F. van Dyk
- Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO 80206
- Departments of Microbiology
| | - John W. Kappler
- Howard HughesMedical Institute, Denver, CO 80206
- Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO 80206
- Pharmacology, and
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Philippa Marrack
- Howard HughesMedical Institute, Denver, CO 80206
- Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, CO 80206
- Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
109
|
Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R. Etiology of myasthenia gravis: Innate immunity signature in pathological thymus. Autoimmun Rev 2013; 12:863-74. [DOI: 10.1016/j.autrev.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/09/2023]
|
110
|
Affiliation(s)
- Bevra Hannahs Hahn
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
111
|
Matesic D, Lenert A, Lenert P. Modulating toll-like receptor 7 and 9 responses as therapy for allergy and autoimmunity. Curr Allergy Asthma Rep 2013; 12:8-17. [PMID: 22086297 DOI: 10.1007/s11882-011-0233-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type I allergic diseases, such as allergic rhinitis and asthma, depend on allergen-induced T-helper type 2 (Th2) cells and IgE-secreting plasma cells. Fortunately, this harmful immune response can be modified by engaging Toll-like receptor (TLR)7 and TLR9, offering hopes to allergy sufferers. While clinical trials employing synthetic ligands for TLR7 or TLR9 are under way, one can wonder whether TLR7 or TLR9 engagements may trigger inadvertent autoreactivity and/or Th1-/Th17-mediated tissue pathology. To neutralize such danger, we have pioneered the development of potent TLR9 pathway antagonists, inhibitory oligonucleotides (INH-ODNs), which work in a sequence-specific manner. Interestingly, INH-ODNs also have TLR7-inhibitory properties; however, these effects appear to be sequence independent and phosphorothioate backbone dependent. In B cells, co-engagement of the B-cell receptor for antigen and TLR7 or TLR9 may influence how INH-ODNs impose their regulatory effects. INH-ODNs block TLR9 activation by competitively antagonizing ligand binding to proteolytically cleaved C-terminal TLR9 fragment. One may envision future use of INH-ODNs in systemic autoimmune diseases, DNA-mediated sepsis, or other situations in which chronic inflammation results from abnormal TLR7- and/or TLR9-mediated immune activation.
Collapse
Affiliation(s)
- Damir Matesic
- Indiana Institute of Immunology, Allergy, and Asthma, Kokomo, IN 46902, USA.
| | | | | |
Collapse
|
112
|
Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol Res 2013; 55:210-6. [PMID: 22945807 PMCID: PMC3935605 DOI: 10.1007/s12026-012-8365-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although autoantibodies are the hallmarks of most autoimmune diseases, the mechanisms by which autoreactive B cells are generated and accumulate are still poorly understood. Overexpression of Toll-like receptor 7 (TLR7) that recognizes single-stranded RNAs has been implicated in systemic lupus erythematosus (SLE), although the cellular mechanism by which this receptor drives the disease is unknown. We recently identified a population of CD11c(+) age-associated B cells (ABCs) which is driven by TLR7 signaling, secretes autoantibodies and appears in autoimmune-prone mice by the time of onset of autoimmunity. Mice lacking the Mer receptor develop autoantibodies and splenomegaly similar to other mouse models of SLE. Here, we show that Mer(-/-) mice that lack TLR7 fail to develop anti-chromatin IgG antibodies, perhaps because they also fail to develop ABCs. Moreover, depletion of CD11c(+) ABCs from Mer(-/-) mice leads to rapid reduction in autoantibodies. Together, these data strongly suggest that ABCs and/or their descendants are the primary source of autoantibodies in Mer(-/-) mice and that TLR7 signaling is crucial for accumulation of ABCs and development of autoantibodies. These data demonstrate for the first time that TLR7, and not TLR9, is responsible for generation of anti-chromatin IgG antibodies in Mer(-/-) mice.
