101
|
Benini M, Fortuni S, Condò I, Alfedi G, Malisan F, Toschi N, Serio D, Massaro DS, Arcuri G, Testi R, Rufini A. E3 Ligase RNF126 Directly Ubiquitinates Frataxin, Promoting Its Degradation: Identification of a Potential Therapeutic Target for Friedreich Ataxia. Cell Rep 2017; 18:2007-2017. [PMID: 28228265 PMCID: PMC5329121 DOI: 10.1016/j.celrep.2017.01.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/14/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Friedreich ataxia (FRDA) is a severe genetic neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. To date, there is no therapy to treat this condition. The amount of residual frataxin critically affects the severity of the disease; thus, attempts to restore physiological frataxin levels are considered therapeutically relevant. Frataxin levels are controlled by the ubiquitin-proteasome system; therefore, inhibition of the frataxin E3 ligase may represent a strategy to achieve an increase in frataxin levels. Here, we report the identification of the RING E3 ligase RNF126 as the enzyme that specifically mediates frataxin ubiquitination and targets it for degradation. RNF126 interacts with frataxin and promotes its ubiquitination in a catalytic activity-dependent manner, both in vivo and in vitro. Most importantly, RNF126 depletion results in frataxin accumulation in cells derived from FRDA patients, highlighting the relevance of RNF126 as a new therapeutic target for Friedreich ataxia.
Collapse
Affiliation(s)
- Monica Benini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy; Fratagene Therapeutics Srl, Viale dei Campioni 8, 00144 Rome, Italy
| | - Silvia Fortuni
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Alfedi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Toschi
- Medical Physics Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA 02115, USA
| | - Dario Serio
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy; Fratagene Therapeutics Srl, Viale dei Campioni 8, 00144 Rome, Italy
| | - Damiano Sergio Massaro
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Gaetano Arcuri
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy; Fratagene Therapeutics Srl, Viale dei Campioni 8, 00144 Rome, Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Via Montpellier 1, 00133 Rome, Italy; Fratagene Therapeutics Srl, Viale dei Campioni 8, 00144 Rome, Italy.
| |
Collapse
|
102
|
Sulfur Modifications of the Wobble U 34 in tRNAs and their Intracellular Localization in Eukaryotic Cells. Biomolecules 2017; 7:biom7010017. [PMID: 28218716 PMCID: PMC5372729 DOI: 10.3390/biom7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
The wobble uridine (U34) of transfer RNAs (tRNAs) for two-box codon recognition, i.e., tRNALysUUU, tRNAGluUUC, and tRNAGlnUUG, harbor a sulfur- (thio-) and a methyl-derivative structure at the second and fifth positions of U34, respectively. Both modifications are necessary to construct the proper anticodon loop structure and to enable them to exert their functions in translation. Thio-modification of U34 (s2U34) is found in both cytosolic tRNAs (cy-tRNAs) and mitochondrial tRNAs (mt-tRNAs). Although l-cysteine desulfurase is required in both cases, subsequent sulfur transfer pathways to cy-tRNAs and mt-tRNAs are different due to their distinct intracellular locations. The s2U34 formation in cy-tRNAs involves a sulfur delivery system required for the biosynthesis of iron-sulfur (Fe/S) clusters and certain resultant Fe/S proteins. This review addresses presumed sulfur delivery pathways for the s2U34 formation in distinct intracellular locations, especially that for cy-tRNAs in comparison with that for mt-tRNAs.
Collapse
|
103
|
Dong Y, Zhang D, Yu Q, Zhao Q, Xiao C, Zhang K, Jia C, Chen S, Zhang B, Zhang B, Li M. Loss of Ssq1 leads to mitochondrial dysfunction, activation of autophagy and cell cycle arrest due to iron overload triggered by mitochondrial iron-sulfur cluster assembly defects in Candida albicans. Int J Biochem Cell Biol 2017; 85:44-55. [PMID: 28163187 DOI: 10.1016/j.biocel.2017.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/30/2016] [Accepted: 01/29/2017] [Indexed: 01/10/2023]
Abstract
Iron-sulfur clusters perform essential functions in enzymatic catalysis and homeostatic regulation. Here we for the first time identified Ssq1 as an essential component for iron-sulfur cluster assembly in Candida albicans. Ssq1 played an important role in cell growth. Shutting off SSQ1 led to accumulation of intracellular iron, especially in mitochondria, and disorder of intracellular iron regulation. In tetO-SSQ1, iron overloading triggered the oxidative damage of mitochondrial function. Surprisingly, disruption of SSQ1 activated autophagic pathway. The mitochondrial dysfunction was further aggravated when CCZ1 (which is essential for autophagy) and SSQ1 was simultaneously deleted, suggesting that autophagy played a critical role in maintenance of mitochondrial function in tetO-SSQ1. In addition, double deletion of SSQ1 and CCZ1 further elevated cellular iron levels in comparison with tetO-SSQ1, indicating that autophagy participated in maintenance of iron homeostasis. Furthermore, we found that loss of SSQ1 led to increasing protein expression of Rnr1 and redistribution of Rnr2 from the nucleus to cytoplasm, and further resulted in cell cycle arrest. The results implied that cell cycle arrest was caused by activating the checkpoint pathway because of impairing the iron-sulfur cluster assembly in tetO-SSQ1. Shutting off SSQ1 led to a significant defect in filamentous development. Interestingly, the tetO-SSQ1ccz1Δ/Δ growth was inhibited on hyphae-inducing solid media. Both tetO-SSQ1 and tetO-SSQ1ccz1Δ/Δ exhibited extremely attenuated virulence, indicating that Ssq1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of iron-sulfur cluster assembly-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China; The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Sijia Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
104
|
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017; 8:6376-6398. [PMID: 28031527 PMCID: PMC5351639 DOI: 10.18632/oncotarget.14093] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- MCF-7 Cells
- Male
- Mice, Transgenic
- Mitochondria/enzymology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Principal Component Analysis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Spheroids, Cellular
- Tamoxifen/pharmacology
- Transcriptome
Collapse
Affiliation(s)
- Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Langerova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ekaterina Simonova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- School of Medical Science, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
105
|
Cai K, Tonelli M, Frederick RO, Markley JL. Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis. Biochemistry 2017; 56:487-499. [PMID: 28001042 PMCID: PMC5267338 DOI: 10.1021/acs.biochem.6b00447] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/20/2016] [Indexed: 02/02/2023]
Abstract
Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.
