101
|
McCarthy N, Tie G, Madha S, He R, Kraiczy J, Maglieri A, Shivdasani RA. Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev Cell 2023; 58:550-564.e6. [PMID: 36924771 PMCID: PMC10089980 DOI: 10.1016/j.devcel.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
102
|
Kraiczy J, McCarthy N, Malagola E, Tie G, Madha S, Boffelli D, Wagner DE, Wang TC, Shivdasani RA. Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche. Cell Stem Cell 2023; 30:433-449.e8. [PMID: 37028407 PMCID: PMC10134073 DOI: 10.1016/j.stem.2023.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 04/09/2023]
Abstract
Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81+ PDGFRAlo trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81- PDGFRAlo mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81- CD55hi cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRAhi myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRAlo cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.
Collapse
Affiliation(s)
- Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dario Boffelli
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel E Wagner
- Department of Obstetrics, Gynecology and Reproductive Science and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
103
|
Banjac I, Maimets M, Jensen KB. Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell 2023; 30:348-361. [PMID: 37028402 DOI: 10.1016/j.stem.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/23/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023]
Abstract
Tissues with a high turnover rate produce millions of cells daily and have abundant regenerative capacity. At the core of their maintenance are populations of stem cells that balance self-renewal and differentiation to produce the adequate numbers of specialized cells required for carrying out essential tissue functions. Here, we compare and contrast the intricate mechanisms and elements of homeostasis and injury-driven regeneration in the epidermis, hematopoietic system, and intestinal epithelium-the fastest renewing tissues in mammals. We highlight the functional relevance of the main mechanisms and identify open questions in the field of tissue maintenance.
Collapse
Affiliation(s)
- Isidora Banjac
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Martti Maimets
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
104
|
Szlachcic WJ, Letai KC, Scavuzzo MA, Borowiak M. Deep into the niche: Deciphering local endoderm-microenvironment interactions in development, homeostasis, and disease of pancreas and intestine. Bioessays 2023; 45:e2200186. [PMID: 36871153 DOI: 10.1002/bies.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023]
Abstract
Unraveling molecular and functional heterogeneity of niche cells within the developing endoderm could resolve mechanisms of tissue formation and maturation. Here, we discuss current unknowns in molecular mechanisms underlying key developmental events in pancreatic islet and intestinal epithelial formation. Recent breakthroughs in single-cell and spatial transcriptomics, paralleled with functional studies in vitro, reveal that specialized mesenchymal subtypes drive the formation and maturation of pancreatic endocrine cells and islets via local interactions with epithelium, neurons, and microvessels. Analogous to this, distinct intestinal niche cells regulate both epithelial development and homeostasis throughout life. We propose how this knowledge can be used to progress research in the human context using pluripotent stem cell-derived multilineage organoids. Overall, understanding the interactions between the multitude of microenvironmental cells and how they drive tissue development and function could help us make more therapeutically relevant in vitro models.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Katherine C Letai
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
105
|
Childs CJ, Holloway EM, Sweet CW, Tsai YH, Wu A, Vallie A, Eiken MK, Capeling MM, Zwick RK, Palikuqi B, Trentesaux C, Wu JH, Pellón-Cardenas O, Zhang CJ, Glass I, Loebel C, Yu Q, Camp JG, Sexton JZ, Klein OD, Verzi MP, Spence JR. EPIREGULIN creates a developmental niche for spatially organized human intestinal enteroids. JCI Insight 2023; 8:e165566. [PMID: 36821371 PMCID: PMC10070114 DOI: 10.1172/jci.insight.165566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Epithelial organoids derived from intestinal tissue, called enteroids, recapitulate many aspects of the organ in vitro and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identified an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells and feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown enteroids, and EREG-grown enteroids showed that EGF enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.
Collapse
Affiliation(s)
- Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caden W. Sweet
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Yu-Hwai Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Angeline Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Abigail Vallie
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Meghan M. Capeling
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Rachel K. Zwick
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Joshua H. Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
| | - Oscar Pellón-Cardenas
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Glass
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
- Department of Materials Science and Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Qianhui Yu
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - J. Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Jonathan Z. Sexton
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Michael P. Verzi
- New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, and
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan Medical School and University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| |
Collapse
|
106
|
Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 2023; 13:59. [PMID: 36941633 PMCID: PMC10025802 DOI: 10.1186/s13578-023-00995-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
The tetraspanins (TSPANs) are a family of four-transmembrane proteins with 33 members in mammals. They are variably expressed on the cell surface, various intracellular organelles and vesicles in nearly all cell types. Different from the majority of cell membrane proteins, TSPANs do not have natural ligands. TSPANs typically organize laterally with other membrane proteins to form tetraspanin-enriched microdomains (TEMs) to influence cell adhesion, migration, invasion, survival and induce downstream signaling. Emerging evidence shows that TSPANs can regulate not only cancer cell growth, metastasis, stemness, drug resistance, but also biogenesis of extracellular vesicles (exosomes and migrasomes), and immunomicroenvironment. This review summarizes recent studies that have shown the versatile function of TSPANs in cancer development and progression, or the molecular mechanism of TSPANs. These findings support the potential of TSPANs as novel therapeutic targets against cancer.
Collapse
Affiliation(s)
- Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | - Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
107
|
Jiang Z, Waterbury QT, Fu N, Kim W, Malagola E, Guha C, Shawber CJ, Yan KS, Wang TC. Immature myeloid cells are indispensable for intestinal regeneration post irradiation injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530500. [PMID: 36909592 PMCID: PMC10002743 DOI: 10.1101/2023.02.28.530500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. Following injury to the intestine, multiple different cell populations cooperate to drive regeneration of the mucosa. Immature myeloid cells (IMCs), marked by histidine decarboxylase ( Hdc ), participate in regeneration of multiple organs such as the colon and central nervous system. Here, we found that IMCs infiltrate the injured intestine and promote epithelial regeneration and modulate LEC activity. IMCs produce prostaglandin E2 (PGE2), which promotes LEC lymphangiogenesis and upregulation of pro-regenerative factors including RSPO3. Moreover, we found that IMC recruitment into the intestine is driven by invading microbial signals. Accordingly, antibiotic eradication of the intestinal microbiome prior to WB-IR inhibits IMC recruitment, and consequently, intestinal recovery. We propose that IMCs play a critical role in intestinal repair and implicate gut microbes as mediators of intestinal regeneration.