Collapse
Affiliation(s)
- Anatoly V. Rubtsov
- Integrated Department of Immunology, Howard Hughes Medical Institute, University of Colorado School of Medicine, 1400 Jackson Street, K512, Denver, CO 80206, USA. Integrated Department of Immunology, National Jewish Health, University of Colorado School of Medicine, 1400 Jackson Street, K519, Denver, CO 80206, USA
| | - Kira Rubtsova
- Integrated Department of Immunology, Howard Hughes Medical Institute, University of Colorado School of Medicine, 1400 Jackson Street, K512, Denver, CO 80206, USA. Integrated Department of Immunology, National Jewish Health, University of Colorado School of Medicine, 1400 Jackson Street, K519, Denver, CO 80206, USA
| | - John W. Kappler
- Integrated Department of Immunology, Howard Hughes Medical Institute, University of Colorado School of Medicine, 1400 Jackson Street, K512, Denver, CO 80206, USA. Integrated Department of Immunology, National Jewish Health, University of Colorado School of Medicine, 1400 Jackson Street, K519, Denver, CO 80206, USA. Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA. Department of Medicine, University of Colorado Health Sciences Center, Denver, Aurora, CO 80045, USA
| | - Philippa Marrack
- Integrated Department of Immunology, Howard Hughes Medical Institute, University of Colorado School of Medicine, 1400 Jackson Street, K512, Denver, CO 80206, USA. Integrated Department of Immunology, National Jewish Health, University of Colorado School of Medicine, 1400 Jackson Street, K519, Denver, CO 80206, USA. Department of Medicine, University of Colorado Health Sciences Center, Denver, Aurora, CO 80045, USA. Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| |
Collapse
|
113
|
Sweet RA, Cullen JL, Shlomchik MJ. Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:1974-81. [PMID: 23365079 DOI: 10.4049/jimmunol.1202816] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B cells are critical in the initiation and maintenance of lupus. Autoreactive B cells clonally expand, isotype switch, and mutate--properties associated with memory B cells (MBCs), which are typically generated via germinal centers. The development and functions of autoreactive MBCs in lupus are poorly understood. Moreover, mounting evidence implicates the extrafollicular (EF) response in the generation of switched and mutated autoantibodies that are driven by BCR and TLR corecognition, raising the question of whether MBCs are generated in this context. In this study, we investigated autoreactive MBC generation associated with this type of response. We transferred B cells from AM14 site-directed BCR transgenic mice into nontransgenic normal recipients and elicited an EF response with anti-chromatin Ab, as in prior studies. By following the fate of the stimulated cells at late time points, we found that AM14 B cells persisted at increased frequency for up to 7 wk. Furthermore, these cells had divided in response to Ag but were subsequently quiescent, with a subset expressing the memory marker CD73. These cells engendered rapid, isotype-switched secondary plasmablast responses upon restimulation. Both memory and rapid secondary responses required T cell help to develop, emphasizing the need for T-B collaboration for long-term self-reactivity. Thus, using this model system, we show that the EF response generated persistent and functional MBCs that share some, but not all, of the characteristics of traditional MBCs. Such cells could play a role in chronic or flaring autoimmune disease.
Collapse
Affiliation(s)
- Rebecca A Sweet
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
114
|
Mechanisms of autoimmunity. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Abstract
A large antibody repertoire is generated in developing B cells in the bone marrow. Before these B cells achieve immunocompetence, those expressing autospecificities must be purged. To that end, B cells within the bone marrow and just following egress from the bone marrow are subject to tolerance induction. Once B cells achieve immunocompetence, the antibody repertoire can be further diversified by somatic hypermutation of immunoglobulin genes in B cells that have been activated by antigen and cognate T cell help and have undergone a germinal center (GC) response. This process also leads to the generation of autoreactive B cells which must be again purged to protect the host. Thus, B cells within the GC and just following egress from the GC are also subject to tolerance induction. Available data suggest that B cell intrinsic processes triggered by signaling through the B cell receptor activate tolerance mechanisms at both time points. Recent data suggest that GC and post-GC B cells are also subject to B cell extrinsic tolerance mechanisms mediated through soluble and membrane-bound factors derived from various T cell subsets.