Collapse
Affiliation(s)
- Kai Cai
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Marco Tonelli
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ronnie O. Frederick
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - John L. Markley
- Mitochondrial
Protein Partnership, Center for Eukaryotic
Structural Genomics, and National Magnetic Resonance Facility at Madison,
Biochemistry
Department, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
106
|
Yu Q, Chan SY. Mitochondrial and Metabolic Drivers of Pulmonary Vascular Endothelial Dysfunction in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:373-383. [PMID: 29047100 DOI: 10.1007/978-3-319-63245-2_24] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary hypertension (PH) is a deadly and increasingly prevalent vascular disease characterized by excessive pulmonary vascular remodeling and right ventricular dysfunction which leads to right heart failure, multiorgan dysfunction, and premature death. The cause of the vascular remodeling in PH remains elusive, and thus current treatments are marginally effective and prognosis of PH remains poor. Increasing evidence indicates the pathogenic importance of endothelial dysfunction in PH. However, the underlying mechanisms of such dysfunction are not well described. Endothelial apoptosis and hyperproliferation have been identified in patients with PH. Both are linked with the increased oxidative stress and inflammatory responses, and are influenced by various genetic and exogenous stresses. Importantly, contrary to historic dogma that suggested a negligible role for mitochondria and energy balance in endothelial pathology, recent findings have implicated the role of endothelial metabolism directly in PH. This chapter addresses the emerging role of mitochondria in pulmonary vascular endothelial dysfunction in PH. A more sophisticated understanding of the biochemical, metabolic, molecular, and physiologic underpinnings of this emerging paradigm should enable the development of a new generation of targeted therapies that will stunt or reverse pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Qiujun Yu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA. .,Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST1704.2, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
107
|
Liu G, Wang Y, Anderson GJ, Camaschella C, Chang Y, Nie G. Functional Analysis of GLRX5 Mutants Reveals Distinct Functionalities of GLRX5 Protein. J Cell Biochem 2016; 117:207-17. [PMID: 26100117 DOI: 10.1002/jcb.25267] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 11/10/2022]
Abstract
Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
| | - Yongwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China.,Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Clara Camaschella
- Vita-Salute University, and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
| |
Collapse
|
108
|
Vranish JN, Das D, Barondeau DP. Real-Time Kinetic Probes Support Monothiol Glutaredoxins As Intermediate Carriers in Fe-S Cluster Biosynthetic Pathways. ACS Chem Biol 2016; 11:3114-3121. [PMID: 27653419 DOI: 10.1021/acschembio.6b00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.
Collapse
Affiliation(s)
- James N. Vranish
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - Deepika Das
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
109
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
110
|
Zhou ZD, Saw WT, Tan EK. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5534-5546. [PMID: 27631878 DOI: 10.1007/s12035-016-0099-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Wuan-Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| |
Collapse
|
111
|
Ding W, Zhang H, Xu J, Wen Y, Zhang J, Liu H, Yao Y, Zhang Z. Development of solution-dispersible hyperbranched conjugated polymer nanoparticles for Fe3+fluorescent detection and their application in logic gate. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wanchuan Ding
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Hui Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Jingkun Xu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Yangping Wen
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Jie Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Hongtao Liu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Yuanyuan Yao
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Zhouxiang Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| |
Collapse
|
112
|
Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, Marsit CJ. Epigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA). ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1253-60. [PMID: 26771251 PMCID: PMC4977055 DOI: 10.1289/ehp.1510437] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/18/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Arsenic is one of the most commonly encountered environmental toxicants, and research from model systems has suggested that one mode of its toxic activity may be through alterations in DNA methylation. In utero exposure to arsenic can affect fetal, newborn, and infant health, resulting in a range of phenotypic outcomes. OBJECTIVES This study examined variation in placental DNA methylation and its relationship to arsenic exposure in 343 individuals enrolled in the New Hampshire Birth Cohort Study. METHODS Linear regression models using a reference-free correction to account for cellular composition were employed to determine CpG loci affected by arsenic levels. RESULTS Total arsenic measured in maternal urine during the second trimester was not associated with methylation in the placenta, whereas arsenic levels quantified through maternal toenail collected at birth were associated with methylation at a single CpG locus (p = 4.1 × 10-8). Placenta arsenic levels were associated with 163 differentially methylated loci (false discovery rate < 0.05), with 11 probes within the LYRM2 gene reaching genome-wide significance (p < 10-8). Measurement of LYRM2 mRNA levels indicated that methylation was weakly to moderately correlated with expression (r = 0.15, p < 0.06). In addition, we identified pathways suggesting changes in placental cell subpopulation proportions associated with arsenic exposure. CONCLUSIONS These data demonstrate the potential for arsenic, even at levels commonly experienced in a U.S. population, to have effects on the DNA methylation status of specific genes in the placenta and thus supports a potentially novel mechanism for arsenic to affect long-term children's health. CITATION Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, Marsit CJ. 2016. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire Birth Cohort Study (USA). Environ Health Perspect 124:1253-1260; http://dx.doi.org/10.1289/ehp.1510437.
Collapse
Affiliation(s)
- Benjamin B. Green
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - E. Andres Houseman
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carmen J. Marsit
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Address correspondence to C.J. Marsit, Department of Epidemiology, Geisel School of Medicine at Dartmouth, 7650 Remsen, Hanover, NH 03755 USA. Telephone: (603)-650-1825. E-mail:
| |
Collapse
|
113
|
Abstract
Iron is an essential cofactor for many basic metabolic pathways in pathogenic microbes and their hosts. It is also dangerous as it can catalyse the production of reactive free radicals. This dual character makes the host can either limit iron availability to invading microbes or exploit iron to induce toxicity to pathogens. Successful pathogens, including Leishmania species, must possess mechanisms to circumvent host's iron limitation and iron-induced toxicity in order to survive. In this review, we discuss the regulation of iron metabolism in the setting of infection and delineate the iron acquisition strategies used by Leishmania parasites and their subversions to host iron metabolism to overcome host's iron-related defences.
Collapse
|
114
|
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016; 2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson's disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences-mitochondrial dysfunction, iron accumulation, and oxidative damage-generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson's disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation-by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways-is a viable therapy for retarding this cycle.
