101
|
Abstract
During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia.
Collapse
|
102
|
Tan M, Tang C, Zhang Y, Cheng Y, Cai L, Chen X, Gao Y, Deng Y, Pan M. SIRT1/PGC-1α signaling protects hepatocytes against mitochondrial oxidative stress induced by bile acids. Free Radic Res 2015; 49:935-45. [PMID: 25789761 DOI: 10.3109/10715762.2015.1016020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress and mitochondrial dysfunction are hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Silent information regulator 1 (SIRT1) attenuates oxidative stress and improves mitochondrial biogenesis in numerous mitochondrial-related diseases; however, a functional role for SIRT1 in chronic liver cholestasis, characterized by increased levels of toxic bile acids, remains unknown. We show decrease in SIRT1 levels and its activity and impairment of mitochondrial biogenesis in the liver of patients with extrahepatic cholestasis. Moreover, we found that glycochenodeoxycholic acid (GCDCA) stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content in L02 cells. Consistent with this finding, GCDCA was found to decrease SIRT1 protein expression and activity, thus promoting the deacetylation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α), a key enzyme involved in mitochondrial biogenesis and function. Conversely, GCDCA-induced mitochondrial injury was efficiently attenuated by SIRT1 overexpression. In summary, these findings indicate that the loss of SIRT1 may play a crucial role in the pathogenesis of liver damage observed in patients with extrahepatic cholestasis. The findings also indicate that genetic supplementation of SIRT1 can ameliorate GCDCA-induced hepatotoxicity through the activation of PGC-1α-dependent mitochondrial biogenesis.
Collapse
Affiliation(s)
- M Tan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University , Guangzhou , P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs. Cell Rep 2015; 10:1665-1673. [PMID: 25772354 DOI: 10.1016/j.celrep.2015.02.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 12/15/2014] [Accepted: 02/13/2015] [Indexed: 01/12/2023] Open
Abstract
The NAD+-dependent protein deacetylase SIRT1 regulates energy metabolism, responses to stress, and aging by deacetylating many different proteins, including histones and transcription factors. The mechanisms controlling SIRT1 enzymatic activity are complex and incompletely characterized, yet essential for understanding how to develop therapeutics that target SIRT1. Here, we demonstrate that the N-terminal domain of SIRT1 (NTERM) can trans-activate deacetylation activity by physically interacting with endogenous SIRT1 and promoting its association with the deacetylation substrate NF-κB p65. Two motifs within the NTERM domain contribute to activation of SIRT1-dependent activities, and expression of one of these motifs in mice is sufficient to lower fasting glucose levels and improve glucose tolerance in a manner similar to overexpression of SIRT1. Our results provide insights into the regulation of SIRT1 activity and a rationale for pharmacological control of SIRT1-dependent activities.
Collapse
|
104
|
Sirtuins in vascular diseases: Emerging roles and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1311-22. [PMID: 25766107 DOI: 10.1016/j.bbadis.2015.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022]
Abstract
Silent information regulator-2 (Sir-2) proteins, or sirtuins, are a highly conserved protein family of histone deacetylases that promote longevity by mediating many of the beneficial effects of calorie restriction which extends life span and reduces the incidence of cancer, cardiovascular disease (CVD), and diabetes. Here, we review the role of sirtuins (SIRT1-7) in vascular homeostasis and diseases by providing an update on the latest knowledge about their roles in endothelial damage and vascular repair mechanisms. Among all sirtuins, in the light of the numerous functions reported on SIRT1 in the vascular system, herein we discuss its roles not only in the control of endothelial cells (EC) functionality but also in other cell types beyond EC, including endothelial progenitor cells (EPC), smooth muscle cells (SMC), and immune cells. Furthermore, we also provide an update on the growing field of compounds under clinical evaluation for the modulation of SIRT1 which, at the state of the art, represents the most promising target for the development of novel drugs against CVD, especially when concomitant with type 2 diabetes.