Collapse
|
116
|
Affiliation(s)
- Kian-Huat Lim
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
117
|
Abstract
Expression of Toll-like receptors (TLRs) in B cells provides a cell-intrinsic mechanism for innate signals regulating adaptive immune responses. In combination with other signaling pathways in B cells, including through the B-cell receptor (BCR), TLR signaling plays multiple roles in B-cell differentiation and activation. The outcome of TLR signaling in B cells is largely context-dependent, which partly explains discrepancies among in vitro and in vivo studies, or studies using different immunogens. We focus on recent findings on how B-cell-intrinsic TLR signaling regulates antibody responses, including germinal center formation and autoantibody production in autoimmune disease models. In addition, TLR signaling also acts on the precursors of B cells, which could influence the immune response of animals by shaping the composition of the immune system. With TLR signaling modulating immune responses at these different levels, much more needs to be understood before we can depict the complete functions of innate signaling in host defense.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
118
|
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Res Ther 2012; 14 Suppl 4:S1. [PMID: 23281837 PMCID: PMC3535718 DOI: 10.1186/ar3918] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clearest evidence that B cells play an important role in human autoimmunity is that immunotherapies that deplete B cells are very effective treatments for many autoimmune diseases. All people, healthy or ill, have autoreactive B cells, but not at the same frequency. A number of genes influence the level of these autoreactive B cells and whether they are eliminated or not during development at a central checkpoint in the bone marrow (BM) or at a later checkpoint in peripheral lymphoid tissues. These genes include those encoding proteins that regulate signaling through the B-cell receptor complex such as Btk and PTPN22, proteins that regulate innate signaling via Toll-like receptors (TLRs) such as MyD88 and interleukin-1 receptor-associated kinase 4, as well as the gene encoding the activation-induced deaminase (AID) essential for B cells to undergo class switch recombination and somatic hypermutation. Recent studies have revealed that TLR signaling elements and AID function not only in peripheral B cells to help mediate effective antibody responses to foreign antigens, but also in the BM to help remove autoreactive B-lineage cells at a very early point in B-cell development. Newly arising B cells that leave the BM and enter the blood and splenic red pulp can express both AID and TLR signaling elements like TLR7, and thus are fully equipped to respond rapidly to antigens (including autoantigens), to isotype class switch, and to undergo somatic hypermutation. These red pulp B cells may thus be an important source of autoantibody-producing cells arising particularly in extrafollicular sites, and indeed may be as significant a source of autoantibody-producing cells as B cells arising from germinal centers.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
119
|
Berggren O, Hagberg N, Weber G, Alm GV, Rönnblom L, Eloranta ML. B lymphocytes enhance interferon-α production by plasmacytoid dendritic cells. ACTA ACUST UNITED AC 2012; 64:3409-19. [DOI: 10.1002/art.34599] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
120
|
Green NM, Moody KS, Debatis M, Marshak-Rothstein A. Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands. J Biol Chem 2012; 287:39789-99. [PMID: 23019335 DOI: 10.1074/jbc.m112.383000] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key step in the activation of autoreactive B cells is the internalization of nucleic acid containing ligands and delivery of these ligands to the Toll-like Receptor (TLR) containing endolysosomal compartment. Ribonucleoproteins represent a large fraction of autoantigens in systemic autoimmune diseases. Here we demonstrate that many uridine-rich mammalian RNA sequences associated with common autoantigens effectively activate autoreactive B cells. Priming with type I IFN increased the magnitude of activation, and the range of which RNAs were stimulatory. A subset of RNAs that contain a high degree of self-complementarity also activated B cells through TLR3. For the RNA sequences that activated predominantly through TLR7, the activation is proportional to uridine-content, and more precisely defined by the frequency of specific uridine-containing motifs. These results identify parameters that define specific mammalian RNAs as ligands for TLRs.