Collapse
|
108
|
Manieri E, Tie G, Seruggia D, Madha S, Maglieri A, Huang K, Fujiwara Y, Zhang K, Orkin SH, He R, McCarthy N, Shivdasani RA. Defining the structure, signals, and cellular elements of the gastric mesenchymal niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.527728. [PMID: 36798304 PMCID: PMC9934611 DOI: 10.1101/2023.02.11.527728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
PDGFRA-expressing mesenchyme provides a niche for intestinal stem cells. Corresponding compartments are unknown in the stomach, where corpus and antral glandular epithelia have similar niche dependencies but are structurally distinct from the intestine and from each other. Previous studies considered antrum and corpus as a whole and did not assess niche functions. Using high-resolution imaging and sequencing, we identify regional subpopulations and niche properties of purified mouse corpus and antral PDGFRA + cells. PDGFRA Hi sub-epithelial myofibroblasts are principal sources of BMP ligands in both gastric segments; two molecularly distinct groups distribute asymmetrically along antral glands but together fail to support epithelial organoids in vitro . In contrast, strategically positioned PDGFRA Lo cells that express CD55 enable corpus and antral organoid growth in the absence of other cellular or soluble factors. Our study provides detailed insights into spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for stem cell support.
Collapse
|
109
|
Martinez-Ordoñez A, Duran A, Ruiz-Martinez M, Cid-Diaz T, Zhang X, Han Q, Kinoshita H, Muta Y, Linares JF, Kasashima H, Nakanishi Y, Omar M, Nishimura S, Avila L, Yashiro M, Maeda K, Pannellini T, Pigazzi A, Inghirami G, Marchionni L, Sigal D, Diaz-Meco MT, Moscat J. Hyaluronan driven by epithelial aPKC deficiency remodels the microenvironment and creates a vulnerability in mesenchymal colorectal cancer. Cancer Cell 2023; 41:252-271.e9. [PMID: 36525970 PMCID: PMC9931663 DOI: 10.1016/j.ccell.2022.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.
Collapse
Affiliation(s)
- Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Marc Ruiz-Martinez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Tania Cid-Diaz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Xiao Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroto Kinoshita
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yu Muta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Juan F Linares
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Sadaaki Nishimura
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Leandro Avila
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka City 545-8585, Japan
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alessio Pigazzi
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Darren Sigal
- Division of Hematology-Oncology, Scripps Clinic, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
110
|
Castillo-Azofeifa D, Wald T, Reyes EA, Gallagher A, Schanin J, Vlachos S, Lamarche-Vane N, Bomidi C, Blutt S, Estes MK, Nystul T, Klein OD. A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell 2023; 30:188-206.e6. [PMID: 36640764 PMCID: PMC9922544 DOI: 10.1016/j.stem.2022.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
A central factor in the maintenance of tissue integrity is the response of stem cells to variations in the levels of niche signals. In the gut, intestinal stem cells (ISCs) depend on Wnt ligands for self-renewal and proliferation. Transient increases in Wnt signaling promote regeneration after injury or in inflammatory bowel diseases, whereas constitutive activation of this pathway leads to colorectal cancer. Here, we report that Discs large 1 (Dlg1), although dispensable for polarity and cellular turnover during intestinal homeostasis, is required for ISC survival in the context of increased Wnt signaling. RNA sequencing (RNA-seq) and genetic mouse models demonstrated that DLG1 regulates the cellular response to increased canonical Wnt ligands. This occurs via the transcriptional regulation of Arhgap31, a GTPase-activating protein that deactivates CDC42, an effector of the non-canonical Wnt pathway. These findings reveal a DLG1-ARHGAP31-CDC42 axis that is essential for the ISC response to increased niche Wnt signaling.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Regenerative Medicine, Genentech, Inc., South San Francisco, CA, USA
| | - Tomas Wald
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Efren A Reyes
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pharmaceutical Chemistry and TETRAD Program, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Schanin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie Vlachos
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Todd Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
111
|
Danan CH, Katada K, Parham LR, Hamilton KE. Spatial transcriptomics add a new dimension to our understanding of the gut. Am J Physiol Gastrointest Liver Physiol 2023; 324:G91-G98. [PMID: 36472345 PMCID: PMC9870576 DOI: 10.1152/ajpgi.00191.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023]
Abstract
The profound complexity of the intestinal mucosa demands a spatial approach to the study of gut transcriptomics. Although single-cell RNA sequencing has revolutionized our ability to survey the diverse cell types of the intestine, knowledge of cell type alone cannot fully describe the cells that make up the intestinal mucosa. During homeostasis and disease, dramatic gradients of oxygen, nutrients, extracellular matrix proteins, morphogens, and microbiota collectively dictate intestinal cell state, and only spatial techniques can articulate differences in cellular transcriptomes at this level. Spatial transcriptomic techniques assign transcriptomic data to precise regions in a tissue of interest. In recent years, these protocols have become increasingly accessible, and their application in the intestinal mucosa has exploded in popularity. In the gut, spatial transcriptomics typically involve the application of tissue sections to spatially barcoded RNA sequencing or laser capture microdissection followed by RNA sequencing. In combination with single-cell RNA sequencing, these spatial sequencing approaches allow for the construction of spatial transcriptional maps at pseudosingle-cell resolution. In this review, we describe the spatial transcriptomic technologies recently applied in the gut and the previously unattainable discoveries that they have produced.
Collapse
Affiliation(s)
- Charles H Danan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kay Katada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Louis R Parham
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
112
|
Smith RJ, Liang M, Loe AKH, Yung T, Kim JE, Hudson M, Wilson MD, Kim TH. Epigenetic control of cellular crosstalk defines gastrointestinal organ fate and function. Nat Commun 2023; 14:497. [PMID: 36717563 PMCID: PMC9887003 DOI: 10.1038/s41467-023-36228-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Epithelial-mesenchymal signaling in the gastrointestinal system is vital in establishing regional identity during organogenesis and maintaining adult stem cell homeostasis. Although recent work has demonstrated that Wnt ligands expressed by mesenchymal cells are required during gastrointestinal development and stem cell homeostasis, epigenetic mechanisms driving spatiotemporal control of crosstalk remain unknown. Here, we demonstrate that gastrointestinal mesenchymal cells control epithelial fate and function through Polycomb Repressive Complex 2-mediated chromatin bivalency. We find that while key lineage-determining genes possess tissue-specific chromatin accessibility, Polycomb Repressive Complex 2 controls Wnt expression in mesenchymal cells without altering accessibility. We show that reduction of mesenchymal Wnt secretion rescues gastrointestinal fate and proliferation defects caused by Polycomb Repressive Complex 2 loss. We demonstrate that mesenchymal Polycomb Repressive Complex 2 also regulates niche signals to maintain stem cell function in the adult intestine. Our results highlight a broadly permissive chromatin architecture underlying regionalization in mesenchymal cells, then demonstrate further how chromatin architecture in niches can influence the fate and function of neighboring cells.