Collapse
|
105
|
Khan SA, Sathyanarayan A, Mashek MT, Ong KT, Wollaston-Hayden EE, Mashek DG. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling. Diabetes 2015; 64:418-26. [PMID: 25614670 PMCID: PMC4303962 DOI: 10.2337/db14-0325] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sirtuin 1 (SIRT1), an NAD(+)-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipose triglyceride lipase (ATGL) increases the activity of the nuclear receptor PPAR-α, a PGC-1α binding partner, to promote fatty acid oxidation. Fatty acids bind and activate PPAR-α; therefore, it has been presumed that fatty acids derived from ATGL-catalyzed lipolysis act as PPAR-α ligands. We provide an alternate mechanism that links ATGL to PPAR-α signaling. We show that SIRT1 deacetylase activity is positively regulated by ATGL to promote PGC-1α signaling. In addition, ATGL mediates the effects of β-adrenergic signaling on SIRT1 activity, and PGC-1α and PPAR-α target gene expression independent of changes in NAD(+). Moreover, SIRT1 is required for the induction of PGC-1α/PPAR-α target genes and oxidative metabolism in response to increased ATGL-mediated lipolysis. Taken together, this work identifies SIRT1 as a critical node that links β-adrenergic signaling and lipolysis to changes in the transcriptional regulation of oxidative metabolism.
Collapse
Affiliation(s)
- Salmaan Ahmed Khan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | | | - Mara T Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Kuok Teong Ong
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | | | - Douglas G Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
106
|
Singh CK, George J, Nihal M, Sabat G, Kumar R, Ahmad N. Novel downstream molecular targets of SIRT1 in melanoma: a quantitative proteomics approach. Oncotarget 2015; 5:1987-99. [PMID: 24743044 PMCID: PMC4039116 DOI: 10.18632/oncotarget.1898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Melanoma is one of the most lethal forms of skin cancer and its incidence is continuing to rise in the United States. Therefore, novel mechanism and target-based strategies are needed for the management of this disease. SIRT1, a NAD(+)-dependent class III histone deacetylase, has been implicated in a variety of physiological processes and pathological conditions. We recently demonstrated that SIRT1 is upregulated in melanoma and its inhibition by a small-molecule, tenovin-1, inhibits cell proliferation and clonogenic survival of melanoma cells, possibly via activating p53. Here, we employed a gel free quantitative proteomics approach to identify the downstream effectors and targets of SIRT1 in melanoma. The human malignant melanoma, G361 cells were treated with tenovin-1 followed by protein extraction, in liquid trypsin digestion, and peptide analyses using nanoLC-MS/MS. A total of 1091 proteins were identified, of which 20 proteins showed significant differential expression with 95% confidence interval. These proteins were subjected to gene ontology and Ingenuity Pathway Analysis (IPA) to obtain the information regarding their biological and molecular functions. Real-Time qRT-PCR validation showed that five of these (PSAP, MYO1B, MOCOS, HIS1H4A and BUB3) were differentially expressed at mRNA levels. Based on their important role in cell cycle regulation, we selected to focus on BUB family proteins (BUB3, as well as BUB1 and BUBR1) for subsequent validation. The qRT-PCR and immunoblot analyses showed that tenovin-1 inhibition of SIRT1 resulted in a downregulation of BUB3, BUB1 and BUBR1 in multiple melanoma cell lines. Since tenovin-1 is an inhibitor of both SIRT1 and SIRT2, we employed lentivirus mediated silencing of SIRT1 and SIRT2 in G361 cells to determine if the observed effects on BUB family proteins are due to SIRT1- or SIRT2- inhibition. We found that only SIRT1 inhibition resulted in a decrease in BUB3, BUB1 and BUBR1. Our study identified the mitotic checkpoint regulator BUB family proteins as novel downstream targets of SIRT1. However, further validation is needed in appropriate models to confirm our findings and expand on our observations.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | | | | | | | | |
Collapse
|
107
|
Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One 2014; 9:e116165. [PMID: 25541949 PMCID: PMC4277463 DOI: 10.1371/journal.pone.0116165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