Collapse
|
115
|
Abstract
Radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Of approximately 114,000 of these enzymes, 8 are known to be present in humans: MOCS1, molybdenum cofactor biosynthesis; LIAS, lipoic acid biosynthesis; CDK5RAP1, 2-methylthio-N(6)-isopentenyladenosine biosynthesis; CDKAL1, methylthio-N(6)-threonylcarbamoyladenosine biosynthesis; TYW1, wybutosine biosynthesis; ELP3, 5-methoxycarbonylmethyl uridine; and RSAD1 and viperin, both of unknown function. Aberrations in the genes encoding these proteins result in a variety of diseases. In this review, we summarize the biochemical characterization of these 8 radical S-adenosylmethionine enzymes and, in the context of human health, describe the deleterious effects that result from such genetic mutations.
Collapse
Affiliation(s)
- Bradley J Landgraf
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Erin L McCarthy
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802.,The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
116
|
Rouault TA. Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev 2016; 38:31-37. [PMID: 27026139 DOI: 10.1016/j.gde.2016.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 02/07/2023]
Abstract
Pathological overload of iron in the mitochondrial matrix has been observed in numerous diseases, including sideroblastic anemias, which have many causes, and in genetic diseases that affect iron-sulfur cluster biogenesis, heme synthesis, and mitochondrial protein translation and its products. Although high expression of the mitochondrial iron importer, mitoferrin, appears to be an underlying common feature, it is unclear what drives high mitoferrin expression and what other proteins are involved in trapping excess toxic iron in the mitochondrial matrix. Numerous examples of human diseases and model systems suggest that mitochondrial iron homeostasis is coordinated through transcriptional remodeling. A cytosolic/nuclear molecule may affect a transcriptional factor to coordinate the events that lead to iron accumulation, but no candidates for this role have yet been identified.
Collapse
Affiliation(s)
- Tracey A Rouault
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, United States.
| |
Collapse
|
117
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
118
|
Kumar S, Wang J, Rani R, Gandhi CR. Hepatic Deficiency of Augmenter of Liver Regeneration Exacerbates Alcohol-Induced Liver Injury and Promotes Fibrosis in Mice. PLoS One 2016; 11:e0147864. [PMID: 26808690 PMCID: PMC4726524 DOI: 10.1371/journal.pone.0147864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/08/2016] [Indexed: 12/29/2022] Open
Abstract
Why only a subpopulation (about 15%) of humans develops liver cirrhosis due to alcohol is a critical as yet unanswered question. Liver-specific depletion of augmenter of liver regeneration (ALR) protein in mice causes robust steatosis and hepatocyte apoptosis by 2 weeks; these pathologies regress subsequently with return of ALR expression even at lower than control levels, but the mice develop modest steatohepatitis by 8 weeks. We aimed to investigate whether chronic alcohol ingestion promotes excessive hepatic fibrosis in these ALR-deficient mice. Liver-specific ALR-deficient and wild type (WT) female mice (8–10 weeks old) were placed on 4% alcohol-supplemented or isocaloric diet for 4 weeks. Liver sections were examined for histopathology, and parameters of steatosis and fibrosis were quantified. The mRNA expression of alcohol dehydrogenase-1, acetaldehyde dehydrogenase-1 and cytochrome P450-2E1 increased in WT mice but decreased in ALR-deficient mice upon alcohol ingestion. While alcohol induced steatosis and mild inflammation in WT mice, ALR-deficient mice showed minimal steatosis, strong hepatocellular injury and inflammation, prominent ductular proliferation, and robust fibrosis. Compared to the WT mice, alcohol feeding of ALR-deficient mice resulted in significantly greater increase in hepatic TNFα and TGFβ, and oxidative stress; there was also hepatic iron accumulation, robust lipid peroxidation and mitochondrial DNA damage. Importantly, similar to ALR-deficient mice, lower hepatic ALR levels in human alcoholic liver cirrhosis were associated with increased iron content, reduced expression of alcohol dehydrogenase and acetaldehyde dehydrogenase, and elevated fibrogenic markers. We conclude that ALR deficiency or anomaly can play a critical role in alcohol-induced hepatic fibrosis/cirrhosis, mechanisms of which may involve dysregulation of alcohol metabolism and iron homeostasis, mitochondrial damage and oxidative injury.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Richa Rani
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Chandrashekhar R. Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United states of America
- * E-mail:
| |
Collapse
|
119
|
Liu Y, Shen R, Ru J, Yao X, Yang Y, Liu H, Tang X, Bai D, Zhang G, Liu W. A reversible rhodamine 6G-based fluorescence turn-on probe for Fe3+ in water and its application in living cell imaging. RSC Adv 2016. [DOI: 10.1039/c5ra09758d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A reversible fluorescent probe L based on rhodamine 6G was synthesized for the optical detection of Fe3+ in water.
Collapse
|
120
|
Lee KY, Kim JH, Bae YJ, Lee BJ. pH Effect on the Structure of Reduced NifU-like Protein from Helicobacter pylori. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.3.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
121
|
Wang L, Cui S, Ma L, Kong L, Geng X. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. INSECT MOLECULAR BIOLOGY 2015; 24:634-648. [PMID: 26387499 DOI: 10.1111/imb.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Oxygen is essential for aerobic life, and hypoxia has very severe consequences. Organisms need to overcome low oxygen levels to maintain biological functions during normal development and in disease states. The mechanism underlying the hypoxic response has been widely investigated in model animals such as Drosophila melanogaster and Caenorhabditis elegans. Hypoxia-inducible factor (HIF), a key gene product in the response to oxygen deprivation, is primarily regulated by prolyl hydroxylase domain enzymes (PHDs). However, recent findings have uncovered novel HIF-independent functions of PHDs. This review provides an overview of how invertebrates are able to sustain hypoxic damages, and highlights some recent discoveries in the regulation of cellular signalling by PHDs. Given that some core genes and major pathways are evolutionarily conserved, these research findings could provide insight into oxygen-sensitive signalling in mammals, and have biomedical implications for human diseases.