Collapse
Affiliation(s)
- Nathaniel M Green
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
121
|
Toll-like receptors 4 and 9 are responsible for the maintenance of the inflammatory reaction in canine steroid-responsive meningitis-arteritis, a large animal model for neutrophilic meningitis. J Neuroinflammation 2012; 9:226. [PMID: 23016675 PMCID: PMC3488568 DOI: 10.1186/1742-2094-9-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 09/12/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Steroid-responsive meningitis-arteritis (SRMA) is a systemic inflammatory disease affecting young adult dogs and a potential large animal model for neutrophilic meningitis. Similarities between SRMA and infectious central nervous system (CNS) diseases in lymphocyte subsets suggest an infectious origin.Toll-like receptors (TLRs) are pattern recognition receptors playing an important role in innate immunity. Due to their ability to recognize both self and non-self antigens, we hypothesize that TLRs are among the key factors for the induction of the inflammatory process in SRMA and provide an indirect hint on the etiology of the disease. METHODS The expression profile of cell surface TLRs (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR3 and TLR9) of canine leukocytes was analyzed by immunophenotyping and subsequent flow cytometric measurements. Experiments were performed on cerebrospinal fluid (CSF) and peripheral blood (PB) samples of dogs affected with SRMA during the acute phase (n = 14) as well as during treatment (n = 23) and compared with those of dogs with bacterial meningitis (n = 3), meningoencephalitis of unknown etiology (n = 6), neoplasia of the central nervous system (n = 6) and a group of dogs with miscellaneous neurological diseases (n = 9). Two additional control groups consisted of dogs with pyogenic infections (n = 13) and of healthy dogs (n = 6). RESULTS All examined groups showed a high percentage of TLR2, TLR4 and TLR5 positive PB polymorphonuclear cells (PMNs) in comparison to healthy dogs. Very high values of TLR9 positive PB PMNs were detected in acute SRMA. Only a few similarities were found between SRMA patients and dogs with pyogenic infections, both groups were characterized by high expression of TLR4 positive PB monocytes. Glucocorticosteroid therapy reduced TLR2, TLR4 and TLR9 expression in PB monocytes. CONCLUSIONS A relatively high expression of TLR4 and TLR9 in acute SRMA suggests that these two receptors might be involved in the inflammatory process in SRMA, enhancing the autoimmune reaction. Systematic CSF cell analysis for TLRs can be performed in future treatment studies in larger animals, such as dogs.
Collapse
|
122
|
Abstract
The discovery of host-encoded gene products that sense molecular patterns in infectious microbes, and the demonstration of their role in triggering innate and adaptive immune responses, has been a key milestone in our understanding of immunology. Twenty-three years after Janeway first outlined the fundamental concepts of the 'pattern recognition' model, and 15 years since the identification of Toll-like receptors (TLRs) as pattern recognition receptors (PRRs), new insights continue to be revealed, and questions remain. For example, innate immune responses to microbes that are mediated by PRRs have historically been viewed as the domain of innate immune cell populations such as dendritic cells and macrophages. New evidence, however, has pointed to the role of B-cell-intrinsic TLR activation in shaping antibody responses. These studies have revealed that TLRs regulate a complex transcriptional network that controls multiple steps in the development of antigen-specific antibodies. This review covers these recent developments regarding the role of TLRs in B-cell gene expression and function in vitro and in vivo, and highlights the remaining challenges in the field, with particular emphasis on the role of TLRs in antibody responses to viral infection. A more complete understanding of how TLRs regulate antibody responses will lead to improved vaccine design.
Collapse
Affiliation(s)
- Edward P Browne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
123
|
DeFranco AL, Rookhuizen DC, Hou B. Contribution of Toll-like receptor signaling to germinal center antibody responses. Immunol Rev 2012; 247:64-72. [PMID: 22500832 DOI: 10.1111/j.1600-065x.2012.01115.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toll-like receptors (TLRs) have emerged as one of the most important families of innate immune receptors for initiating inflammation and also for promoting adaptive immune responses. Recent studies have examined the ability of TLRs to promote antibody responses, including T-cell-dependent antibody responses. Initial study suggested that TLR stimulation promotes primarily an extrafollicular antibody response, which rapidly produces moderate affinity antibodies made by short-lived plasma cells. Recent studies, however, have shown that TLRs can also enhance the germinal center response, which produces high affinity class-switched antibody made by long-lived plasma cells. TLR stimulation can increase the magnitude of the latter response and also enhance selection for high affinity IgG. This review summarizes recent advances in understanding the roles of TLRs in B cells and also in other cell types for enhancement of antibody responses, with an emphasis on T-cell-dependent and germinal center antibody responses.