SIRT1 is central to the lifespan and vascular health, but undergoes degradation that contributes to several medical conditions, including diabetes. How SIRT1 turnover is regulated remains unclear. However, emerging evidence suggests that endothelial nitric oxide synthase (eNOS) positively regulates SIRT1 protein expression. We recently identified NO as an endogenous inhibitor of 26S proteasome functionality with a cellular reporter system. Here we extended this finding to a novel pathway that regulates SIRT1 protein breakdown. In cycloheximide (CHX)-treated endothelial cells, NONOate, an NO donor, and A23187, an eNOS activator, significantly stabilized SIRT1 protein. Similarly, NO enhanced SIRT1 protein, but not mRNA expression, in CHX-free cells. NO also stabilized an autophagy-related protein unc-51 like kinase (ULK1), but did not restore SIRT1 protein levels in ULK1-siRNA-treated cells or in mouse embryonic fibroblasts (MEF) from Ulk1-/- mice. This suggests that ULK1 mediated the NO regulation of SIRT1. Furthermore, adenoviral overexpression of ULK1 increased SIRT1 protein expression, while ULK1 siRNA treatment decreased it. Rapamycin-induced autophagy did not mimic these effects, suggesting that the effects of ULK1 were autophagy-independent. Treatment with MG132, a proteasome inhibitor, or siRNA of β-TrCP1, an E3 ligase, prevented SIRT1 reduction induced by ULK1-siRNA. Mechanistically, ULK1 negatively regulated 26S proteasome functionality, which was at least partly mediated by O-linked-GlcNAc transferase (OGT), probably by increased O-GlcNAc modification of proteasomal subunit Rpt2. The NO-ULK1-SIRT1 axis was likely operative in the whole animal: both ULK1 and SIRT1 protein levels were significantly reduced in tissue homogenates in eNOS-knockout mice (lung) and in db/db mice where eNOS is downregulated (lung and heart). Taken together, the results show that NO stabilizes SIRT1 by regulating 26S proteasome functionality through ULK1 and OGT, but not autophagy, in endothelial cells.
Collapse
|
108
|
Thevis M, Schänzer W. Analytical approaches for the detection of emerging therapeutics and non-approved drugs in human doping controls. J Pharm Biomed Anal 2014; 101:66-83. [DOI: 10.1016/j.jpba.2014.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023]
|
109
|
Frederick DW, Davis JG, Dávila A, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 2014; 290:1546-58. [PMID: 25411251 DOI: 10.1074/jbc.m114.579565] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.
Collapse
Affiliation(s)
- David W Frederick
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - James G Davis
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Antonio Dávila
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Beamon Agarwal
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Shaday Michan
- Instituto Nacional de Geriatría, México, Distrito Federal 10200, México, and
| | - Michelle A Puchowicz
- Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph A Baur
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| |
Collapse
|
110
|
A novel crosstalk between BRCA1 and sirtuin 1 in ovarian cancer. Sci Rep 2014; 4:6666. [PMID: 25323003 PMCID: PMC4200400 DOI: 10.1038/srep06666] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
BRCA mutations are the main known hereditary factors for ovarian cancer. Notably, emerging evidence has led to considerable interest in the role of sirtuin 1 (SIRT1) in ovarian cancer development. However, dynamic crosstalk between BRCA1 and SIRT1 is poorly understood. Here, we showed that: (i) BRCA1 inactivation events (mutation, promoter methylation, or knockdown) were accompanied by decreased SIRT1 levels and increased nicotinamide adenine dinucleotide (NAD) levels and a subsequent increase in SIRT1 activity; (ii) overexpression of BRCA1 resulted in increased SIRT1 levels, an impairment in NAD synthesis, and a subsequent inhibition of SIRT1 activity; and (iii) intracellular NAD levels were largely responsible for regulating SIRT1 activity, and BRCA1 expression patterns correlated with SIRT1 levels and NAD levels correlated with SIRT1 activity in human ovarian cancer specimens. Interestingly, although BRCA1 inactivation events inhibited SIRT1 expression, they led to a substantial increase in NAD levels that enhanced NAD-related SIRT1 activity. This is a special BRCA1-mediated compensatory mechanism for the maintenance of SIRT1 function. Therefore, these results highlight a novel interaction between BRCA1 and SIRT1, which may be beneficial for the dynamic balance between BRCA1-related biologic processes and SIRT1-related energy metabolism and stress response.
Collapse
|
111
|
Dong YW, Han GD, Huang XW. Stress modulation of cellular metabolic sensors: interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma. Mol Ecol 2014; 23:4541-54. [PMID: 25130589 DOI: 10.1111/mec.12882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat-shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress-related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change.
