101
|
Shi L, Lou W, Wong A, Zhang F, Abrigo J, Chu WC, Kwok TC, Wong KK, Abbott D, Wang D, Mok VC. Neural evidence for long-term marriage shaping the functional brain network organization between couples. Neuroimage 2019; 199:87-92. [PMID: 31129301 DOI: 10.1016/j.neuroimage.2019.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022] Open
Abstract
Long-term married couples have been reported to share personality and behavioural similarities, but whether long-term marriage would shape the brain is hitherto unknown. In this study, 35 pairs of long-term married couples, who have married and living together at least 30 years, were recruited, and resting state functional magnetic resonance imaging was used to examine the neural correlates of long-term marriage between couples. Seven intrinsic connectivity networks were extracted using spatially constrained group independent component analysis, and the spatial similarity of each network as well as functional connectome similarity between couples were investigated respectively. The significant spatial similarities in the salience and frontoparietal networks as well as marginally significant connectome similarity were observed in long-term married couples. In addition, the marital duration showed a significantly positive correlation with the spatial similarity in the frontoparietal network and connectome similarity. The results provide objective evidence that long-term marriage would shape brain network organization, and the combination of initial personality traits and long-term common experience of the couples may be potential factors that account for similar brain network organizations between couples.
Collapse
Affiliation(s)
- Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Wutao Lou
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Fan Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; Department of Health and Physical Education, The Education University of Hong Kong, Taipo, NT, Hong Kong SAR
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Timothy Cy Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Kelvin Kl Wong
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Derek Abbott
- Centre for Biomedical Engineering and School of Electrical & Electronic Engineering, University of Adelaide, South Australia, Australia
| | - Defeng Wang
- Research Center for Medical Image Computing, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China; School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China.
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.
| |
Collapse
|
102
|
Fazekas P, Nemeth G. Dream experiences and the neural correlates of perceptual consciousness and cognitive access. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0356. [PMID: 30061469 DOI: 10.1098/rstb.2017.0356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 01/05/2023] Open
Abstract
This paper approaches the debate whether perceptual consciousness requires cognitive access from the perspective of dream studies, and investigates what kind of findings could support the opposing views of this debate. Two kinds of arguments are discussed, one that claims that the hypoactivity of the dorsolateral prefrontal cortex in rapid eye movement sleep is directly relevant, and another that proposes that locating the neural correlates of dream experiences can indirectly inform the debate. It is argued that under closer reflection, neither the classical claim about dorsolateral prefrontal cortex hypoactivity nor the more recent emphasis on general posterior hot zone activity during dreaming stand up to scrutiny. White dreaming is identified as the phenomenon that, nevertheless, holds the most promise to have an impact on the debate. Going beyond the topic if studying dreams can contribute to this debate, it is argued that cognitive access is not a monolithic phenomenon, and its neural correlates are not well understood. There seems to be a relevant form of cognitive access that can operate in the absence of activity in the dorsolateral prefrontal cortex, and maybe also in the whole frontal region. If so, then exclusive posterior activation during conscious experiences might very well be compatible with the hypothesis that perceptual consciousness requires cognitive access.This article is part of the theme issue 'Perceptual consciousness and cognitive access'.
Collapse
Affiliation(s)
- Peter Fazekas
- Centre for Philosophical Psychology, University of Antwerp, Antwerpen, Belgium
| | - Georgina Nemeth
- Behavioural Psychology Programme, Doctoral School of Psychology, Eötvös University, Budapest, Hungary
| |
Collapse
|
103
|
Bréchet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage 2019; 194:82-92. [DOI: 10.1016/j.neuroimage.2019.03.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
|
104
|
Solomon JP, Kraeutner SN, Bardouille T, Boe SG. Probing the temporal dynamics of movement inhibition in motor imagery. Brain Res 2019; 1720:146310. [PMID: 31251906 DOI: 10.1016/j.brainres.2019.146310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
Abstract
Beyond the lack of overt movement in motor imagery (MI), MI is thought to be functionally equivalent to motor execution (ME). Two theories appear viable to explain the neural mechanism underlying the inhibition of movement in MI, with one suggesting the inhibition of movement in MI occurs early in the planning process, and the other suggesting it occurs after the planning for movement is compete. Here we sought to generate evidence related to the timing of movement inhibition in MI. Participants performed a motor task via MI and ME that had distinct preparation and performance phases, with brain activity obtained throughout. Analysis of sensor-level data was performed to isolate event related desynchrony (ERD) in the mu and beta frequency bands in both a sensorimotor and left parietal region of interest (ROI). The magnitude of ERD in the sensorimotor ROI was significantly greater in ME than MI during both the preparatory and performance phases. The reduced ERD in the mu and beta frequency bands in the sensorimotor ROI during the preparatory phase for MI, compared to ME, suggests that movement planning is inhibited (or at least reduced) in MI, contributing to the lack of movement. While past work has shown that the networks of functional brain activity underlying MI and ME are heavily overlapping, differences in the temporal dynamics of this activity suggest that MI and ME are not equivalent processes.