Collapse
Affiliation(s)
- L Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - S Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - L Kong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - X Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
122
|
Abrahão A, Pedroso JL, Braga-Neto P, Bor-Seng-Shu E, de Carvalho Aguiar P, Barsottini OGP. Milestones in Friedreich ataxia: more than a century and still learning. Neurogenetics 2015; 16:151-60. [PMID: 25662948 DOI: 10.1007/s10048-015-0439-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia worldwide. This review highlights the main clinical features, pathophysiological mechanisms, and therapeutic approaches for FRDA patients. The disease is characterized by a combination of neurological involvement (ataxia and neuropathy), cardiomyopathy, skeletal abnormalities, and glucose metabolism disturbances. FRDA is caused by expanded guanine-adenine-adenine (GAA) triplet repeats in the first intron of the frataxin gene (FXN), resulting in reduction of messenger RNA and protein levels of frataxin in different tissues. The molecular and metabolic disturbances, including iron accumulation, lead to pathological changes characterized by spinal cord and dorsal root ganglia atrophy, dentate nucleus atrophy without global cerebellar volume reduction, and hypertrophic cardiomyopathy. DNA analysis is the hallmark for the diagnosis of FRDA. There is no specific treatment to stop the disease progression in FRDA patients. However, a number of drugs are under investigation. Therapeutic approaches intend to improve mitochondrial functioning and to increase FXN expression.
Collapse
Affiliation(s)
- Agessandro Abrahão
- Division of General Neurology and Ataxia Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, Rua Pedro de Toledo 650 Vila Clementino, São Paulo, 04039-002, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
123
|
Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe-S Assembly Complex. Biochemistry 2015; 54:3880-9. [PMID: 26016518 PMCID: PMC4675465 DOI: 10.1021/bi5014497] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron-sulfur (Fe-S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe-S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe-S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe-S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe-S assembly complex. Here the kinetics of Fe-S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe-S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe-S assembly complex.
Collapse
Affiliation(s)
- Nicholas G. Fox
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Deepika Das
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Mrinmoy Chakrabarti
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Paul A. Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
124
|
Fox NG, Chakrabarti M, McCormick SP, Lindahl PA, Barondeau DP. The Human Iron-Sulfur Assembly Complex Catalyzes the Synthesis of [2Fe-2S] Clusters on ISCU2 That Can Be Transferred to Acceptor Molecules. Biochemistry 2015; 54:3871-9. [PMID: 26016389 PMCID: PMC4675461 DOI: 10.1021/bi5014485] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors for most life forms. In human mitochondria, the core Fe-S biosynthetic enzymatic complex (called SDUF) consists of NFS1, ISD11, ISCU2, and frataxin (FXN) protein components. Few mechanistic details about how this complex synthesizes Fe-S clusters and how these clusters are delivered to targets are known. Here circular dichroism and Mössbauer spectroscopies were used to reveal details of the Fe-S cluster assembly reaction on the SDUF complex. SDUF reactions generated [2Fe-2S] cluster intermediates that readily converted to stable [2Fe-2S] clusters bound to uncomplexed ISCU2. Similar reactions that included the apo Fe-S acceptor protein human ferredoxin (FDX1) resulted in formation of [2Fe-2S]-ISCU2 rather than [2Fe-2S]-FDX1. Subsequent addition of dithiothreitol (DTT) induced transfer of the cluster from ISCU2 to FDX1, suggesting that [2Fe-2S]-ISCU2 is an intermediate. Reactions that initially included DTT rapidly generated [2Fe-2S]-FDX1 and bypassed formation of [2Fe-2S]-ISCU2. In the absence of apo-FDX1, incubation of [2Fe-2S]-ISCU2 with DTT generated [4Fe-4S]-ISCU2 species. Together, these results conflict with a recent report of stable [4Fe-4S] cluster formation on the SDUF complex. Rather, they support a model in which SDUF builds transient [2Fe-2S] cluster intermediates that generate clusters on sulfur-containing molecules, including uncomplexed ISCU2. Additional small molecule or protein factors are required for the transfer of these clusters to Fe-S acceptor proteins or the synthesis of [4Fe-4S] clusters.
Collapse
Affiliation(s)
- Nicholas G. Fox
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Mrinmoy Chakrabarti
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Sean P. McCormick
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Paul A. Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
125
|
Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts and RARS with thrombocytosis. Am J Hematol 2015; 90:549-59. [PMID: 25899435 DOI: 10.1002/ajh.24038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Abstract
DISEASE OVERVIEW Ring sideroblasts (RS) are erythroid precursors with abnormal perinuclear mitochondrial iron accumulation. Two myeloid neoplasms defined by the presence of RS, include refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis (RARS-T). DIAGNOSIS RARS is a lower risk myelodysplastic syndrome (MDS) with dysplasia limited to the erythroid lineage, <5% bone marrow (BM) blasts and ≥15% BM RS. RARS-T is a provisional entity in the MDS/MPN (myeloproliferative neoplasm) overlap syndromes, with diagnostic features of RARS, along with a platelet count ≥450 × 10(9)/L and large atypical megakaryocytes similar to those observed in BCR-ABL1 negative MPN. Mutations and Karyotype: Mutations in the SF3B1 gene are seen in ≥80% of patients with RARS and RARS-T, and strongly correlate with the presence of BM RS; RARS-T patients have additional mutations such as, JAK2V617F (∼60%), MPL (<5%), and CALR (<5%). Cytogenetic abnormalities are uncommon in both RARS and RARS-T. RISK STRATIFICATION Most patients with RARS are stratified into lower risk groups by the International Prognostic Scoring System (IPSS) for MDS and the revised IPSS. Disease outcome in RARS-T is better than that of RARS, but worse than that of essential thrombocytosis. Both RARS and RARS-T have a low risk of leukemic transformation. TREATMENT Anemia and iron overload are complications in both diseases and are managed similar to lower risk MDS. Aspirin therapy is reasonable in RARS-T, especially in the presence of JAK2V617F, but the value of platelet-lowering drugs is uncertain. Case reports of RARS-T therapy with lenalidomide warrant additional studies.