Collapse
Affiliation(s)
- Ryan J Smith
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Adrian Kwan Ho Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Theodora Yung
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Matthew Hudson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
113
|
Stromal regulation of the intestinal barrier. Mucosal Immunol 2023; 16:221-231. [PMID: 36708806 DOI: 10.1016/j.mucimm.2023.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The intestinal barrier is a complex structure that allows the absorption of nutrients while ensuring protection against intestinal pathogens and balanced immunity. The development and maintenance of a functional intestinal barrier is a multifactorial process that is only partially understood. Here we review novel findings on the emerging role of mesenchymal cells in this process using insights gained from lineage tracing approaches, Cre-based gene deletion, and single-cell transcriptomics. The current evidence points toward a key organizer role for distinct mesenchymal lineages in intestinal development and homeostasis, regulating both epithelial and immune components of the intestinal barrier. We further discuss recent findings on functional mesenchymal heterogeneity and implications for intestinal regeneration and inflammatory intestinal pathologies.
Collapse
|
114
|
Abstract
Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt their metabolism along the adenoma-carcinoma sequence to the unique features of their complex microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics and metabolism, and the tumor microenvironment. The mechanistic links between environmental factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds promise for improved prevention and treatment.
Collapse
Affiliation(s)
- Joseph C Sedlak
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Massachusetts General Hospital, Department of Pathology, Boston, Massachusetts, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA;
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
115
|
Pomerleau V, Nicolas VR, Jurkovic CM, Faucheux N, Lauzon MA, Boisvert FM, Perreault N. FOXL1+ Telocytes in mouse colon orchestrate extracellular matrix biodynamics and wound repair resolution. J Proteomics 2023; 271:104755. [PMID: 36272709 DOI: 10.1016/j.jprot.2022.104755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have identified FoxL1+-telocytes (TCFoxL1+) as key players in gut epithelial-mesenchymal interactions which can determine the colonic microenvironment. Bone morphogenetic protein signaling disruption in TCFoxL1+ alters the physical and cellular microenvironment and leads to colon pathophysiology. This suggests a role for TCFoxL1+ in stromagenesis, but it is hard to identify the specific contribution of TCFoxL1+ when analyzing whole tissue profiling studies. We performed ex vivo deconstruction of control and BmpR1a△FoxL1+ colon samples, isolated the mesenchyme-enriched fractions, and determined the protein composition of the in vivo extracellular matrix (ECM) to analyze microenvironment variation. Matrisomic analysis of mesenchyme fractions revealed modulations in ECM proteins with functions associated with innate immunity, epithelial wound healing, and the collagen network. These results show that TCFoxL1+ is critical in orchestrating the biodynamics of the colon ECM. TCFoxL1+ disfunction reprograms the gut's microenvironment and drives the intestinal epithelium toward colonic pathologies. SIGNIFICANCE: In this study, the method that was elected to isolate ECM proteins might not encompass the full extent of ECM proteins in a tissue, due to the protocol chosen, as this protocol by Naba et al., targets more the insoluble part of the matrisome and eliminates the more soluble components in the first steps. However, this ECM-enrichment strategy represents an improvement and interesting avenue to study ECM proteins in the colon compared to total tissue analysis with a background of abundant cellular protein. Thus, the matrisomic approach presented in this study, and its target validation delivered a broader evaluation of the matrix remodeling occurring in the colonic sub-epithelial mesenchyme of the BmpR1a△FoxL1+ mouse model.
Collapse
Affiliation(s)
- Véronique Pomerleau
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vilcy Reyes Nicolas
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Carla-Marie Jurkovic
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Faucheux
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc-Antoine Lauzon
- Département de génie chimique et de génie biotechnologique, Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - François-Michel Boisvert
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nathalie Perreault
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
116
|
Chen L, Dupre A, Qiu X, Pellon-Cardenas O, Walton KD, Wang J, Perekatt AO, Hu W, Spence JR, Verzi MP. TGFB1 Induces Fetal Reprogramming and Enhances Intestinal Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523825. [PMID: 36711781 PMCID: PMC9882197 DOI: 10.1101/2023.01.13.523825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Katherine D. Walton
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Ansu O. Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ, USA
- Member of the NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ, USA
- Lead Contact
| |
Collapse
|
117
|
Martinez-Silgado A, Beumer J, Clevers H. Directed Differentiation of Murine and Human Small Intestinal Organoids Toward All Mature Lineages. Methods Mol Biol 2023; 2650:107-122. [PMID: 37310627 DOI: 10.1007/978-1-0716-3076-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intestinal organoids are three-dimensional structures derived from tissue-resident adult stem cells. These organoids recapitulate key aspects of epithelial biology and can be used to study homeostatic turnover of the corresponding tissue. Organoids can be enriched for the various mature lineages which allows studies of the respective differentiation processes and of the diverse cellular functions. Here we describe mechanisms of intestinal fate specification and how these can be exploited to drive mouse and human small intestinal organoids into each of the functionally mature lineages.
Collapse
Affiliation(s)
- A Martinez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - J Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - H Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
118
|
Jones C, Avino M, Giroux V, Boudreau F. HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell Fate. Cell Mol Gastroenterol Hepatol 2023; 15:593-612. [PMID: 36464209 PMCID: PMC9871320 DOI: 10.1016/j.jcmgh.2022.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND & AIMS The intestinal epithelium intrinsically renews itself ex vivo via the proliferation of Lgr5+ intestinal stem cells, which is sustained by the establishment of an epithelial stem cell niche. Differentiated Paneth cells are the main source of epithelial-derived niche factor supplies and produce Wnt3 as an essential factor in supporting Lgr5+ stem cell activity in the absence of redundant mesenchymal Wnts. Maturation of Paneth cells depends on canonical Wnt signaling, but few transcriptional regulators have been identified to this end. The role of HNF4α in intestinal epithelial cell differentiation is considered redundant with its paralog HNF4γ. However, it is unclear whether HNF4α alone controls intrinsic intestinal epithelial cell growth and fate in the absence of a mesenchymal niche. METHODS We used transcriptomic analyses to dissect the role of HNF4α in the maintenance of jejunal epithelial culture when cultured ex vivo as enteroids in the presence or absence of compensatory mesenchymal cells. RESULTS HNF4α plays a crucial role in supporting the growth and survival of jejunal enteroids. Transcriptomic analyses revealed an autonomous function of HNF4α in Wnt3 transcriptional regulation and Paneth cell differentiation. We showed that Wnt3a supplementation or co-culture with intestinal subepithelial mesenchymal cells reversed cell death and transcriptional changes caused by the deletion of Hnf4a in jejunal enteroids. CONCLUSIONS Our results support the intrinsic epithelial role of HNF4α in regulating Paneth cell homeostasis and intestinal epithelium renewal in the absence of compensatory Wnt signaling.