Collapse
Affiliation(s)
- Jack P Solomon
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada
| | - Sarah N Kraeutner
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada
| | - Timothy Bardouille
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada; Department of Physics & Atmospheric Sciences, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, School of Physiotherapy, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada; School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia B3H4R2, Canada.
| |
Collapse
|
105
|
De Micco R, Esposito F, di Nardo F, Caiazzo G, Siciliano M, Russo A, Cirillo M, Tedeschi G, Tessitore A. Sex-related pattern of intrinsic brain connectivity in drug-naïve Parkinson's disease patients. Mov Disord 2019; 34:997-1005. [PMID: 31180598 DOI: 10.1002/mds.27725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sex difference is related to specific clinical features in PD patients over the disease course. OBJECTIVES To investigate the potential sex-difference effect on the spontaneous neuronal activity within the most reported resting-state networks in early untreated PD patients and its correlation with baseline and longitudinal clinical features. METHODS Fifty-six drug-naïve PD patients (30/26 male/female) and 30 (15/15 male/female) matched controls were enrolled in the study. Topological and spectral resting-state functional MRI features of the sensorimotor, dorsal and ventral attention, frontoparietal, and default-mode networks were analyzed for possible sex-difference effects in both PD patients and controls groups. Additionally, a region-of-interest analysis was performed to test for a sex effect on basal ganglia connectivity. Multivariate ordinal regression was used to investigate whether connectivity findings at baseline were predictors of motor impairment over a 2-year follow-up period. RESULTS Compared to female PD patients and controls, male PD patients showed an abnormal spectral composition of the sensorimotor and dorsal attention networks in the slow-5 band. The region-of-interest analysis showed an increased connectivity within the basal ganglia in female PD patients compared to males. Functional sensorimotor connectivity changes at baseline showed to be an independent predictor of disease severity at 2-year follow-up. CONCLUSIONS Our findings revealed the presence of a disease-related, sex-specific cortical and subcortical connectivity pattern within the sensorimotor network, in the early stage of PD. We hypothesize that these findings may be related to the presence of different sex-specific nigrostriatal dopaminergic pathways and might predict PD progression. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, (SA), Italy
| | - Federica di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
106
|
Johnen A, Bertoux M. Psychological and Cognitive Markers of Behavioral Variant Frontotemporal Dementia-A Clinical Neuropsychologist's View on Diagnostic Criteria and Beyond. Front Neurol 2019; 10:594. [PMID: 31231305 PMCID: PMC6568027 DOI: 10.3389/fneur.2019.00594] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is the second leading cognitive disorder caused by neurodegeneration in patients under 65 years of age. Characterized by frontal, insular, and/or temporal brain atrophy, patients present with heterogeneous constellations of behavioral and psychological symptoms among which progressive changes in social conduct, lack of empathy, apathy, disinhibited behaviors, and cognitive impairments are frequently observed. Since the histopathology of the disease is heterogeneous and identified genetic mutations only account for ~30% of cases, there are no reliable biomarkers for the diagnosis of bvFTD available in clinical routine as yet. Early detection of bvFTD thus relies on correct application of clinical diagnostic criteria. Their evaluation however, requires expertise and in-depth assessments of cognitive functions, history taking, clinical observations as well as caregiver reports on behavioral and psychological symptoms and their respective changes. With this review, we aim for a critical appraisal of common methods to access the behavioral and psychological symptoms as well as the cognitive alterations presented in the diagnostic criteria for bvFTD. We highlight both, practical difficulties as well as current controversies regarding an overlap of symptoms and particularly cognitive impairments with other neurodegenerative and primary psychiatric diseases. We then review more recent developments and evidence on cognitive, behavioral and psychological symptoms of bvFTD beyond the diagnostic criteria which may prospectively enhance the early detection and differential diagnosis in clinical routine. In particular, evidence on specific impairments in social and emotional processing, praxis abilities as well as interoceptive processing in bvFTD is summarized and potential links with behavior and classic cognitive domains are discussed. We finally outline both, future opportunities and major challenges with regard to the role of clinical neuropsychology in detecting bvFTD and related neurocognitive disorders.