Collapse
Affiliation(s)
- Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, College of Marine and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | | | | |
Collapse
|
112
|
Guo P, Pi H, Xu S, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Li R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z. Melatonin Improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicol Sci 2014; 142:182-95. [PMID: 25159133 PMCID: PMC4226765 DOI: 10.1093/toxsci/kfu164] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melatonin is an indolamine synthesized in the pineal gland that has a wide range of physiological functions, and it has been under clinical investigation for expanded applications. Increasing evidence demonstrates that melatonin can ameliorate cadmium-induced hepatotoxicity. However, the potentially protective effects of melatonin against cadmium-induced hepatotoxicity and the underlying mechanisms of this protection remain unclear. This study investigates the protective effects of melatonin pretreatment on cadmium-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10μM) for 12 h. We found that Cd stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content. Consistent with this finding, Cd exposure was associated with decreased Sirtuin 1 (SIRT1) protein expression and activity, thus promoted acetylation of PGC-1 alpha, a key enzyme involved in mitochondrial biogenesis and function, although Cd did not disrupt the interaction between SIRT1 and PGC-1 alpha. However, all cadmium-induced mitochondrial oxidative injuries were efficiently attenuated by melatonin pretreatment. Moreover, Sirtinol and SIRT1 siRNA each blocked the melatonin-mediated elevation in mitochondrial function by inhibiting SIRT1/ PGC-1 alpha signaling. Luzindole, a melatonin receptor antagonist, was found to partially block the ability of melatonin to promote SIRT1/ PGC-1 alpha signaling. In summary, our results indicate that SIRT1 plays an essential role in the ability of moderate melatonin to stimulate PGC-1 alpha and improve mitochondrial biogenesis and function at least partially through melatonin receptors in cadmium-induced hepatotoxicity.
Collapse
Affiliation(s)
- Pan Guo
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Shangcheng Xu
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lei Zhang
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yuming Li
- Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Min Li
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhengwang Cao
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Li Tian
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Jia Xie
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Renyan Li
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Chuan Liu
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Weixia Duan
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhou Zhou
- Department of occupational health, Third Military Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
113
|
Di Emidio G, Falone S, Vitti M, D'Alessandro AM, Vento M, Di Pietro C, Amicarelli F, Tatone C. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod 2014; 29:2006-17. [PMID: 24963165 DOI: 10.1093/humrep/deu160] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
STUDY QUESTION Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SUMMARY ANSWER SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. WHAT IS KNOWN ALREADY OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. STUDY DESIGN, SIZE, DURATION GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 µM cilostamide. Groups of 30 oocytes were exposed to 25 µM H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 µM) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in mouse oocytes in response to OS. Moreover, increased intracellular ROS were observed when SIRT1 activity was inhibited by Ex527. In aged oocytes Sirt1 was expressed more than in young oocytes but SIRT1 protein was undetectable. Upon OS, significant changes in miR-132 micro-RNA, a validated Sirt1 modulator, were observed. A negative correlation between Sirt1 mRNA and miR-132 levels was observed when young oocytes exposed to OS were compared with young control oocytes, and when aged oocytes were compared with young control oocytes. FoxO3a and MnSod transcripts were increased upon OS with the same kinetics as Sirt1 transcripts, and up-regulation of MnSod gene was prevented by oocyte treatment with Ex527, indicating that SIRT1 acts upstream to the FoxO3a-MnSod axis. Finally, the results of the in vitro maturation assay suggested that SIRT1 might be involved in oocyte maturation by regulating the redox state and ensuring normal spindle assembly. LIMITATIONS, REASONS FOR CAUTION The main limitation of this study was the absence of direct quantification of SIRT1 enzymatic activity due to the lack of an appropriately sensitive method. WIDER IMPLICATIONS OF THE FINDINGS The present findings may provide a valuable background for studying the regulation of SIRT1 during oogenesis and its relevance as a sensor of oocyte redox state and energy status. The antioxidant response orchestrated by SIRT1 in oocytes seems to decrease with aging. This suggests that SIRT1 could be an excellent pharmacological target for improving oocyte quality and IVF outcome in aging or aging-like diseases. STUDY FUNDING/COMPETING INTERESTS The work was supported by the Ministero dell'Università e della Ricerca Scientifica (MIUR) to C.T., F.A., C.D., A.M.D. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Maurizio Vitti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Anna Maria D'Alessandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Marilena Vento