Collapse
Affiliation(s)
- Christine Jones
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francois Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
119
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
120
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
121
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
122
|
Alfonso AB, Pomerleau V, Nicolás VR, Raisch J, Jurkovic CM, Boisvert FM, Perreault N. Comprehensive Profiling of Early Neoplastic Gastric Microenvironment Modifications and Biodynamics in Impaired BMP-Signaling FoxL1 +-Telocytes. Biomedicines 2022; 11:biomedicines11010019. [PMID: 36672527 PMCID: PMC9856000 DOI: 10.3390/biomedicines11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
FoxL1+telocytes (TCFoxL1+) are novel gastrointestinal subepithelial cells that form a communication axis between the mesenchyme and epithelium. TCFoxL1+ are strategically positioned to be key contributors to the microenvironment through production and secretion of growth factors and extracellular matrix (ECM) proteins. In recent years, the alteration of the bone morphogenetic protein (BMP) signaling in TCFoxL1+ was demonstrated to trigger a toxic microenvironment with ECM remodeling that leads to the development of pre-neoplastic gastric lesions. However, a comprehensive analysis of variations in the ECM composition and its associated proteins in gastric neoplasia linked to TCFoxL1+ dysregulation has never been performed. This study provides a better understanding of how TCFoxL1+ defective BMP signaling participates in the gastric pre-neoplastic microenvironment. Using a proteomic approach, we determined the changes in the complete matrisome of BmpR1a△FoxL1+ and control mice, both in total antrum as well as in isolated mesenchyme-enriched antrum fractions. Comparative proteomic analysis revealed that the deconstruction of the gastric antrum led to a more comprehensive analysis of the ECM fraction of gastric tissues microenvironment. These results show that TCFoxL1+ are key members of the mesenchymal cell population and actively participate in the establishment of the matrisomic fraction of the microenvironment, thus influencing epithelial cell behavior.
Collapse
|
123
|
Ramadan R, Wouters VM, van Neerven SM, de Groot NE, Garcia TM, Muncan V, Franklin OD, Battle M, Carlson KS, Leach J, Sansom OJ, Boulard O, Chamaillard M, Vermeulen L, Medema JP, Huels DJ. The extracellular matrix controls stem cell specification and crypt morphology in the developing and adult mouse gut. Biol Open 2022; 11:bio059544. [PMID: 36350252 PMCID: PMC9713296 DOI: 10.1242/bio.059544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2023] Open
Abstract
The rapid renewal of the epithelial gut lining is fuelled by stem cells that reside at the base of intestinal crypts. The signal transduction pathways and morphogens that regulate intestinal stem cell self-renewal and differentiation have been extensively characterised. In contrast, although extracellular matrix (ECM) components form an integral part of the intestinal stem cell niche, their direct influence on the cellular composition is less well understood. We set out to systematically compare the effect of two ECM classes, the interstitial matrix and the basement membrane, on the intestinal epithelium. We found that both collagen I and laminin-containing cultures allow growth of small intestinal epithelial cells with all cell types present in both cultures, albeit at different ratios. The collagen cultures contained a subset of cells enriched in fetal-like markers. In contrast, laminin increased Lgr5+ stem cells and Paneth cells, and induced crypt-like morphology changes. The transition from a collagen culture to a laminin culture resembled gut development in vivo. The dramatic ECM remodelling was accompanied by a local expression of the laminin receptor ITGA6 in the crypt-forming epithelium. Importantly, deletion of laminin in the adult mouse resulted in a marked reduction of adult intestinal stem cells. Overall, our data support the hypothesis that the formation of intestinal crypts is induced by an increased laminin concentration in the ECM.
Collapse
Affiliation(s)
- Rana Ramadan
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Valérie M. Wouters
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sanne M. van Neerven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina E. de Groot
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tania Martins Garcia
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Vanessa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC University of Amsterdam, 1015 BK Amsterdam, The Netherlands
| | - Olivia D. Franklin
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Michelle Battle
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
| | - Karen Sue Carlson
- The Medical College of Wisconsin, Department of Cell Biology, Neurobiology, and Anatomy, Milwaukee, WI 53226, USA
- The Blood Research Institute of Wisconsin, part of Versiti, and the Medical College of Wisconsin, Department of Internal Medicine, Milwaukee, WI 53226, USA
| | - Joshua Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Olivier Boulard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Mathias Chamaillard
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Centre d'Infection et d'Immunité de Lille (CIIL), Université de Lille, 59019 Lille, France
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - David J. Huels
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
124
|
Grasset EK, Alenghat T. Good intentions gone wrong: The B cell block to epithelial repair. Immunity 2022; 55:2222-2224. [PMID: 36516815 PMCID: PMC11008460 DOI: 10.1016/j.immuni.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular dynamics that influence mucosal healing are not well understood. In this issue of Immunity, Frede, Czarnewski, Monasterio et al. find that B cells accumulate in the colon following intestinal injury. These B cells impair epithelial repair by hindering local stromal-epithelial interactions.
Collapse
Affiliation(s)
- Emilie K Grasset
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Drukier Institute for Children's Health and Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
125
|
Frede A, Czarnewski P, Monasterio G, Tripathi KP, Bejarano DA, Ramirez Flores RO, Sorini C, Larsson L, Luo X, Geerlings L, Novella-Rausell C, Zagami C, Kuiper R, Morales RA, Castillo F, Hunt M, Mariano LL, Hu YOO, Engblom C, Lennon-Duménil AM, Mittenzwei R, Westendorf AM, Hövelmeyer N, Lundeberg J, Saez-Rodriguez J, Schlitzer A, Das S, Villablanca EJ. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 2022; 55:2336-2351.e12. [PMID: 36462502 DOI: 10.1016/j.immuni.2022.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/14/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.