Collapse
Affiliation(s)
- Andreas Johnen
- Section for Neuropsychology, Department of Neurology, University Hospital Münster, Münster, Germany
| | - Maxime Bertoux
- Univ Lille, Inserm UMR 1171 Degenerative and Vascular Cognitive Disorders, CHU Lille, Lille, France
| |
Collapse
|
107
|
Scharfen HE, Memmert D. The Relationship Between Cognitive Functions and Sport-Specific Motor Skills in Elite Youth Soccer Players. Front Psychol 2019; 10:817. [PMID: 31105611 PMCID: PMC6494938 DOI: 10.3389/fpsyg.2019.00817] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to examine the relationship between basic cognitive functions and sport-specific motor skills in elite youth soccer players. A total of 15 elite youth soccer players aged 11–13 years performed a computer-based test battery measuring the attention window (AW), perceptual load (PL), working memory capacity (WMC), and multiple object tracking (MOT). Another set of tests was used to asses speed abilities and football-specific technical skills (sprint, change of direction, dribbling, ball control, shooting, and juggling). Spearman’s correlation tests showed that the diagonal AW was positively associated with dribbling skills (rs = 0.656) which indicates that a broader AW could be beneficial for highly demanding motor skills like dribbling. WMC was positively related to dribbling (rs = 0.562), ball control (rs = 0.669), and ball juggling (rs = 0.727). Additionally, the cumulated score of all cognitive tests was positively related to the cumulated motor test score (rs = 0.614) which supports the interplay of physical and psychological skills. Our findings highlight the need for more, and especially longitudinal, studies to enhance the knowledge of cognition-motor skill relationships for talent identification, talent development, and performance in soccer.
Collapse
Affiliation(s)
- Hans-Erik Scharfen
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Daniel Memmert
- Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
108
|
Yildirim I, Wu J, Kanwisher N, Tenenbaum J. An integrative computational architecture for object-driven cortex. Curr Opin Neurobiol 2019; 55:73-81. [PMID: 30825704 PMCID: PMC6548583 DOI: 10.1016/j.conb.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/24/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023]
Abstract
Computational architecture for object-driven cortex Objects in motion activate multiple cortical regions in every lobe of the human brain. Do these regions represent a collection of independent systems, or is there an overarching functional architecture spanning all of object-driven cortex? Inspired by recent work in artificial intelligence (AI), machine learning, and cognitive science, we consider the hypothesis that these regions can be understood as a coherent network implementing an integrative computational system that unifies the functions needed to perceive, predict, reason about, and plan with physical objects-as in the paradigmatic case of using or making tools. Our proposal draws on a modeling framework that combines multiple AI methods, including causal generative models, hybrid symbolic-continuous planning algorithms, and neural recognition networks, with object-centric, physics-based representations. We review evidence relating specific components of our proposal to the specific regions that comprise object-driven cortex, and lay out future research directions with the goal of building a complete functional and mechanistic account of this system.
Collapse
Affiliation(s)
- Ilker Yildirim
- Center for Brains, Minds, and Machines, MIT, Cambridge, MA 02138, United States; Department of Brain & Cognitive Science, MIT, Cambridge, MA 02138, United States.
| | - Jiajun Wu
- Center for Brains, Minds, and Machines, MIT, Cambridge, MA 02138, United States; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02138, United States
| | - Nancy Kanwisher
- Center for Brains, Minds, and Machines, MIT, Cambridge, MA 02138, United States; McGovern Institute for Brain Research, MIT, Cambridge, MA 02138, United States; Department of Brain & Cognitive Science, MIT, Cambridge, MA 02138, United States
| | - Joshua Tenenbaum
- Center for Brains, Minds, and Machines, MIT, Cambridge, MA 02138, United States; McGovern Institute for Brain Research, MIT, Cambridge, MA 02138, United States; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02138, United States; Department of Brain & Cognitive Science, MIT, Cambridge, MA 02138, United States
| |
Collapse
|
109
|
A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol 2019; 29:1346-1351.e4. [PMID: 30930043 DOI: 10.1016/j.cub.2019.02.049] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
The brain strengthens memories through consolidation, defined as resistance to interference (stabilization) or performance improvements between the end of a practice session and the beginning of the next (offline gains) [1]. Typically, consolidation has been measured hours or days after the completion of training [2], but the same concept may apply to periods of rest that occur interspersed in a series of practice bouts within the same session. Here, we took an unprecedented close look at the within-seconds time course of early human procedural learning over alternating short periods of practice and rest that constitute a typical online training session. We found that performance did not markedly change over short periods of practice. On the other hand, performance improvements in between practice periods, when subjects were at rest, were significant and accounted for early procedural learning. These offline improvements were more prominent in early training trials when the learning curve was steep and no performance decrements during preceding practice periods were present. At the neural level, simultaneous magnetoencephalographic recordings showed an anatomically defined signature of this phenomenon. Beta-band brain oscillatory activity in a predominantly contralateral frontoparietal network predicted rest-period performance improvements. Consistent with its role in sensorimotor engagement [3], modulation of beta activity may reflect replay of task processes during rest periods. We report a rapid form of offline consolidation that substantially contributes to early skill learning and may extend the concept of consolidation to a time scale in the order of seconds, rather than the hours or days traditionally accepted.