- Servizio di PMA, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - Cinzia Di Pietro
- Dipartimento Gian Filippo Ingrassia, Sezione di Biologia, Genetica, Genomica Cellulare e Molecolare Giovanni Sichel, Università degli Studi di Catania, Catania, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy Infertility Service, San Salvatore Hospital, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|
114
|
Kim HJ, Oh GS, Shen A, Lee SB, Choe SK, Kwon KB, Lee S, Seo KS, Kwak TH, Park R, So HS. Augmentation of NAD(+) by NQO1 attenuates cisplatin-mediated hearing impairment. Cell Death Dis 2014; 5:e1292. [PMID: 24922076 PMCID: PMC4611728 DOI: 10.1038/cddis.2014.255] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/18/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
Cisplatin (cis-diaminedichloroplatinum-II) is an extensively used chemotherapeutic agent, and one of its most adverse effects is ototoxicity. A number of studies have demonstrated that these effects are related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as a key regulator of cellular energy metabolism and homeostasis. Here, we demonstrate for the first time that, in cisplatin-mediated ototoxicity, the levels and activities of SIRT1 are suppressed by the reduction of intracellular NAD(+) levels. We provide evidence that the decrease in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) transferase (PARP)-1 activation and microRNA-34a through p53 activation aggravates cisplatin-mediated ototoxicity. Moreover, we show that the induction of cellular NAD(+) levels using β-lapachone (β-Lap), whose intracellular target is NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- H-J Kim
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea
| | - G-S Oh
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea
| | - A Shen
- 1] Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea [2] BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University Graduate School, Jeonbuk, Republic of Korea
| | - S-B Lee
- 1] Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea [2] BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University Graduate School, Jeonbuk, Republic of Korea
| | - S-K Choe
- Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea
| | - K-B Kwon
- 1] Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea [2] BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University Graduate School, Jeonbuk, Republic of Korea [3] Department of Oriental Medical Physiology, College of Korean Medicine, Wonkwang University, Jeonbuk, Republic of Korea
| | - S Lee
- Life Science Research Center, KT&G Life Sciences, Suwon, Republic of Korea
| | - K-S Seo
- Life Science Research Center, KT&G Life Sciences, Suwon, Republic of Korea
| | - T H Kwak
- Life Science Research Center, KT&G Life Sciences, Suwon, Republic of Korea
| | - R Park
- 1] Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea [2] BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University Graduate School, Jeonbuk, Republic of Korea
| | - H-S So
- 1] Center for Metabolic Function Regulation, Department of Microbiology, Wonkwang University School of Medicine, Jeonbuk, Republic of Korea [2] BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University Graduate School, Jeonbuk, Republic of Korea
| |
Collapse
|
115
|
Zhang J, Lazarenko OP, Blackburn ML, Badger TM, Ronis MJJ, Chen J. Soy protein isolate down‐regulates caveolin‐1 expression to suppress osteoblastic cell senescence pathways. FASEB J 2014; 28:3134-45. [DOI: 10.1096/fj.13-243659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Zhang
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Oxana P. Lazarenko
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Michael L. Blackburn
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Thomas M. Badger
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Martin J. J. Ronis
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jin‐Ran Chen
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
116
|
Zhang S, Han GD, Dong YW. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress. J Therm Biol 2014; 41:31-7. [DOI: 10.1016/j.jtherbio.2014.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/07/2014] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
|
117
|
Xiong H, Dai M, Ou Y, Pang J, Yang H, Huang Q, Chen S, Zhang Z, Xu Y, Cai Y, Liang M, Zhang X, Lai L, Zheng Y. SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss. Exp Gerontol 2014; 51:8-14. [PMID: 24365660 DOI: 10.1016/j.exger.2013.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/30/2023]
Abstract
SIRT1 is a highly conserved NAD(+)-dependent protein deacetylase known to have protective effects against a variety of age-related diseases. However, there is a lack of information concerning SIRT1 expression in the cochlea and auditory cortex of C57BL/6 mice, a mouse model of age-related hearing loss. Using RT-PCR and immunohistochemistry, we show that SIRT1 is abundantly expressed in the inner hair cells, strial marginal cells, strial intermediate cells, type I and type IV fibrocytes of the spiral ligament and spiral ganglion neurons. In addition, moderate SIRT1 is also detected in the outer hair cells and neurons of the auditory cortex. Associated with elevated hearing thresholds and hair cells loss during aging, there is also a significant reduction of SIRT1 expression in the cochlea and auditory cortex. The expression pattern of SIRT1 in the peripheral and central auditory system suggests that SIRT1 may play an important role in auditory function and therefore may serve as a protective molecule against age-related hearing loss.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, China.