Collapse
Affiliation(s)
- Annika Frede
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ludvig Larsson
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Geerlings
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudio Novella-Rausell
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Zagami
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raoul Kuiper
- Norwegian Veterinary Institute, Section for Aquatic Biosecurity Research, Elisabeth Stephansens vei 1, 1433 Ås, Norway; Core Facility for Morphologic Phenotype Analysis, Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Hunt
- Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Yue O O Hu
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Romy Mittenzwei
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Joakim Lundeberg
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
126
|
Kim JE, Li B, Fei L, Horne R, Lee D, Loe AK, Miyake H, Ayar E, Kim DK, Surette MG, Philpott DJ, Sherman P, Guo G, Pierro A, Kim TH. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity 2022; 55:2300-2317.e6. [PMID: 36473468 DOI: 10.1016/j.immuni.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Rachael Horne
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dorothy Lee
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Kwan Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiromu Miyake
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Eda Ayar
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dae-Kyum Kim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, Department of Medicine, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4L8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip Sherman
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Agostino Pierro
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
127
|
Flanagan DJ, Amirkhah R, Vincent DF, Gunduz N, Gentaz P, Cammareri P, McCooey AJ, McCorry AMB, Fisher NC, Davis HL, Ridgway RA, Lohuis J, Leach JDG, Jackstadt R, Gilroy K, Mariella E, Nixon C, Clark W, Hedley A, Markert EK, Strathdee D, Bartholin L, Redmond KL, Kerr EM, Longley DB, Ginty F, Cho S, Coleman HG, Loughrey MB, Bardelli A, Maughan TS, Campbell AD, Lawler M, Leedham SJ, Barry ST, Inman GJ, van Rheenen J, Dunne PD, Sansom OJ. Epithelial TGFβ engages growth-factor signalling to circumvent apoptosis and drive intestinal tumourigenesis with aggressive features. Nat Commun 2022; 13:7551. [PMID: 36477656 PMCID: PMC9729215 DOI: 10.1038/s41467-022-35134-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The pro-tumourigenic role of epithelial TGFβ signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFβ signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFβ signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFβ signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFβ signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Raheleh Amirkhah
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | - Nuray Gunduz
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | - Aoife J McCooey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Amy M B McCorry
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Hayley L Davis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Jeroen Lohuis
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, UK
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Elisa Mariella
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
- University of Newcastle upon Tyne, Newcastle, UK
| | - Elke K Markert
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Keara L Redmond
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma M Kerr
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE Global Research Center, Niskayuna, NY, USA
| | - Sanghee Cho
- GE Global Research Center, Niskayuna, NY, USA
| | - Helen G Coleman
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Timothy S Maughan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Mark Lawler
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Simon J Leedham
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip D Dunne
- Cancer Research UK Beatson Institute, Glasgow, UK
- The Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
128
|
Li S, Lu R, Shu L, Chen Y, Zhao J, Dai J, Huang Q, Li X, Meng W, Long F, Li Y, Fan C, Zhou Z, Mo X. An integrated map of fibroblastic populations in human colon mucosa and cancer tissues. Commun Biol 2022; 5:1326. [PMID: 36463319 PMCID: PMC9719516 DOI: 10.1038/s42003-022-04298-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts and myofibroblasts are major mesenchymal cells in the lamina propria of colon mucosa and in colon cancer tissues. Detailed insight into the highly specific populations of fibroblasts and myofibroblasts is required to understand the integrity and homeostasis of human colon mucosa and colon cancer. Based on gene expression profiles of single cells, we identified fibroblast populations that produce extracellular matrix components, Wnt ligand- and BMP-secreting fibroblasts, chemokine- and chemokine ligand-generating fibroblasts, highly activated fibroblasts, immune-modulating fibroblasts, epithelial cell-modulating myofibroblasts, stimuli-responsive myofibroblasts, proliferating myofibroblasts, fibroblast-like myofibroblasts, matrix producing myofibroblasts, and contractile myofibroblasts in human colon mucosa. In colon cancer tissue, the compositions of fibroblasts and myofibroblasts were highly altered, as were the expressing patterns of genes including BMPs, Wnt ligands, chemokines, chemokine ligands, growth factors and extracellular matrix components in fibroblasts and myofibroblasts. Our work expands the working atlas of fibroblasts and myofibroblasts and provides a framework for interrogating the complexity of stromal cells in human healthy colon mucosa and colon cancer tissues.
Collapse
Affiliation(s)
- Siying Li
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Lu
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Public Health Laboratory Sciences, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Urology and Pelvic Surgery, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China
| | - Linjuan Shu
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yulin Chen
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhao
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junlong Dai
- grid.13291.380000 0001 0807 1581Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaorong Huang
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiwu Long
- grid.13291.380000 0001 0807 1581Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuan Li
- grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanwen Fan
- grid.13291.380000 0001 0807 1581Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China Fourth Hospital, West China School of Public Health, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- grid.13291.380000 0001 0807 1581Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- grid.13291.380000 0001 0807 1581Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
129
|
Wang D, Kuang Y, Wan Z, Li P, Zhao J, Zhu H, Liu Y. Aspartate Alleviates Colonic Epithelial Damage by Regulating Intestinal Stem Cell Proliferation and Differentiation via Mitochondrial Dynamics. Mol Nutr Food Res 2022; 66:e2200168. [PMID: 36310136 DOI: 10.1002/mnfr.202200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/26/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Proliferation and differentiation of intestinal stem cells (ISCs) are crucial for functional restoration after injury, which can be regulated by nutritional molecules. Aspartate is implicated in maintaining intestinal barrier after injury, but underlying mechanisms remain elusive. Here, this study seeks to investigate if aspartate alleviates colonic epithelial damage by regulating ISC function, and to elucidate its mechanisms. METHODS AND RESULTS Eight-week-old male C57BL/6 mice supplement with or without 1% L-aspartate are subjected to drinking water or 2.5% DSS to induce colitis. In this study, aspartate administration alleviates the severity of colitis, as indicated by reduced body weight loss, colon shortening, and inhibited pro-inflammatory cytokine expression in DSS-challenged mice. Additionally, aspartate promotes colonic epithelial cell proliferation and differentiation after DSS-induced damage in mice. Pretreatment with aspartate not only enhances ISC proliferation but also induces ISC differentiation toward enterocytes and goblet cells, which prevent TNF-α-induced colonoid damage. Mechanistically, aspartate ameliorates DSS/TNF-α-induced perturbation of mitochondrial metabolism and maintains mitochondrial dynamics in colonic epithelium and colonoids. Moreover, aspartate-mediated ISC proliferation and differentiation are primarily dependent on mitochondrial fusion rather than fission. CONCLUSIONS The findings indicate that aspartate promotes ISC proliferation and differentiation to alleviate colonic epithelial damage by regulation of mitochondrial metabolism and dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
130
|
Sun H, Tan J, Chen H, Wu N, Su B. Immune niches orchestrated by intestinal mesenchymal stromal cells lining the crypt-villus. Front Immunol 2022; 13:1057932. [PMID: 36405734 PMCID: PMC9669707 DOI: 10.3389/fimmu.2022.1057932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.
Collapse
Affiliation(s)
- Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongqian Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
131
|
Choo J, Glisovic N, Matic Vignjevic D. Gut homeostasis at a glance. J Cell Sci 2022; 135:281168. [DOI: 10.1242/jcs.260248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
ABSTRACT
The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.