Collapse
|
110
|
Aberrant functional connectivity in patients with Parkinson's disease and freezing of gait: a within- and between-network analysis. Brain Imaging Behav 2019; 14:1543-1554. [PMID: 30887415 DOI: 10.1007/s11682-019-00085-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Freezing of gait (FOG) is a disabling motor symptom that affects patients with Parkinson's disease (PD). MRI-based evidence suggest that multiple brain structures are involved in the occurrence of FOG. We investigated the integrity of the neuronal networks in PD patients with FOG (PD-FOG), considering both within-network resting-state functional connectivity (rsFC) and between-network rsFC. Thirty-one PD patients (15 PD-FOG and 16 PD-nFOG) and 16 healthy subjects (HS) underwent a rsfMRI study. The data was analysed by using FSL Melodic and FSLNets software to study within- and between-network rsFC. PD-FOG displayed a higher within-network rsFC that involved a greater number of resting-state networks (RSNs) than PD-nFOG. rsFC in the basal ganglia network significantly correlated with the Timed Up and Go test. Moreover, when compared with HS, PD-FOG displayed reduced rsFC between the right fronto-parietal and executive-control RSNs, which significantly correlated with FOG severity. This study demonstrates that FOG is associated with an impaired interplay and communication between the RSNs that underpin attentive and executive abilities, especially in the right hemisphere.
Collapse
|
111
|
Disruption of motor imagery performance following inhibition of the left inferior parietal lobe. Neuropsychologia 2019; 127:106-112. [PMID: 30807756 DOI: 10.1016/j.neuropsychologia.2019.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 11/20/2022]
Abstract
The left inferior parietal lobe (IPL), a brain region localized to the ventro-dorsal stream, is known to be critical to motor imagery (MI) performance. Yet its specific role in processes underlying MI, namely the generation, maintenance, manipulation, and controllability of motor images, is conflicting in the literature. To determine the specific role of the left IPL in MI, the current study sought to examine the effect inhibition of the left IPL has on performance on two disparate measures thought to probe different MI processes within the same participants. Participants (N = 31) completed the hand laterality judgment task (HLJT), employed to probe processes related to manipulation and controllability, and mental chronometry, employed to probe processes related to generation and maintenance, after receiving either inhibitory transcranial magnetic stimulation to the left IPL (Active-TMS group), or with the coil angled away from the scalp (Sham group). Impaired performance on the HLJT was observed following active TMS relative to sham. Similar mental chronometry performance resulted regardless of left IPL inhibition. In showing that inhibition of the left IPL selectively disrupted performance on the HLJT but not mental chronometry, our findings indicate that the left IPL is specifically involved in image manipulation and controllability during MI. Ultimately, the current study extends our understanding of the role of the left IPL in MI.
Collapse
|
112
|
Santoro S, Lo Buono V, Corallo F, Cartella E, Micchia K, Palmeri R, Arcadi FA, Bramanti A, Marino S. Motor imagery in stroke patients: a descriptive review on a multidimensional ability. Int J Neurosci 2019; 129:821-832. [DOI: 10.1080/00207454.2019.1567509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Simona Santoro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Viviana Lo Buono
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Emanuele Cartella
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Katia Micchia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Rosanna Palmeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | | | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Department of Neurobioimaging, Messina, Italy
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
113
|
|
114
|
Pedrazzini E, Ptak R. Damage to the right temporoparietal junction, but not lateral prefrontal or insular cortex, amplifies the role of goal-directed attention. Sci Rep 2019; 9:306. [PMID: 30670788 PMCID: PMC6342971 DOI: 10.1038/s41598-018-36537-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/23/2018] [Indexed: 02/04/2023] Open
Abstract
Whether an object captures attention depends on the interplay between its saliency and current behavioral predispositions of the observer. Neuroimaging work has implied a ventral attention network, comprising the temporoparietal junction (TPJ), lateral prefrontal cortex (lPFC) and the insula, in attentional orienting toward salient events. Activity of the TPJ is driven by novel and unexpected objects, while the lateral prefrontal cortex is involved in stimulus-driven as well as goal-directed processing. The insula in turn, is part of a saliency network, which has been implicated in detecting biologically salient signals. These roles predict that damage to the TPJ, lPFC, or insula should affect performance in tasks measuring the capture of attention by salient and behaviorally relevant events. Here, we show that patients with lesions to the right TPJ have a characteristic increase of attentional capture by relevant distracters. In contrast, damage to the lPFC or insular cortex only increases reaction times, irrespective of the task-relevant properties of distracters. These findings show that acquired damage to the TPJ pathologically amplifies the capture of attention by task-relevant information, and thus indicate that the TPJ has a decisive role in goal-directed orienting.