Collapse
Affiliation(s)
- Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | | | |
Collapse
|
124
|
Guerrier T, Le Pottier L, Devauchelle V, Pers JO, Jamin C, Youinou P. Role of toll-like receptors in primary Sjögren’s syndrome with a special emphasis on B-cell maturation within exocrine tissues. J Autoimmun 2012; 39:69-76. [DOI: 10.1016/j.jaut.2012.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
|
125
|
Controlling systems of nucleic acid sensing-TLRs restrict homeostatic inflammation. Exp Cell Res 2012; 318:1461-6. [DOI: 10.1016/j.yexcr.2012.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/13/2022]
|
126
|
Salaman MR. Two paradoxes and a surprise on the road to an understanding of systemic lupus erythematosus. Immunol Lett 2012; 148:49-52. [PMID: 22841962 DOI: 10.1016/j.imlet.2012.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/15/2012] [Indexed: 11/28/2022]
Abstract
Whereas systemic lupus erythematosus (SLE) as normally encountered results from the coming together of a complex mix of genetic and environmental factors, SLE also develops in virtually all those rare people who lack a functional gene for the first component of complement (C1q). The pathogenic IgG antibodies against double-stranded DNA characteristic of the disease are made in response to nucleosomes - the package of DNA and histone molecules forming the unit structure of chromatin - which are present in apoptotic cells. Analysis of the C1q phenomenon illuminates the arrangements that are normally in place to ensure tolerance is maintained to nucleosomal antigens. Surprisingly in view of the high level of apoptosis occurring in the thymus, it appears that anti-histone helper T cells, which are likely to be required for IgG anti-DNA production, are not deleted in the thymus. It seems rather that tolerance is maintained by non-availability of antigen brought about by the highly efficient C1q-dependent phagocytosis of apoptotic cells. This 'immunological ignorance' may be backed up by mechanisms of peripheral tolerance if antigen does become available. Idiopathic SLE may arise when apoptotic cell clearance is sub-optimal, making clearance a promising target for therapy.
Collapse
Affiliation(s)
- Myer R Salaman
- Department of Immunology, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
127
|
Warnatz K, Voll RE. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol 2012; 3:210. [PMID: 22826712 PMCID: PMC3399211 DOI: 10.3389/fimmu.2012.00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/01/2012] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) presents in up to 25% of patients with autoimmune (AI) manifestations. Given the frequency and early onset in some patients with CVID, AI dysregulation seems to be an integral part of the immunodeficiency. Antibody-mediated AI cytopenias, most often affecting erythrocytes and platelets make up over 50% of these patients. This seems to be distinct from mainly cell-mediated organ-specific autoimmunity. Some patients present like patients with AI lymphoproliferative syndrome. Interestingly, in the majority of patients with AI cytopenias the immunological examination reveals a dysregulated B and T cell homeostasis. These phenotypic changes are associated with altered signaling through the antigen receptor which may well be a potential risk factor for disturbed immune tolerance as has been seen in STIM1 deficiency. In addition, elevated B cell-activating factor serum levels in CVID patients may contribute to survival of autoreactive B cells. Of all genetic defects associated with CVID certain alterations in TACI, CD19, and CD81 deficiency have most often been associated with AI manifestations. In conclusion, autoimmunity in CVID offers opportunities to gain insights into general mechanisms of human autoimmunity.
Collapse
Affiliation(s)
- Klaus Warnatz
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
128
|
Stearns NA, Lee J, Leong KW, Sullenger BA, Pisetsky DS. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers. PLoS One 2012; 7:e40862. [PMID: 22808279 PMCID: PMC3394750 DOI: 10.1371/journal.pone.0040862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE) and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs) on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3), hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.
Collapse
Affiliation(s)
- Nancy A. Stearns
- Duke University Medical Center, Department of Medicine, Durham, North Carolina, United States of America
| | - Jaewoo Lee
- Duke Translational Research Institute, Durham, North Carolina, United States of America
- Duke University Medical Center, Department of Surgery, Durham, North Carolina, United States of America
| | - Kam W. Leong
- Duke University Medical Center, Department of Surgery, Durham, North Carolina, United States of America
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States of America
| | - Bruce A. Sullenger
- Duke Translational Research Institute, Durham, North Carolina, United States of America
- Duke University Medical Center, Department of Surgery, Durham, North Carolina, United States of America
| | - David S. Pisetsky
- Duke University Medical Center, Department of Medicine, Durham, North Carolina, United States of America
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
129
|
Peng Q, O’Loughlin JL, Humphrey MB. DOK3 negatively regulates LPS responses and endotoxin tolerance. PLoS One 2012; 7:e39967. [PMID: 22761938 PMCID: PMC3384629 DOI: 10.1371/journal.pone.0039967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/05/2012] [Indexed: 02/08/2023] Open
Abstract
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both naïve and endotoxin-induced tolerant conditions.