Collapse
Affiliation(s)
- Jieun Choo
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | - Neda Glisovic
- Institut Curie, PSL Research University, CNRS UMR 144 , F-75005 Paris , France
| | | |
Collapse
|
132
|
Pentinmikko N, Lozano R, Scharaw S, Andersson S, Englund JI, Castillo-Azofeifa D, Gallagher A, Broberg M, Song KY, Sola Carvajal A, Speidel AT, Sundstrom M, Allbritton N, Stevens MM, Klein OD, Teixeira A, Katajisto P. Cellular shape reinforces niche to stem cell signaling in the small intestine. SCIENCE ADVANCES 2022; 8:eabm1847. [PMID: 36240269 PMCID: PMC9565803 DOI: 10.1126/sciadv.abm1847] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/30/2022] [Indexed: 06/06/2023]
Abstract
Niche-derived factors regulate tissue stem cells, but apart from the mechanosensory pathways, the effect of niche geometry is not well understood. We used organoids and bioengineered tissue culture platforms to demonstrate that the conical shape of Lgr5+ small intestinal stem cells (ISCs) facilitate their self-renewal and function. Inhibition of non-muscle myosin II (NM II)-driven apical constriction altered ISC shape and reduced niche curvature and stem cell capacity. Niche curvature is decreased in aged mice, suggesting that suboptimal interactions between old ISCs and their niche develop with age. We show that activation of NM IIC or physical restriction to young topology improves in vitro regeneration by old epithelium. We propose that the increase in lateral surface area of ISCs induced by apical constriction promotes interactions between neighboring cells, and the curved topology of the intestinal niche has evolved to maximize signaling between ISCs and neighboring cells.
Collapse
Affiliation(s)
- Nalle Pentinmikko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rodrigo Lozano
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Scharaw
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Simon Andersson
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Aaron Gallagher
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Broberg
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ki-Young Song
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Agustín Sola Carvajal
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Alessondra T. Speidel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael Sundstrom
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Allbritton
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Materials and Department of Bioengineering, Imperial College London, UK
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ana Teixeira
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
133
|
Felsenthal N, Vignjevic DM. Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Curr Opin Cell Biol 2022; 78:102116. [PMID: 35914344 DOI: 10.1016/j.ceb.2022.102116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023]
Abstract
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.
Collapse
Affiliation(s)
- Neta Felsenthal
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
134
|
Colozza G, Park SY, Koo BK. Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp Mol Med 2022; 54:1367-1378. [PMID: 36117218 PMCID: PMC9534868 DOI: 10.1038/s12276-022-00854-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
The small intestine is among the fastest self-renewing tissues in adult mammals. This rapid turnover is fueled by the intestinal stem cells residing in the intestinal crypt. Wnt signaling plays a pivotal role in regulating intestinal stem cell renewal and differentiation, and the dysregulation of this pathway leads to cancer formation. Several studies demonstrate that intestinal stem cells follow neutral drift dynamics, as they divide symmetrically to generate other equipotent stem cells. Competition for niche space and extrinsic signals in the intestinal crypt is the governing mechanism that regulates stemness versus cell differentiation, but the underlying molecular mechanisms are still poorly understood, and it is not yet clear how this process changes during disease. In this review, we highlight the mechanisms that regulate stem cell homeostasis in the small intestine, focusing on Wnt signaling and its regulation by RNF43 and ZNRF3, key inhibitors of the Wnt pathway. Furthermore, we summarize the evidence supporting the current model of intestinal stem cell regulation, highlighting the principles of neutral drift at the basis of intestinal stem cell homeostasis. Finally, we discuss recent studies showing how cancer cells bypass this mechanism to gain a competitive advantage against neighboring normal cells. Stem cells in the gut rapidly renew themselves through processes that cancer cells co-opt to trigger tumor development. Gabriele Colozza from the Institute of Molecular Biotechnology in Vienna, Austria, and colleagues review how a network of critical molecular signals and competition for limited space help to regulate the dynamics of stem cells in the intestines. The correct balance between self-renewal and differentiation is tightly controlled by the so-called Wnt signaling pathway and its inhibitors. Competition between dividing cells in the intestinal crypts, the locations between finger-like protrusions in the gut where stem cells are found, provides another protective mechanism against runaway stem cell growth. However, intestinal cancer cells, thanks to their activating mutations, bypass these safeguards to gain a survival advantage. Drugs that target these ‘super-competitive’ behaviors could therefore help combat tumor proliferation.
Collapse
|
135
|
Fan J, Lin B, Fan M, Niu T, Gao F, Tan B, Du X. Research progress on the mechanism of radiation enteritis. Front Oncol 2022; 12:888962. [PMID: 36132154 PMCID: PMC9483210 DOI: 10.3389/fonc.2022.888962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation enteritis (Re) is one of the most common complications of radiation therapy for abdominal tumors. The efficacy of cancer treatment by radiation is often limited by the side effects of Re. Re can be acute or chronic. Treatment of acute Re is essentially symptomatic. However, chronic Re usually requires surgical procedures. The underlying mechanisms of Re are complex and have not yet been elucidated. The purpose of this review is to provide an overview of the pathogenesis of Re. We reviewed the role of intestinal epithelial cells, intestinal stem cells (ISCs), vascular endothelial cells (ECs), intestinal microflora, and other mediators of Re, noting that a better understanding of the pathogenesis of Re may lead to better treatment modalities.
Collapse
Affiliation(s)
- Jinjia Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Binwei Lin
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Tintin Niu
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Feng Gao
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Xiaobo Du
- Departmant of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
- *Correspondence: Xiaobo Du,
| |
Collapse
|
136
|
Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022; 71:1892-1908. [PMID: 35636923 PMCID: PMC9380493 DOI: 10.1136/gutjnl-2021-326560] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
We are entering an era of medicine where increasingly sophisticated data will be obtained from patients to determine proper diagnosis, predict outcomes and direct therapies. We predict that the most valuable data will be produced by systems that are highly dynamic in both time and space. Three-dimensional (3D) organoids are poised to be such a highly valuable system for a variety of gastrointestinal (GI) diseases. In the lab, organoids have emerged as powerful systems to model molecular and cellular processes orchestrating natural and pathophysiological human tissue formation in remarkable detail. Preclinical studies have impressively demonstrated that these organs-in-a-dish can be used to model immunological, neoplastic, metabolic or infectious GI disorders by taking advantage of patient-derived material. Technological breakthroughs now allow to study cellular communication and molecular mechanisms of interorgan cross-talk in health and disease including communication along for example, the gut-brain axis or gut-liver axis. Despite considerable success in culturing classical 3D organoids from various parts of the GI tract, some challenges remain to develop these systems to best help patients. Novel platforms such as organ-on-a-chip, engineered biomimetic systems including engineered organoids, micromanufacturing, bioprinting and enhanced rigour and reproducibility will open improved avenues for tissue engineering, as well as regenerative and personalised medicine. This review will highlight some of the established methods and also some exciting novel perspectives on organoids in the fields of gastroenterology. At present, this field is poised to move forward and impact many currently intractable GI diseases in the form of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
137
|
Antanaviciute A, Kusumbe A, Simmons A. Lymphatic endothelia stakeout cryptic stem cells. Cell Stem Cell 2022; 29:1292-1293. [PMID: 36055189 DOI: 10.1016/j.stem.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A trio of studies in this issue of Cell Stem Cell catalogs the anatomical and functional relationship of intestinal lymphatics with epithelial stem cells, defining an important niche role for the lymphatic endothelium.