Collapse
Affiliation(s)
- Elena Pedrazzini
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Division of Neurorehabilitation, Geneva University Hospital, Geneva, Switzerland. .,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
115
|
Ptak R. The representational nature of the body schema: Comment on "Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics" by V. Mohan et al. Phys Life Rev 2019; 30:116-118. [PMID: 30642780 DOI: 10.1016/j.plrev.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Radek Ptak
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland; Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Medical School, University of Geneva, Geneva, Switzerland; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
116
|
Saleh S, Sandroff BM, Vitiello T, Owoeye O, Hoxha A, Hake P, Goverover Y, Wylie G, Yue G, DeLuca J. The Role of Premotor Areas in Dual Tasking in Healthy Controls and Persons With Multiple Sclerosis: An fNIRS Imaging Study. Front Behav Neurosci 2018; 12:296. [PMID: 30618658 PMCID: PMC6297844 DOI: 10.3389/fnbeh.2018.00296] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
Persons with multiple sclerosis (pwMS) experience declines in physical and cognitive abilities and are challenged by dual-tasks. Dual-tasking causes a drop in performance, or what is known as dual-task cost (DTC). This study examined DTC of walking speed (WS) and cognitive performance (CP) in pwMS and healthy controls (HCs) and the effect of dual-tasking on cortical activation of bilateral premotor cortices (PMC) and bilateral supplementary motor area (SMA). Fourteen pwMS and 14 HCs performed three experimental tasks: (1) single cognitive task while standing (SingCog); (2) single walking task (SingWalk); and (3) dual-task (DualT) that included concurrent performance of the SingCog and SingWalk. Six trials were collected for each condition and included measures of cortical activation, WS and CP. WS of pwMS was significantly lower than HC, but neuropsychological (NP) measures were not significantly different. pwMS and HC groups had similar DTC of WS, while DTC of CP was only significant in the MS group; processing speed and visual memory predicted 55% of this DTC. DualT vs. SingWalk recruited more right-PMC activation only in HCs and was associated with better processing speed. DualT vs. SingCog recruited more right-PMC activation and bilateral-SMA activation in both HC and pwMS. Lower baseline WS and worse processing speed measures in pwMS predicted higher recruitment of right-SMA (rSMA) activation suggesting maladaptive recruitment. Lack of significant difference in NP measures between groups does not rule out the influence of cognitive factors on dual-tasking performance and cortical activations in pwMS, which might have a negative impact on quality of life.
Collapse
Affiliation(s)
- Soha Saleh
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Brian M Sandroff
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tyler Vitiello
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Oyindamola Owoeye
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Armand Hoxha
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Patrick Hake
- Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States
| | - Yael Goverover
- Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States.,Department of Occupational Therapy, New York University, New York, NY, United States
| | - Glenn Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
| | - Guang Yue
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John DeLuca
- Rutgers New Jersey Medical School, Newark, NJ, United States.,Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States
| |
Collapse
|
117
|
Fiori F, Chiappini E, Avenanti A. Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway. Neuroimage 2018; 183:847-858. [DOI: 10.1016/j.neuroimage.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022] Open
|
118
|
Hoffmann S, Borges U, Bröker L, Laborde S, Liepelt R, Lobinger BH, Löffler J, Musculus L, Raab M. The Psychophysiology of Action: A Multidisciplinary Endeavor for Integrating Action and Cognition. Front Psychol 2018; 9:1423. [PMID: 30210379 PMCID: PMC6124386 DOI: 10.3389/fpsyg.2018.01423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/20/2018] [Indexed: 01/26/2023] Open
Abstract
There is a vast amount of literature concerning the integration of action and cognition. Although this broad research area is of great interest for many disciplines like sports, psychology and cognitive neuroscience, only a few attempts tried to bring together different perspectives so far. Our goal is to provide a perspective to spark a debate across theoretical borders and integration of different disciplines via psychophysiology. In order to boost advances in this research field it is not only necessary to become aware of the different areas that are relevant but also to consider methodological aspects and challenges. We briefly describe the most relevant theoretical accounts to the question of how internal and external information processes or factors interact and, based on this, argue that research programs should consider the three dimensions: (a) dynamics of movements; (b) multivariate measures and; (c) dynamic statistical parameters. Only with an extended perspective on theoretical and methodological accounts, one would be able to integrate the dynamics of actions into theoretical advances.