Collapse
Affiliation(s)
- Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine; Mayo Clinic; Rochester Minnesota
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
126
|
Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:1253-71. [PMID: 25655665 PMCID: PMC4576882 DOI: 10.1016/j.bbamcr.2015.01.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life - the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Chi-Lin Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Justin P Ishida
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
127
|
White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 2015; 7:695-713. [PMID: 25825391 PMCID: PMC4459813 DOI: 10.15252/emmm.201404511] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
Collapse
Affiliation(s)
- Kevin White
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Lu
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Annis
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew E Hale
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James E Dahlman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander R Opotowsky
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan C Osorio
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen J Haley
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Bader
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - David Systrom
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard C Jin
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
128
|
An W, Zhang J, Chang L, Zhang Y, Wan Y, Ren Y, Niu D, Wu J, Zhu X, Guo Y. Mutation analysis of Chinese sporadic congenital sideroblastic anemia by targeted capture sequencing. J Hematol Oncol 2015; 8:55. [PMID: 25985931 PMCID: PMC4490691 DOI: 10.1186/s13045-015-0154-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/11/2015] [Indexed: 01/19/2023] Open
Abstract
Background Congenital sideroblastic anemias (CSAs) comprise a group of heterogenous genetic diseases that are caused by the mutation of various genes involved in heme biosynthesis, iron-sulfur cluster biogenesis, or mitochondrial solute transport or metabolism. However, approximately 40 % of patients with CSA have not been found to have pathogenic gene mutations. In this study, we systematically analyzed the mutation profile in 10 Chinese patients with sporadic CSA. Findings We performed targeted deep sequencing analysis in ten patients with CSA using a panel of 417 genes that included known CSA-related genes. Mitochondrial genomes were analyzed using next-generation sequencing with a mitochondria enrichment kit and the HiSeq2000 sequencing platform. The results were confirmed by Sanger sequencing. The ALAS2 mutation was detected in one patient. SLC25A38 mutations were detected in three patients, including three novel mutations. Mitochondrial DNA deletions were detected in two patients. No disease-causing mutations were detected in four patients. Conclusion To our knowledge, the pyridoxine-effective mutation C471Y of ALAS2, the compound heterozygous mutation W87X, I143Pfs146X, and the homozygous mutation R134C of SLC25A38 were found for the first time. Our findings add to the number of reported cases of this rare disease and to the CSA pathogenic mutation database. Our findings expand the phenotypic profile of mitochondrial DNA deletion mutations. This work also demonstrates the application of a congenital blood disease assay and targeted capture sequencing for the genetic screening analysis and diagnosis of heterogenous genetic CSA. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenbin An
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Jingliao Zhang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Lixian Chang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Yang Wan
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Yuanyuan Ren
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Deyun Niu
- MyGenostics Inc., Baltimore, MD, USA.
| | - Jian Wu
- MyGenostics Inc., Baltimore, MD, USA.
| | - Xiaofan Zhu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| |
Collapse
|
129
|
Posttranscriptional adaptations of the vascular endothelium to hypoxia. Curr Opin Hematol 2015; 22:243-51. [PMID: 25767954 DOI: 10.1097/moh.0000000000000139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Remarkable new advances have been made in the field of posttranscriptional gene regulation over recent years. These include the revelation of noncoding RNAs, such as microRNAs, antisense transcripts and their interactions with RNA-binding proteins (RBPs) in the context of both health and disease settings, such as hypoxia. In particular, these discoveries bear much relevance to the field of vascular biology, which historically has focused upon transcriptional processes. Thus, the contributions of these posttranscriptional gene regulatory mechanisms to vascular and endothelial biology represent a newer concept that warrants discussion. RECENT FINDINGS Recent studies have revealed two emerging themes that are critical to endothelial/vascular biology and function. First is the functional integration between the microRNA pathway and the cellular hypoxic response, which, in addition to specific microRNAs, involves key components of the microRNA biogenesis machinery. A key concept here is the regulation of a master transcriptional programme through posttranscriptional mechanisms. The second major theme involves the dynamic interactions between RBPs, microRNAs and antisense RNAs. The condition-dependent collaborations and competitions between these different classes of posttranscriptional regulators reveal a critical layer of control for gene expression. SUMMARY Taken together, these findings bear significant diagnostic and therapeutic implications for vascular disease.
Collapse
|
130
|
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 2015; 21:92-105. [PMID: 25667951 DOI: 10.1016/j.mito.2015.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.
Collapse
Affiliation(s)
- Natalia P Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Fernanda Lourido
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Carlos M Carrasco
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
131
|
Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, Kalinowski DS, Richardson DR. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1130-44. [PMID: 25661197 DOI: 10.1016/j.bbamcr.2015.01.021] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Iron is a crucial transition metal for virtually all life. Two major destinations of iron within mammalian cells are the cytosolic iron-storage protein, ferritin, and mitochondria. In mitochondria, iron is utilized in critical anabolic pathways, including: iron-storage in mitochondrial ferritin, heme synthesis, and iron-sulfur cluster (ISC) biogenesis. Although the pathways involved in ISC synthesis in the mitochondria and cytosol have begun to be characterized, many crucial details remain unknown. In this review, we discuss major aspects of the journey of iron from its initial cellular uptake, its modes of trafficking within cells, to an overview of its downstream utilization in the cytoplasm and within mitochondria. The understanding of mitochondrial iron processing and its communication with other organelles/subcellular locations, such as the cytosol, has been elucidated by the analysis of certain diseases e.g., Friedreich's ataxia. Increased knowledge of the molecules and their mechanisms of action in iron processing pathways (e.g., ISC biogenesis) will shape the investigation of iron metabolism in human health and disease.
Collapse
Affiliation(s)
- D J R Lane
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - A M Merlot
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - M L-H Huang
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D-H Bae
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - P J Jansson
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - S Sahni
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D S Kalinowski
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia
| | - D R Richardson
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
132
|
Vranish JN, Russell WK, Yu LE, Cox RM, Russell DH, Barondeau DP. Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways. J Am Chem Soc 2015; 137:390-8. [PMID: 25478817 PMCID: PMC4675328 DOI: 10.1021/ja510998s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iron-sulfur (Fe-S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe-S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe-S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe-2S] and [4Fe-4S] clusters), ligand environments ([2Fe-2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe-S cluster transfer reactions are monitored between two Fdx molecules that have identical Fe-S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe-2S]-DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe-S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe-S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. We anticipate that this cluster detection methodology will transform the study of Fe-S cluster pathways and potentially other metal cofactor biosynthetic pathways.