Collapse
Affiliation(s)
- Qisheng Peng
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Jason L. O’Loughlin
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Veterans Affairs, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
130
|
Pone EJ, Xu Z, White CA, Zan H, Casali P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci (Landmark Ed) 2012; 17:2594-615. [PMID: 22652800 DOI: 10.2741/4073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are a family of conserved pattern recognition receptors (PRRs). Engagement of B cell TLRs by microbe-associated molecular patterns (MAMPs) induces T-independent (TI) antibody responses and plays an important role in the early stages of T-dependent (TD) antibody responses before specific T cell help becomes available. The role of B cell TLRs in the antibody response is magnified by the synergy of B cell receptor (BCR) crosslinking and TLR engagement in inducing immunoglobulin (Ig) class switch DNA recombination (CSR), which crucially diversifies the antibody biological effector functions. Dual BCR/TLR engagement induces CSR to all Ig isotypes, as directed by cytokines, while TLR engagement alone induces marginal CSR. Integration of BCR and TLR signaling results in activation of the canonical and non-canonical NF-κB pathways, induction of activation-induced cytidine deaminase (AID) and germline transcription of IgH switch (S) regions. A critical role of B cell TLRs in CSR and the antibody response is emphasized by the emergence of several TLR ligands as integral components of vaccines that greatly boost humoral immunity in a B cell-intrinsic fashion.
Collapse
Affiliation(s)
- Egest J Pone
- Institute for Immunology, School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | |
Collapse
|
131
|
Abstract
Rheumatologists see patients with a range of autoimmune diseases. Phenotyping these diseases for diagnosis, prognosis and selection of therapies is an ever increasing problem. Advances in multiplexed assay technology at the gene, protein, and cellular level have enabled the identification of 'actionable biomarkers'; that is, biological metrics that can inform clinical practice. Not only will such biomarkers yield insight into the development, remission, and exacerbation of a disease, they will undoubtedly improve diagnostic sensitivity and accuracy of classification, and ultimately guide treatment. This Review provides an introduction to these powerful technologies that could promote the identification of actionable biomarkers, including mass cytometry, protein arrays, and immunoglobulin and T-cell receptor high-throughput sequencing. In our opinion, these technologies should become part of routine clinical practice for the management of autoimmune diseases. The use of analytical tools to deconvolve the data obtained from use of these technologies is also presented here. These analyses are revealing a more comprehensive and interconnected view of the immune system than ever before and should have an important role in directing future treatment approaches for autoimmune diseases.
Collapse
|
132
|
Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, Rauter I, Benson H, Schneider L, Baxi S, Recher M, Notarangelo LD, Wakim R, Dbaibo G, Dasouki M, Al-Herz W, Barlan I, Baris S, Kutukculer N, Ochs HD, Plebani A, Kanariou M, Lefranc G, Reisli I, Fitzgerald KA, Golenbock D, Manis J, Keles S, Ceja R, Chatila TA, Geha RS. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 2012; 13:612-20. [PMID: 22581261 PMCID: PMC3362684 DOI: 10.1038/ni.2305] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 04/11/2012] [Indexed: 12/13/2022]
Abstract
The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27(+) memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-κB, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src-kinase Syk-transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells.
Collapse
Affiliation(s)
- Haifa H Jabara
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Rahman ZSM. Impaired clearance of apoptotic cells in germinal centers: implications for loss of B cell tolerance and induction of autoimmunity. Immunol Res 2012; 51:125-33. [PMID: 22038528 DOI: 10.1007/s12026-011-8248-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germinal centers (GCs) comprise lymphoid microenvironments where antigen-stimulated B cells undergo rapid proliferation and somatic hypermutation (SHM), resulting in the generation of B cells with high affinity for antigen. However, this process also generates B cell clones with low antigen affinity and with the potential for autoreactivity. It has been suggested that GC B cells with low antigen affinity and autoreactivity are eliminated via apoptosis and are rapidly cleared by tingible body macrophages (TBMφs). Inefficient clearance of apoptotic cells (ACs) results in autoimmunity that is thought to be mediated by various intracellular molecules possessing danger-associated molecular patterns (DAMPs), including nuclear self-Ags. DAMPs can be released from ACs undergoing "secondary necrosis" due to a disruption in AC clearance within GCs. This review discusses the role and mechanisms associated with impaired clearance of ACs in GCs in loss of B cell tolerance leading to autoantibody production and the development of autoimmunity.