Collapse
Affiliation(s)
- Sven Hoffmann
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Uirassu Borges
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Laura Bröker
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,2EA 4260 Normandie Université, Caen, France
| | - Roman Liepelt
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Babett H Lobinger
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Jonna Löffler
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Lisa Musculus
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,School of Applied Sciences, London Southbank University, London, United Kingdom
| |
Collapse
|
119
|
Sandini G, Mohan V, Sciutti A, Morasso P. Social Cognition for Human-Robot Symbiosis-Challenges and Building Blocks. Front Neurorobot 2018; 12:34. [PMID: 30050425 PMCID: PMC6051162 DOI: 10.3389/fnbot.2018.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework.
Collapse
Affiliation(s)
- Giulio Sandini
- Research Unit of Robotics, Brain, and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Vishwanathan Mohan
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Alessandra Sciutti
- Research Unit of Robotics, Brain, and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Pietro Morasso
- Research Unit of Robotics, Brain, and Cognitive Sciences (RBCS), Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
120
|
Skagenholt M, Träff U, Västfjäll D, Skagerlund K. Examining the Triple Code Model in numerical cognition: An fMRI study. PLoS One 2018; 13:e0199247. [PMID: 29953456 PMCID: PMC6023115 DOI: 10.1371/journal.pone.0199247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/11/2023] Open
Abstract
The Triple Code Model (TCM) of numerical cognition argues for the existence of three representational codes for number: Arabic digits, verbal number words, and analog nonsymbolic magnitude representations, each subserved by functionally dissociated neural substrates. Despite the popularity of the TCM, no study to date has explored all three numerical codes within one fMRI paradigm. We administered three tasks, associated with each of the aforementioned numerical codes, in order to explore the neural correlates of numerosity processing in a sample of adults (N = 46). Independent task-control contrast analyses revealed task-dependent activity in partial support of the model, but also highlight the inherent complexity of a distributed and overlapping fronto-parietal network involved in all numerical codes. The results indicate that the TCM correctly predicts the existence of some functionally dissociated neural substrates, but requires an update that accounts for interactions with attentional processes. Parametric contrasts corresponding to differences in task difficulty revealed specific neural correlates of the distance effect, where closely spaced numbers become more difficult to discriminate than numbers spaced further apart. A conjunction analysis illustrated overlapping neural correlates across all tasks, in line with recent proposals for a fronto-parietal network of number processing. We additionally provide tentative results suggesting the involvement of format-independent numerosity-sensitive retinotopic maps in the early visual stream, extending previous findings of nonsymbolic stimulus selectivity. We discuss the functional roles of the components associated with the model, as well as the purported fronto-parietal network, and offer arguments in favor of revising the TCM.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Daniel Västfjäll
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Decision Research, Eugene, OR, United States of America
- Department of Psychology, University of Oregon, Eugene, OR, United States of America
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Kenny Skagerlund
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Management and Engineering, Division of Economics, JEDI-Lab, Linköping University, Linköping, Sweden
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| |
Collapse
|
121
|
Lee M, Ahn HS, Kwon SK, Kim SI. Cooperative and Competitive Contextual Effects on Social Cognitive and Empathic Neural Responses. Front Hum Neurosci 2018; 12:218. [PMID: 29950978 PMCID: PMC6008551 DOI: 10.3389/fnhum.2018.00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 02/02/2023] Open
Abstract
We aimed to differentiate the neural responses to cooperative and competitive contexts, which are the two of the most important social contexts in human society. Healthy male college students were asked to complete a Tetris-like task requiring mental rotation skills under individual, cooperative, and competitive contexts in an fMRI scanner. While the participants completed the task, pictures of others experiencing pain evoking emotional empathy randomly appeared to capture contextual effects on empathic neural responses. Behavioral results indicated that, in the presence of cooperation, participants solved the tasks more accurately and quickly than what they did when in the presence of competition. The fMRI results revealed activations in the dorsolateral prefrontal cortex (dlPFC) and dorsomedial prefrontal cortex (dmPFC) related to executive functions and theory of mind when participants performed the task under both cooperative and competitive contexts, whereas no activation of such areas was observed in the individual context. Cooperation condition exhibited stronger neural responses in the ventromedial prefrontal cortex (vmPFC) and dmPFC than competition condition. Competition condition, however, showed marginal neural responses in the cerebellum and anterior insular cortex (AIC). The two social contexts involved stronger empathic neural responses to other's pain than the individual context, but no substantial differences between cooperation and competition were present. Regions of interest analyses revealed that individual's trait empathy modulated the neural activity in the state empathy network, the AIC, and the dorsal anterior cingulate cortex (dACC) depending on the social context. These results suggest that cooperation improves task performance and activates neural responses associated with reward and mentalizing. Furthermore, the interaction between trait- and state-empathy was explored by correlation analyses between individual's trait empathy score and changing empathic brain activations along with the exposure to the cooperative and competitive social contexts.