Collapse
Affiliation(s)
- Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Anjali Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
138
|
Luo H, Li M, Wang F, Yang Y, Wang Q, Zhao Y, Du F, Chen Y, Shen J, Zhao Q, Zeng J, Wang S, Chen M, Li X, Li W, Sun Y, Gu L, Wen Q, Xiao Z, Wu X. The role of intestinal stem cell within gut homeostasis: Focusing on its interplay with gut microbiota and the regulating pathways. Int J Biol Sci 2022; 18:5185-5206. [PMID: 35982910 PMCID: PMC9379405 DOI: 10.7150/ijbs.72600] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Intestinal stem cells (ISCs) play an important role in maintaining intestinal homeostasis via promoting a healthy gut barrier. Within the stem cell niche, gut microbiota linking the crosstalk of dietary influence and host response has been identified as a key regulator of ISCs. Emerging insights from recent research reveal that ISC and gut microbiota interplay regulates epithelial self-renewal. This article reviews the recent knowledge on the key role of ISC in their local environment (stem cell niche) associating with gut microbiota and their metabolites as well as the signaling pathways. The current progress of intestinal organoid culture is further summarized. Subsequently, the key challenges and future directions are discussed.
Collapse
Affiliation(s)
- Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
139
|
Chalkidi N, Paraskeva C, Koliaraki V. Fibroblasts in intestinal homeostasis, damage, and repair. Front Immunol 2022; 13:924866. [PMID: 36032088 PMCID: PMC9399414 DOI: 10.3389/fimmu.2022.924866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The mammalian intestine is a self-renewing tissue that ensures nutrient absorption while acting as a barrier against environmental insults. This is achieved by mature intestinal epithelial cells, the renewing capacity of intestinal stem cells at the base of the crypts, the development of immune tolerance, and the regulatory functions of stromal cells. Upon intestinal injury or inflammation, this tightly regulated mucosal homeostasis is disrupted and is followed by a series of events that lead to tissue repair and the restoration of organ function. It is now well established that fibroblasts play significant roles both in the maintenance of epithelial and immune homeostasis in the intestine and the response to tissue damage mainly through the secretion of a variety of soluble mediators and ligands and the remodeling of the extracellular matrix. In addition, recent advances in single-cell transcriptomics have revealed an unexpected heterogeneity of fibroblasts that comprise distinct cell subsets in normal and inflammatory conditions, indicative of diverse functions. However, there is still little consensus on the number, terminology, and functional properties of these subsets. Moreover, it is still unclear how individual fibroblast subsets can regulate intestinal repair processes and what is their impact on the pathogenesis of inflammatory bowel disease. In this mini-review, we aim to provide a concise overview of recent advances in the field, that we believe will help clarify current concepts on fibroblast heterogeneity and functions and advance our understanding of the contribution of fibroblasts in intestinal damage and repair.
Collapse
|
140
|
Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 2022; 29:1262-1272.e5. [PMID: 35931034 PMCID: PMC9387209 DOI: 10.1016/j.stem.2022.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium undergoes continuous renewal and has an exceptional capacity to regenerate after injury. Maintenance and proliferation of intestinal stem cells (ISCs) are regulated by their surrounding niche, largely through Wnt signaling. However, it remains unclear which niche cells produce signals during different injury states, and the role of endothelial cells (ECs) as a component of the ISC niche during homeostasis and after injury has been underappreciated. Here, we show that lymphatic endothelial cells (LECs) reside in proximity to crypt epithelial cells and secrete molecules that support epithelial renewal and repair. LECs are an essential source of Wnt signaling in the small intestine, as loss of LEC-derived Rspo3 leads to a lower number of stem and progenitor cells and hinders recovery after cytotoxic injury. Together, our findings identify LECs as an essential niche component for optimal intestinal recovery after cytotoxic injury.
Collapse
|
141
|
Goto N, Goto S, Imada S, Hosseini S, Deshpande V, Yilmaz ÖH. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 2022; 29:1246-1261.e6. [PMID: 35931033 PMCID: PMC9720889 DOI: 10.1016/j.stem.2022.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 01/19/2023]
Abstract
Lgr5+ intestinal stem cells (ISCs) depend on niche factors for their proper function. However, the source of these ISC niche factors and how they support ISCs in vivo remain controversial. Here, we report that ISCs depend on lymphatic endothelial cells (LECs) and RSPO3+GREM1+ fibroblasts (RGFs). In the intestine and colon, LECs are surrounded by RGFs and are located near ISCs at the crypt base. Both LECs and RGFs provide the critical ISC niche factor RSPO3 to support ISCs, where RSPO3 loss in both cell types drastically compromises ISC numbers, villi length, and repair after injury. In response to injury, LEC and RGF numbers expand and produce greater amounts of RSPO3 and other growth/angiocrine factors to foster intestinal repair. We propose that LECs represent a novel niche component for ISCs, which together with RGFs serve as the major in vivo RSPO3 source for ISCs in homeostasis and injury-mediated regeneration.
Collapse
Affiliation(s)
- Norihiro Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Correspondence:
(N.G.), (Ö.H.Y.)
| | - Saori Goto
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
| | - Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for
Integrative Cancer Research at MIT, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142,
USA,Department of Pathology, Massachusetts General Hospital and
Harvard Medical School, Boston, MA 02114, USA,Lead contact,Correspondence:
(N.G.), (Ö.H.Y.)
| |
Collapse
|
142
|
Retinoic Acid Promotes the In Vitro Growth, Patterning and Improves the Cellular Composition of Human Pluripotent Stem-Cell-Derived Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23158624. [PMID: 35955755 PMCID: PMC9368900 DOI: 10.3390/ijms23158624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.
Collapse
|
143
|
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, Vanlandewijck M, Maclachlan C, Davanture S, Zamboni N, Knott GW, Luther SA, Betsholtz C, Delorenzi M, Brisken C, Petrova TV. ADAMTS18 + villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022; 13:3983. [PMID: 35810168 PMCID: PMC9271081 DOI: 10.1038/s41467-022-31571-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/21/2022] [Indexed: 12/17/2022] Open
Abstract
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18+ telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.
| | - Cristina Mauri
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Catherine Maclachlan
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Graham W Knott
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
144
|
Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell 2022; 29:1067-1082.e18. [PMID: 35728595 PMCID: PMC9271639 DOI: 10.1016/j.stem.2022.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022]
Abstract
Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.