Collapse
Affiliation(s)
- Ziaur S M Rahman
- Department of Microbiology and Immunology, Thomas Jefferson University, Jefferson Alumni Hall, Room 461, 1020 Locust Street, Philadelphia, PA 19107-5541, USA.
| |
Collapse
|
134
|
Immune aging and autoimmunity. Cell Mol Life Sci 2012; 69:1615-23. [PMID: 22466672 DOI: 10.1007/s00018-012-0970-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
Abstract
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.
Collapse
|
135
|
Abstract
A fundamental property of the immune system is its ability to mediate self-defense with a minimal amount of collateral damage to the host. The system uses several different mechanisms to achieve this goal, which is collectively referred to as the "process of immunological tolerance." This article provides an introductory historical overview to these various mechanisms, which are discussed in greater detail throughout this collection, and then briefly describes what happens when this process fails, a state referred to as "autoimmunity."
Collapse
Affiliation(s)
- Ronald H Schwartz
- Laboratory of Cellular and Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0420, USA.
| |
Collapse
|
136
|
Rawlings DJ, Schwartz MA, Jackson SW, Meyer-Bahlburg A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat Rev Immunol 2012; 12:282-94. [PMID: 22421786 DOI: 10.1038/nri3190] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike other immune cells, B cells express both an antigen-specific B cell receptor (BCR) and Toll-like receptors (TLRs). Dual BCR and TLR engagement can fine-tune functional B cell responses, directly linking cell-intrinsic innate and adaptive immune programmes. Although most data regarding B cell-specific functions of the TLR signalling pathway have been obtained in mice, the discovery of patients with a deficiency in this pathway has recently provided an insight into human B cell responses. Here, we highlight the importance of the integration of signalling pathways downstream of BCRs and TLRs in modulating B cell function, focusing when possible on B cell-intrinsic roles.
Collapse
Affiliation(s)
- David J Rawlings
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
137
|
Arav-Boger R, Wojcik GL, Duggal P, Ingersoll RG, Beaty T, Pass RF, Yolken RH. Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine. BMC Res Notes 2012; 5:140. [PMID: 22414065 PMCID: PMC3317442 DOI: 10.1186/1756-0500-5-140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/13/2012] [Indexed: 01/27/2023] Open
Abstract
Background Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines. Results We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time. Conclusions These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.
Collapse
Affiliation(s)
- Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins Hospital, Baltimore, Maryland 21287-4933, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Pathogenesis of lupus-like nephritis through autoimmune antibody produced by CD180-negative B lymphocytes in NZBWF1 mouse. Immunol Lett 2012; 144:1-6. [PMID: 22387632 DOI: 10.1016/j.imlet.2012.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/05/2012] [Accepted: 02/19/2012] [Indexed: 02/08/2023]
Abstract
Toll-like receptors appear to play an important role in the pathogenesis of lupus-like nephritis in mice. In human and mouse, CD180 is a homologue of TLR4. In SLE patients, the number of CD180-negative B cells in peripheral blood changes in parallel with disease activity. In the present study using NZBWF1 mice, the population of splenic CD180-negative B cells increased with progression of renal lesions and aging. These cells produced both anti-dsDNA and histone antibodies; the peripheral blood levels of anti-dsDNA antibody increased markedly with aging. B cells infiltrating into renal lesions were CD180-negative and produced anti-dsDNA antibody. Considered together, these findings indicate that CD180-negative B cells contribute significantly to development of SLE-like morbidity in NZBWF1 mice by autoantibody production.
Collapse
|
139
|
|
140
|
Marron TU, Yu JE, Cunningham-Rundles C. Toll-like receptor function in primary B cell defects. Front Biosci (Elite Ed) 2012; 4:1853-63. [PMID: 22202002 DOI: 10.2741/507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiency diseases include more than 150 different genetic defects, classified on the basis of the mutations or physiological defects involved. The first immune defects to be well recognized were those of adaptive immunity affecting B cell function and resulting in hypogammaglobulinemia and defects of specific antibody production; more recently, novel defects of innate immunity have been described, some involving Toll-like receptors (TLRs) and their signaling pathways. Furthermore, it is increasingly evident that the innate and adaptive pathways intersect and reinforce each other. B cells express a number of TLRs, which when activated lead to cell activation, up-regulation of co-stimulatory molecules, secretion of cytokines, up-regulation of recombination enzymes, isotype switch and immune globulin production. TLR activation of antigen presenting cells leads to heightened cytokine production, providing additional stimuli for B cell development and maturation. Recent studies have demonstrated that patients with common variable immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) have altered TLR responsiveness. We review TLR defects in these disorders of B cell development, and discuss how B cell gene defects may modulate TLR signaling.