Collapse
Affiliation(s)
- Minhye Lee
- Department of Education, Brain and Motivation Research Institute (bMRI), Korea University, Seoul, South Korea
| | - Hyun Seon Ahn
- Center for Teaching, Learning, and Technology, Inha University, Incheon, South Korea
| | - Soon Koo Kwon
- Education Performance Evaluation Center, Dankook University, Yongin, South Korea
| | - Sung-il Kim
- Department of Education, Brain and Motivation Research Institute (bMRI), Korea University, Seoul, South Korea
| |
Collapse
|
122
|
Gilbert SJ, Fung H. Decoding intentions of self and others from fMRI activity patterns. Neuroimage 2018; 172:278-290. [DOI: 10.1016/j.neuroimage.2017.12.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
|
123
|
Zuo N, Yang Z, Liu Y, Li J, Jiang T. Core networks and their reconfiguration patterns across cognitive loads. Hum Brain Mapp 2018; 39:3546-3557. [PMID: 29676536 DOI: 10.1002/hbm.24193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks.
Collapse
Affiliation(s)
- Nianming Zuo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
124
|
Brich LFM, Bächle C, Hermsdörfer J, Stadler W. Real-Time Prediction of Observed Action Requires Integrity of the Dorsal Premotor Cortex: Evidence From Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci 2018; 12:101. [PMID: 29628880 PMCID: PMC5876293 DOI: 10.3389/fnhum.2018.00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Studying brain mechanisms underlying the prediction of observed action, the dorsal premotor cortex (PMd) has been suggested a key area. The present study probed this notion using repetitive transcranial magnetic stimulation (rTMS) to test whether interference in this area would affect the accuracy in predicting the time course of object directed actions performed with the right hand. Young and healthy participants observed actions in short videos. These were briefly occluded from view for 600 ms and resumed immediately afterwards. The task was to continue the action mentally and to indicate after each occlusion, whether the action was resumed at the right moment (condition in-time) or shifted. In a first run, single-pulse transcranial magnetic stimulation (sTMS) was delivered over the left primary hand-area during occlusion. In the second run, rTMS over the left PMd was applied during occlusion in half of the participants [experimental group (EG)]. The control group (CG) received sham-rTMS over the same area. Under rTMS, the EG predicted less trials correctly than in the sTMS run. Sham-rTMS in the CG had no effects on prediction. The interference in PMd interacted with the type of manipulation applied to the action’s time course occasionally during occlusion. The performance decrease of the EG was most pronounced in conditions in which the continuations after occlusions were too late in the action’s course. The present results extend earlier findings suggesting that real-time action prediction requires the integrity of the PMd. Different functional roles of this area are discussed. Alternative interpretations consider either simulation of specific motor programming functions or the involvement of a feature-unspecific predictor.