Collapse
Affiliation(s)
- James N. Vranish
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77842-3012, United States
| | - William K. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Lusa E. Yu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rachael M. Cox
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - David P. Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| |
Collapse
|
133
|
Kim JH, Bothe JR, Alderson TR, Markley JL. Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1416-28. [PMID: 25450980 DOI: 10.1016/j.bbamcr.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/18/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
Abstract
Proteins containing iron-sulfur (Fe-S) clusters arose early in evolution and are essential to life. Organisms have evolved machinery consisting of specialized proteins that operate together to assemble Fe-S clusters efficiently so as to minimize cellular exposure to their toxic constituents: iron and sulfide ions. To date, the best studied system is the iron-sulfur cluster (isc) operon of Escherichia coli, and the eight ISC proteins it encodes. Our investigations over the past five years have identified two functional conformational states for the scaffold protein (IscU) and have shown that the other ISC proteins that interact with IscU prefer to bind one conformational state or the other. From analyses of the NMR spectroscopy-derived network of interactions of ISC proteins, small-angle X-ray scattering (SAXS) data, chemical crosslinking experiments, and functional assays, we have constructed working models for Fe-S cluster assembly and delivery. Future work is needed to validate and refine what has been learned about the E. coli system and to extend these findings to the homologous Fe-S cluster biosynthetic machinery of yeast and human mitochondria. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Jin Hae Kim
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jameson R Bothe
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - T Reid Alderson
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Markley
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
134
|
Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, Farina L, Ghezzi D, Moroni I. Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front Genet 2014; 5:412. [PMID: 25477904 PMCID: PMC4238403 DOI: 10.3389/fgene.2014.00412] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/06/2014] [Indexed: 11/13/2022] Open
Abstract
Multiple Mitochondrial Dysfunction Syndrome (MMDS) comprises a group of severe autosomal recessive diseases with onset in early infancy and characterized by a systemic disorder of energy metabolism, resulting in weakness, respiratory failure, lack of neurological development, lactic acidosis, and early death. Biochemical findings include defects of complexes I, II, and III of the mitochondrial respiratory chain and severe deficiency of Pyruvate dehydrogenase complex (PDHc). Three genes have been associated with MMDS since now: NFU1, BOLA3, and IBA57. We describe an Italian male patient presenting with severe psychomotor regression after an infectious episode, lactic acidosis, hyperglycinemia, reduction of respiratory chain complex II associated with a marked deficiency of PDHc activity. He carried two heterozygous mutations in NFU1, one novel (p.Cys210Phe) and one previously reported (p.Gly189Arg) missense change affecting highly conserved residues. A severe leukoencephalopathy with cavitations in deep white matter was disclosed at brain MRI, suggesting a peculiar neuroradiological phenotype associated with defect in this gene.
Collapse
Affiliation(s)
- Federica Invernizzi
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Massimo Zeviani
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Istituto Neurologico "Carlo Besta," Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Milan, Italy
| |
Collapse
|
135
|
Adrover M, Howes BD, Iannuzzi C, Smulevich G, Pastore A. Anatomy of an iron-sulfur cluster scaffold protein: Understanding the determinants of [2Fe-2S] cluster stability on IscU. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1448-56. [PMID: 25447544 DOI: 10.1016/j.bbamcr.2014.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 11/17/2022]
Abstract
Protein-bound iron sulfur clusters are prosthetic groups involved in several metabolic pathways. Understanding how they interact with the host protein and which factors influence their stability is therefore an important goal in biology. Here, we have addressed this question by studying the determinants of the 2Fe-2S cluster stability in the IscU/Isu protein scaffold. Through a detailed computational study based on a mixed quantum and classical mechanics approach, we predict that the simultaneous presence of two conserved residues, D39 and H105, has a conflicting role in cluster coordination which results in destabilizing cluster-loaded IscU/Isu according to a 'tug-of-war' mechanism. The effect is absent in the D39A mutant already known to host the cluster more stably. Our theoretical conclusions are directly supported by experimental data, also obtained from the H105A mutant, which has properties intermediate between the wild-type and the D39A mutant. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Miquel Adrover
- IUNICS, Departament de Química, Universitat de les Illes Balears, Crta. Valldemossa, km 7.5, E-07122 Palma de Mallorca, (Spain)
| | - Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Seconda Universita' di Napoli, Via De Crecchio 7, 80138 Naples, (Italy)
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King's College London, Denmark Hill Campus, London SE5, (UK).
| |
Collapse
|
136
|
Gomez M, Pérez-Gallardo RV, Sánchez LA, Díaz-Pérez AL, Cortés-Rojo C, Meza Carmen V, Saavedra-Molina A, Lara-Romero J, Jiménez-Sandoval S, Rodríguez F, Rodríguez-Zavala JS, Campos-García J. Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes. PLoS One 2014; 9:e111585. [PMID: 25356756 PMCID: PMC4214746 DOI: 10.1371/journal.pone.0111585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.
Collapse
Affiliation(s)
- Mauricio Gomez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Rocío V. Pérez-Gallardo
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Luis A. Sánchez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Alma L. Díaz-Pérez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Christian Cortés-Rojo
- Lab. de Bioquímica, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Victor Meza Carmen
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Alfredo Saavedra-Molina
- Lab. de Bioquímica, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier Lara-Romero
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Sergio Jiménez-Sandoval
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, México
| | - Francisco Rodríguez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, México
| | | | - Jesús Campos-García
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
137
|
Tamir S, Paddock ML, Darash-Yahana-Baram M, Holt SH, Sohn YS, Agranat L, Michaeli D, Stofleth JT, Lipper CH, Morcos F, Cabantchik IZ, Onuchic JN, Jennings PA, Mittler R, Nechushtai R. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1294-315. [PMID: 25448035 DOI: 10.1016/j.bbamcr.2014.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
A novel family of 2Fe-2S proteins, the NEET family, was discovered during the last decade in numerous organisms, including archea, bacteria, algae, plant and human; suggesting an evolutionary-conserved function, potentially mediated by their CDGSH Iron-Sulfur Domain. In human, three NEET members encoded by the CISD1-3 genes were identified. The structures of CISD1 (mitoNEET, mNT), CISD2 (NAF-1), and the plant At-NEET uncovered a homodimer with a unique "NEET fold", as well as two distinct domains: a beta-cap and a 2Fe-2S cluster-binding domain. The 2Fe-2S clusters of NEET proteins were found to be coordinated by a novel 3Cys:1His structure that is relatively labile compared to other 2Fe-2S proteins and is the reason of the NEETs' clusters could be transferred to apo-acceptor protein(s) or mitochondria. Positioned at the protein surface, the NEET's 2Fe-2S's coordinating His is exposed to protonation upon changes in its environment, potentially suggesting a sensing function for this residue. Studies in different model systems demonstrated a role for NAF-1 and mNT in the regulation of cellular iron, calcium and ROS homeostasis, and uncovered a key role for NEET proteins in critical processes, such as cancer cell proliferation and tumor growth, lipid and glucose homeostasis in obesity and diabetes, control of autophagy, longevity in mice, and senescence in plants. Abnormal regulation of NEET proteins was consequently found to result in multiple health conditions, and aberrant splicing of NAF-1 was found to be a causative of the neurological genetic disorder Wolfram Syndrome 2. Here we review the discovery of NEET proteins, their structural, biochemical and biophysical characterization, and their most recent structure-function analyses. We additionally highlight future avenues of research focused on NEET proteins and propose an essential role for NEETs in health and disease. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Sagi Tamir
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Mark L Paddock
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Merav Darash-Yahana-Baram
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Sarah H Holt
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Yang Sung Sohn
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Lily Agranat
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Dorit Michaeli
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jason T Stofleth
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Colin H Lipper
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Ioav Z Cabantchik
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Rachel Nechushtai
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
138
|
Zwarts L, Van Eijs F, Callaerts P. Glia in Drosophila behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:879-93. [PMID: 25336160 DOI: 10.1007/s00359-014-0952-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
Abstract
Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.