Collapse
Affiliation(s)
- Thomas U Marron
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
141
|
Abstract
The immune system plays an essential role in protecting the host against infections and to accomplish this task has evolved mechanisms to recognize microbes and destroy them. In addition, it monitors the health of cells and responds to ones that have been injured and killed, even if this occurs under sterile conditions. This process is initiated when dying cells expose intracellular molecules that can be recognized by cells of the innate immune system. As a consequence of this recognition, dendritic cells are activated in ways that help to promote T-cell responses to antigens associated with the dying cells. In addition, macrophages are stimulated to produce the cytokine interleukin-1 that then acts on radioresistant parenchymal cells in the host in ways that drive a robust inflammatory response. In addition to dead cells, a number of other sterile particles and altered physiological states can similarly stimulate an inflammatory response and do so through common pathways involving the inflammasome and interleukin-1. These pathways underlie the pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, UMass Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
142
|
Abstract
Recent studies have highlighted the fundamental role of commensal microbes in the maintenance of host homeostasis. For instance, commensals can play a major role in the control of host defense, metabolism and tissue development. Over the past few years, abundant experimental data also support their central role in the induction and control of both innate and adaptive responses. It is now clearly established that commensals are not equal in their capacity to trigger control regulatory or effector responses, however, the molecular basis of these differences has only recently begun to be explored. This review will discuss recent findings evaluating how commensals shape both effector and regulatory responses at steady state and during infections and the consequence of this effect on local and systemic protective and inflammatory responses.
Collapse
Affiliation(s)
- Michael J Molloy
- Mucosal Immunology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room 4/243, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
143
|
Oropallo MA, Kiefer K, Marshak-Rothstein A, Cancro MP. Beyond transitional selection: New roles for BLyS in peripheral tolerance. Drug Dev Res 2011; 72:779-787. [PMID: 22323842 DOI: 10.1002/ddr.20487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
B cell targeted therapies have enjoyed recent success in the treatment of systemic autoimmune diseases. Among these, Belimumab, which blocks the B cell survival cytokine BLyS, was recently approved for the treatment of Systemic Lupus Erythematosus. It is therefore important to consider the roles BLyS plays in B cell tolerance. Herein, we review how BLyS contributes to the negative selection of autoreactive B cell clones from the preimmune repertoire as well as its role in regulating both germinal center and extrafollicular peripheral B cell responses. We further examine the complex role of Toll-like receptors (TLRs) in humoral autoimmunity, pointing out potential crosstalk between BLyS and TLR pathways.
Collapse
Affiliation(s)
- Michael A Oropallo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104-6082
| | | | | | | |
Collapse
|
144
|
Imler JL, Ferrandon D. Le printemps de l’immunité innée couronné à Stockholm. Med Sci (Paris) 2011; 27:1019-24. [DOI: 10.1051/medsci/20112711020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
145
|
Chtarbanova S, Imler JL. Microbial sensing by Toll receptors: a historical perspective. Arterioscler Thromb Vasc Biol 2011; 31:1734-8. [PMID: 21775770 DOI: 10.1161/atvbaha.108.179523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The family of Toll-like receptors plays an essential role in the induction of the immune response. These receptors sense the presence of microbial ligands and activate the nuclear factor-κB transcription factor. We review the key studies that led from the formulation of the concept of pattern recognition receptors to the characterization of Toll-like receptors, insisting on the important role played by the model organism Drosophila melanogaster and on the increasing evidence connecting these receptors to cardiovascular disease.
Collapse
|
146
|
Wahren-Herlenius M, Kuchroo VK. Gene-environment interaction in induction of autoimmunity. Semin Immunol 2011; 23:65-6. [PMID: 21397517 DOI: 10.1016/j.smim.2011.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|