Collapse
|
145
|
Messina-Pacheco J, Gregorieff A. A gut feeling: diet-sensing mesenchymal cells regulate intestinal stem cell function. Cell Res 2022; 32:605-606. [PMID: 35388145 PMCID: PMC9252993 DOI: 10.1038/s41422-022-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julia Messina-Pacheco
- Department of Pathology, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill Regenerative Medicine Network, McGill University, Montreal, QC, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- McGill Regenerative Medicine Network, McGill University, Montreal, QC, Canada.
| |
Collapse
|
146
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
147
|
Intestinal epithelium in early life. Mucosal Immunol 2022; 15:1181-1187. [PMID: 36380094 DOI: 10.1038/s41385-022-00579-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Rapid development of the fetal and neonatal intestine is required to meet the growth requirements of early life and form a protective barrier against external insults encountered by the intestinal mucosa. The fetus receives nutrition via the placenta and is protected from harmful pathogens in utero, which leads to intestinal development in a relatively quiescent environment. Upon delivery, the intestinal mucosa is suddenly tasked with providing host defense and meeting nutritional demands. To serve these functions, an array of specialized epithelial cells develop from intestinal stem cells starting in utero and continuing postnatally. Intestinal disease results when these homeostatic processes are interrupted. For preterm neonates, the most common pathology resulting from epithelial barrier dysfunction is necrotizing enterocolitis (NEC). In this review, we discuss the normal development and function of the intestinal epithelium in early life as well as how disruption of these processes can lead to NEC.
Collapse
|
148
|
Palikuqi B, Rispal J, Klein O. Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040865. [PMID: 34580119 PMCID: PMC9159262 DOI: 10.1101/cshperspect.a040865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intestinal epithelium undergoes continuous cellular turnover, making it an attractive model to study tissue renewal and regeneration. Intestinal stem cells (ISCs) can both self-renew and differentiate along all epithelial cell lineages. Decisions about which fate to pursue are controlled by a balance between high Wnt signaling at the crypt bottom, where Lgr5 + ISCs reside, and increasing bone morphogenetic protein (BMP) levels toward the villus, where differentiated cells are located. Under stress conditions, epithelial cells in the intestine are quite plastic, with dedifferentiation, the reversal of cell fate from a differentiated cell to a more stem-like cell, allowing for most mature epithelial cell types to acquire stem cell-like properties. The ISC niche, mainly made up of mesenchymal, immune, enteric neuronal, and endothelial cells, plays a central role in maintaining the physiological function of the intestine. Additionally, the immune system and the microbiome play an essential role in regulating intestinal renewal. The development of various mouse models, organoid co-cultures and single-cell technologies has led to advances in understanding signals emanating from the mesenchymal niche. Here, we review how intestinal regeneration is driven by stem cell self-renewal and differentiation, with an emphasis on the niche that fine tunes these processes in both homeostasis and injury conditions.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Jérémie Rispal
- Program in Craniofacial Biology and Department of Orofacial Sciences
| | - Ophir Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences
- Program in Craniofacial Biology and Department of Orofacial Sciences
| |
Collapse
|
149
|
Yang Y, Gomez M, Marsh T, Poillet-Perez L, Sawant A, Chen L, Park NR, Jackson SR, Hu Z, Alon N, Liu C, Debnath J, Guan JL, Davidson S, Verzi M, White E. Autophagy in PDGFRα+ mesenchymal cells is essential for intestinal stem cell survival. Proc Natl Acad Sci U S A 2022; 119:e2202016119. [PMID: 35537042 PMCID: PMC9173755 DOI: 10.1073/pnas.2202016119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Autophagy defects are a risk factor for inflammatory bowel diseases (IBDs) through unknown mechanisms. Whole-body conditional deletion of autophagy-related gene (Atg) Atg7 in adult mice (Atg7Δ/Δ) causes tissue damage and death within 3 mo due to neurodegeneration without substantial effect on intestine. In contrast, we report here that whole-body conditional deletion of other essential Atg genes Atg5 or Fip200/Atg17 in adult mice (Atg5Δ/Δ or Fip200Δ/Δ) caused death within 5 d due to rapid autophagy inhibition, elimination of ileum stem cells, and loss of barrier function. Atg5Δ/Δ mice lost PDGFRα+ mesenchymal cells (PMCs) and Wnt signaling essential for stem cell renewal, which were partially rescued by exogenous Wnt. Matrix-assisted laser desorption ionization coupled to mass spectrometry imaging (MALDI-MSI) of Atg5Δ/Δ ileum revealed depletion of aspartate and nucleotides, consistent with metabolic insufficiency underlying PMC loss. The difference in the autophagy gene knockout phenotypes is likely due to distinct kinetics of autophagy loss, as deletion of Atg5 more gradually extended lifespan phenocopying deletion of Atg7 or Atg12. Thus, autophagy is required for PMC metabolism and ileum stem cell and mammalian survival. Failure to maintain PMCs through autophagy may therefore contribute to IBD.
Collapse
Affiliation(s)
- Yang Yang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544
| | - Timothy Marsh
- Department of Pathology, University of California, San Francisco, CA 94143
| | | | - Akshada Sawant
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
| | - Lei Chen
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854
| | - Noel R. Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - S. RaElle Jackson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Zhixian Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544
| | - Noa Alon
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
- School of Art Sciences, Rutgers University, New Brunswick, NJ 08901
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson University Hospital, New Brunswick, NJ 08903
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Michael Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544
- School of Art Sciences, Rutgers University, New Brunswick, NJ 08901
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
150
|
Fink M, Wrana JL. Regulation of homeostasis and regeneration in the adult intestinal epithelium by the TGF-β superfamily. Dev Dyn 2022; 252:445-462. [PMID: 35611490 DOI: 10.1002/dvdy.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The delicate balance between the homeostatic maintenance and regenerative capacity of the intestine makes this a fascinating tissue of study. The intestinal epithelium undergoes continuous homeostatic renewal but is also exposed to a diverse array of stresses that can range from physiological processes such as digestion, to exposure to infectious agents, drugs, radiation therapy, and inflammatory stimuli. The intestinal epithelium has thus evolved to efficiently maintain and reinstate proper barrier function that is essential for intestinal integrity and function. Factors governing homeostatic epithelial turnover are well described, however, the dynamic regenerative mechanisms that occur following injury are the subject of intense ongoing investigations. The TGF-β superfamily is a key regulator of both homeostatic renewal and regenerative processes of the intestine. Here we review the roles of TGF-β and BMP on the adult intestinal epithelium during self-renewal and injury to provide a framework for understanding how this major family of morphogens can tip the scale between intestinal health and disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|