| |
Collapse
|
118
|
Höppner S, Delahaut P, Schänzer W, Thevis M. Mass spectrometric studies on the in vivo metabolism and excretion of SIRT1 activating drugs in rat urine, dried blood spots, and plasma samples for doping control purposes. J Pharm Biomed Anal 2014; 88:649-59. [DOI: 10.1016/j.jpba.2013.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/09/2013] [Accepted: 10/12/2013] [Indexed: 12/24/2022]
|
119
|
Servillo L, D'Onofrio N, Longobardi L, Sirangelo I, Giovane A, Cautela D, Castaldo D, Giordano A, Balestrieri ML. Stachydrine ameliorates high-glucose induced endothelial cell senescence and SIRT1 downregulation. J Cell Biochem 2013; 114:2522-30. [DOI: 10.1002/jcb.24598] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples; Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples; Italy
| | - Lara Longobardi
- Department of Pediatrics; University of North Carolina at Chapel Hill; Chapel Hill; North Carolina; 27599
| | - Ivana Sirangelo
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples; Italy
| | - Alfonso Giovane
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples; Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi (SSEA); Azienda Speciale della Camera di Commercio di Reggio Calabria; RC; Italy
| | - Domenico Castaldo
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi (SSEA); Azienda Speciale della Camera di Commercio di Reggio Calabria; RC; Italy
| | | | - Maria Luisa Balestrieri
- Department of Biochemistry; Biophysics and General Pathology; Second University of Naples; Naples; Italy
| |
Collapse
|
120
|
Li M, Sun X, Hua L, Lai X, Lan X, Lei C, Zhang C, Qi X, Chen H. SIRT1 gene polymorphisms are associated with growth traits in Nanyang cattle. Mol Cell Probes 2013; 27:215-20. [PMID: 23871946 DOI: 10.1016/j.mcp.2013.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/25/2022]
Abstract
Growth is under complex genetic control and uncovering the molecular mechanisms how the genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle populations. SIRT1 is a NAD(+)-dependent deacetylase that belongs to the class III histone deacetylases. It plays an important role in numerous fundamental cellular processes including gene silencing, DNA repair, and metabolic regulation. In addition, SIRT1 acts as an inhibitor of adipogenesis and has been associated with body weight regulation. The objective of the present study was to identify single nucleotide polymorphisms (SNPs) of bovine SIRT1 using 1255 animals representing the five main Chinese breeds and to determine if these SNPs are associated with economically important traits in Nanyang cattle. The approach consisted of resequencing SIRT1 using a panel of DNA from unrelated animals of five different breeds and the process revealed five novel SNPs. SNPs g.17324T>C and g.17491G>A exhibited a high degree of linkage disequilibrium in all tested breeds. Seven major haplotypes accounting for 91.2% of the alleles were observed and the haplotype 'GCCGA' was the most common haplotype in NY, QC, LX and JX breeds. An association analysis was performed between the five SNPs and six performance traits. SNP g.-274C>G was demonstrated to have a strong effect on 24-months-old body weight and g.17379A>G polymorphism was related to 6 and 12-months-old body weight in NY population, although these effects did not remained significant after the Bonferroni correction. Our results provide evidence that polymorphisms in SIRT1 are associated with growth efficiency traits, and may be used for marker-assisted selection and management in feedlot cattle.
Collapse
Affiliation(s)
- Mingxun Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
|
122
|
Abstract
Sirtuin 1 (SIRT1) is the most conserved mammalian NAD(+)-dependent protein deacetylase that has emerged as a key metabolic sensor in various metabolic tissues. In response to different environmental stimuli, SIRT1 directly links the cellular metabolic status to the chromatin structure and the regulation of gene expression, thereby modulating a variety of cellular processes such as energy metabolism and stress response. Recent studies have shown that SIRT1 controls both glucose and lipid metabolism in the liver, promotes fat mobilization and stimulates brown remodeling of the white fat in white adipose tissue, controls insulin secretion in the pancreas, senses nutrient availability in the hypothalamus, influences obesity-induced inflammation in macrophages, and modulates the activity of circadian clock in metabolic tissues. This review focuses on the role of SIRT1 in regulating energy metabolism at different metabolic tissues.
Collapse
Affiliation(s)
- Xiaoling Li
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|