Collapse
Affiliation(s)
- L Zwarts
- Laboratory of Behavioral and Developmental Genetics VIB Center for the Biology of Disease, Center for Human Genetics, KULeuven, O&N IV Herestraat 49, Box 602, 3000, Louvain, Belgium
| | | | | |
Collapse
|
139
|
Ma Q, Xiong F, Zhang L. Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 2014; 19:1883-96. [PMID: 25256780 DOI: 10.1016/j.drudis.2014.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Adverse environmental conditions faced by an individual early during its life, such as gestational hypoxia, can have a profound influence on the risk of diseases, such as neurological disorders, in later life. Clinical and preclinical studies suggest that epigenetic programming of gene expression patterns in response to maternal stress have a crucial role in the fetal origins of neurological diseases. Herein, we summarize recent studies regarding the role of epigenetic mechanisms in the developmental programming of neurological diseases in offspring, primarily focusing on DNA methylation/demethylation and miRNAs. Such information could increase our understanding of the fetal origins of adult diseases and help develop effective prevention and intervention against neurological diseases.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
140
|
Abstract
SIGNIFICANCE Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. RECENT ADVANCES Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. CRITICAL ISSUES Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. FUTURE DIRECTIONS The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes.
Collapse
Affiliation(s)
- Katherine A Cottrill
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital , Boston, Massachusetts
| | | | | |
Collapse
|
141
|
Dai Z, Kim JH, Tonelli M, Ali IK, Markley JL. pH-induced conformational change of IscU at low pH correlates with protonation/deprotonation of two conserved histidine residues. Biochemistry 2014; 53:5290-7. [PMID: 25055301 PMCID: PMC4139155 DOI: 10.1021/bi500313t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
IscU, the scaffold protein for the
major iron–sulfur cluster
biosynthesis pathway in microorganisms and mitochondria (ISC pathway),
plays important roles in the formation of [2Fe–2S] and [4Fe–4S]
clusters and their delivery to acceptor apo-proteins. Our laboratory
has shown that IscU populates two distinct, functionally relevant
conformational states, a more structured state (S) and a more dynamic
state (D), that differ by cis/trans isomerizations about two peptidyl-prolyl peptide bonds [Kim, J.
H., Tonelli, M., and Markley, J. L. (2012) Proc. Natl. Acad.
Sci. U.S.A., 109, 454–459. Dai Z.,
Tonelli, M., and Markley, J. L. (2012) Biochemistry, 51, 9595–9602. Cai, K., Frederick, R. O.,
Kim, J. H., Reinen, N. M., Tonelli, M., and Markley, J. L. (2013) J. Biol. Chem., 288, 28755–28770].
Here, we report our findings on the pH dependence of the D ⇄
S equilibrium for Escherichia coli IscU
in which the D-state is stabilized at low and high pH values. We show
that the lower limb of the pH dependence curve results from differences
in the pKa values of two conserved histidine
residues (His10 and His105) in the two states. The net proton affinity
of His10 is about 50 times higher and that of His105 is 13 times higher
in the D-state than in the S-state. The origin of the high limb of
the D ⇄ S pH dependence remains to be determined. These results
show that changes in proton inventory need to be taken into account
in the steps in iron–sulfur cluster assembly and transfer that
involve transitions of IscU between its S- and D-states.
Collapse
Affiliation(s)
- Ziqi Dai
- Biophysics Graduate Program, ‡Biochemistry Department, and §National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States
| | | | | | | | | |
Collapse
|
142
|
Bird MJ, Needham K, Frazier AE, van Rooijen J, Leung J, Hough S, Denham M, Thornton ME, Parish CL, Nayagam BA, Pera M, Thorburn DR, Thompson LH, Dottori M. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One 2014; 9:e101718. [PMID: 25000412 PMCID: PMC4084949 DOI: 10.1371/journal.pone.0101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease characterised by neurodegeneration and cardiomyopathy that is caused by an insufficiency of the mitochondrial protein, frataxin. Our previous studies described the generation of FRDA induced pluripotent stem cell lines (FA3 and FA4 iPS) that retained genetic characteristics of this disease. Here we extend these studies, showing that neural derivatives of FA iPS cells are able to differentiate into functional neurons, which don't show altered susceptibility to cell death, and have normal mitochondrial function. Furthermore, FA iPS-derived neural progenitors are able to differentiate into functional neurons and integrate in the nervous system when transplanted into the cerebellar regions of host adult rodent brain. These are the first studies to describe both in vitro and in vivo characterization of FA iPS-derived neurons and demonstrate their capacity to survive long term. These findings are highly significant for developing FRDA therapies using patient-derived stem cells.