Collapse
Affiliation(s)
- Louisa F M Brich
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Christine Bächle
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Waltraud Stadler
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
125
|
Kraeutner SN, McWhinney SR, Solomon JP, Dithurbide L, Boe SG. Experience modulates motor imagery-based brain activity. Eur J Neurosci 2018. [PMID: 29512844 DOI: 10.1111/ejn.13900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whether or not brain activation during motor imagery (MI), the mental rehearsal of movement, is modulated by experience (i.e. skilled performance, achieved through long-term practice) remains unclear. Specifically, MI is generally associated with diffuse activation patterns that closely resemble novice physical performance, which may be attributable to a lack of experience with the task being imagined vs. being a distinguishing feature of MI. We sought to examine how experience modulates brain activity driven via MI, implementing a within- and between-group design to manipulate experience across tasks as well as expertise of the participants. Two groups of 'experts' (basketball/volleyball athletes) and 'novices' (recreational controls) underwent magnetoencephalography (MEG) while performing MI of four multi-articular tasks, selected to ensure that the degree of experience that participants had with each task varied. Source-level analysis was applied to MEG data and linear mixed effects modelling was conducted to examine task-related changes in activity. Within- and between-group comparisons were completed post hoc and difference maps were plotted. Brain activation patterns observed during MI of tasks for which participants had a low degree of experience were more widespread and bilateral (i.e. within-groups), with limited differences observed during MI of tasks for which participants had similar experience (i.e. between-groups). Thus, we show that brain activity during MI is modulated by experience; specifically, that novice performance is associated with the additional recruitment of regions across both hemispheres. Future investigations of the neural correlates of MI should consider prior experience when selecting the task to be performed.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Sean R McWhinney
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Jack P Solomon
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Lori Dithurbide
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.,School of Physiotherapy, Dalhousie University, Rm 407, 4th Floor Forrest Building, 5869 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| | - Shaun G Boe
- Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.,School of Physiotherapy, Dalhousie University, Rm 407, 4th Floor Forrest Building, 5869 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada.,School of Health and Human Performance, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
126
|
Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A 2018. [PMID: 29382744 DOI: 10.1073/pnas.1715766115.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCNA exhibited stronger connectivity with the DN than the DAN, whereas FPCNB exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCNA may be preferentially involved in the regulation of introspective processes, whereas FPCNB may be preferentially involved in the regulation of visuospatial perceptual attention.
Collapse
|
127
|
Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A 2018; 115:E1598-E1607. [PMID: 29382744 DOI: 10.1073/pnas.1715766115] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCNA exhibited stronger connectivity with the DN than the DAN, whereas FPCNB exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCNA may be preferentially involved in the regulation of introspective processes, whereas FPCNB may be preferentially involved in the regulation of visuospatial perceptual attention.
Collapse
|
128
|
Direct perception vs inferential processes in reading an opponent's mind: The case of a goalkeeper facing a soccer penalty kick: Comment on "Seeing mental states: An experimental strategy for measuring the observability of other minds" by Cristina Becchio et al. Phys Life Rev 2018; 24:107-110. [PMID: 29325934 DOI: 10.1016/j.plrev.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
|
129
|
Crockett RA, Hsu CL, Best JR, Liu-Ambrose T. Resting State Default Mode Network Connectivity, Dual Task Performance, Gait Speed, and Postural Sway in Older Adults with Mild Cognitive Impairment. Front Aging Neurosci 2017; 9:423. [PMID: 29311906 PMCID: PMC5742581 DOI: 10.3389/fnagi.2017.00423] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with an increased risk of falling. In particular, older adults with mild cognitive impairment (MCI) are more vulnerable to falling compared with their healthy counterparts. Major contributors to this increased falls risk include a decline in dual task performance, gait speed, and postural sway. Recent evidence highlights the potential influence of the default mode network (DMN), the frontoparietal network (FPN), and the supplementary motor area (SMA) on dual task performance, gait speed, and postural sway. The DMN is active during rest and deactivates during task-oriented processes, to maintain attention and stay on task. The FPN and SMA are involved in top-down attentional control, motor planning, and motor execution. The DMN shows less deactivation during task in older adults with MCI. This lack of deactivation is theorized to increase competition for resources between the DMN and task-related brain regions (e.g., the FPN and SMA), increasing distraction from the task and reducing task performance. However, no study has yet investigated the relationship between the between-network connectivity of the DMN with these regions and dual task walking, gait speed or postural sway. We hypothesized that greater functional connectivity both within the DMN and between DMN–FPN and DMN–SMA, will be associated with poorer performance during dual task walking, slower gait speed, and greater postural sway in older adults with MCI. Forty older adults with MCI were measured on a dual task-walking paradigm, gait speed over a 4-m walk, and postural sway using a sway-meter. Greater within-DMN connectivity was significantly correlated with poorer dual task performance. Furthermore, greater inter-network connectivity between the DMN and SMA was significantly correlated with slower gait speed and greater postural sway on the eyes open floor sway task. Thus, greater resting state DMN functional connectivity may be an underlying neural mechanism for reduced dual task ability, slower gait speed, and greater postural sway, resulting in the increased risk of mobility disability and falling in older adults with MCI.
Collapse
Affiliation(s)
- Rachel A Crockett
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chun Liang Hsu
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John R Best
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|