Collapse
Affiliation(s)
- Matthew J. Bird
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jorien van Rooijen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessie Leung
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shelley Hough
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Denham
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Saban Research Institute of Children's Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Clare L. Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Pera
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - David R. Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Lachlan H. Thompson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
143
|
Affiliation(s)
- Roxane Paulin
- From the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
144
|
Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 2014; 592:3767-82. [PMID: 24951621 DOI: 10.1113/jphysiol.2014.274704] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated the impact of cardiac reactive oxygen species (ROS) during the development of pressure overload-induced heart failure. We used our previously described rat model where transverse aortic constriction (TAC) induces compensated hypertrophy after 2 weeks, heart failure with preserved ejection fraction at 6 and 10 weeks, and heart failure with systolic dysfunction after 20 weeks. We measured mitochondrial ROS production rates, ROS damage and assessed the therapeutic potential of in vivo antioxidant therapies. In compensated hypertrophy (2 weeks of TAC) ROS production rates were normal at both mitochondrial ROS production sites (complexes I and III). Complex I ROS production rates increased with the appearance of diastolic dysfunction (6 weeks of TAC) and remained high thereafter. Surprisingly, maximal ROS production at complex III peaked at 6 weeks of pressure overload. Mitochondrial respiratory capacity (state 3 respiration) was elevated 2 and 6 weeks after TAC, decreased after this point and was significantly impaired at 20 weeks, when contractile function was also impaired and ROS damage was found with increased hydroxynonenal. Treatment with the ROS scavenger α-phenyl-N-tert-butyl nitrone or the uncoupling agent dinitrophenol significantly reduced ROS production rates at 6 weeks. Despite the decline in ROS production capacity, no differences in contractile function between treated and untreated animals were observed. Increased ROS production occurs early in the development of heart failure with a peak at the onset of diastolic dysfunction. However, ROS production may not be related to the onset of contractile dysfunction.
Collapse
Affiliation(s)
- Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital Friedrich Schiller University of Jena, Jena, Germany
| | - Moritz Osterholt
- Department of Cardiothoracic Surgery, Jena University Hospital Friedrich Schiller University of Jena, Jena, Germany
| | - Anne Lunkenbein
- Department of Cardiac Surgery, University of Leipzig Heart Center, Leipzig, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital Friedrich Schiller University of Jena, Jena, Germany
| | - Paulo Amorim
- Department of Cardiothoracic Surgery, Jena University Hospital Friedrich Schiller University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
145
|
Evans-Galea MV, Pébay A, Dottori M, Corben LA, Ong SH, Lockhart PJ, Delatycki MB. Cell and gene therapy for Friedreich ataxia: progress to date. Hum Gene Ther 2014; 25:684-93. [PMID: 24749505 DOI: 10.1089/hum.2013.180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative disorders such as Friedreich ataxia (FRDA) present significant challenges in developing effective therapeutic intervention. Current treatments aim to manage symptoms and thus improve quality of life, but none can cure, nor are proven to slow, the neurodegeneration inherent to this disease. The primary clinical features of FRDA include progressive ataxia and shortened life span, with complications of cardiomyopathy being the major cause of death. FRDA is most commonly caused by an expanded GAA trinucleotide repeat in the first intron of FXN that leads to reduced levels of frataxin, a mitochondrial protein important for iron metabolism. The GAA expansion in FRDA does not alter the coding sequence of FXN. It results in reduced production of structurally normal frataxin, and hence any increase in protein level is expected to be therapeutically beneficial. Recently, there has been increased interest in developing novel therapeutic applications like cell and/or gene therapies, and these cutting-edge applications could provide effective treatment options for FRDA. Importantly, since individuals with FRDA produce frataxin at low levels, increased expression should not elicit an immune response. Here we review the advances to date and highlight the future potential for cell and gene therapy to treat this debilitating disease.
Collapse
Affiliation(s)
- Marguerite V Evans-Galea
- 1 Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute , Parkville Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease of the lungs resulting in heart failure and premature death. Although, until recently, it was thought that PAH pathology is restricted to pulmonary arteries, several extrapulmonary organs are also affected. The realization that these tissues share a common metabolic abnormality (i.e., suppression of mitochondrial glucose oxidation and increased glycolysis) is important for our understanding of PAH, if not a paradigm shift. Here, we discuss an emerging metabolic theory, which proposes that PAH should be viewed as a syndrome involving many organs sharing a mitochondrial abnormality and explains many PAH features and provides novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gopinath Sutendra
- Department of Medicine, University of Alberta, 2C2 Walter Mackenzie Centre, 8440 112 Street Northwest, Edmonton, AB T6G 2P4, Canada
| | - Evangelos D Michelakis
- Department of Medicine, University of Alberta, 2C2 Walter Mackenzie Centre, 8440 112 Street Northwest, Edmonton, AB T6G 2P4, Canada.
| |
Collapse
|
147
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
148
|
Abstract
How are nascent iron-sulfur (Fe-S) clusters directed to specific recipient proteins? In this issue of Cell Metabolism, Maio et al. (2014) show that the mitochondrial Fe-S cochaperone protein HSC20 guides nascent Fe-S clusters based on a highly conserved motif, LYR, that exists in target proteins in different molecular contexts.
Collapse
Affiliation(s)
- D J R Lane
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, NSW 2006, Australia.
| | - A M Merlot
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, NSW 2006, Australia
| | - D R Richardson
- Department of Pathology and Bosch Institute, Molecular Pharmacology and Pathology Program, Blackburn Building, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
149
|
Liang X, Qin L, Liu P, Wang M, Ye H. Genes for iron-sulphur cluster assembly are targets of abiotic stress in rice, Oryza sativa. PLANT, CELL & ENVIRONMENT 2014; 37:780-94. [PMID: 24028141 DOI: 10.1111/pce.12198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 05/14/2023]
Abstract
Iron-sulphur (Fe-S) cluster assembly occurs in chloroplasts, mitochondria and cytosol, involving dozens of genes in higher plants. In this study, we have identified 41 putative Fe-S cluster assembly genes in rice (Oryza sativa) genome, and the expression of all genes was verified. To investigate the role of Fe-S cluster assembly as a metabolic pathway, we applied abiotic stresses to rice seedlings and analysed Fe-S cluster assembly gene expression by qRT-PCR. Our data showed that genes for Fe-S cluster assembly in chloroplasts of leaves are particularly sensitive to heavy metal treatments, and that Fe-S cluster assembly genes in roots were up-regulated in response to iron toxicity, oxidative stress and some heavy metal assault. The effect of each stress treatment on the Fe-S cluster assembly machinery demonstrated an unexpected tissue or organelle specificity, suggesting that the physiological relevance of the Fe-S cluster assembly is more complex than thought. Furthermore, our results may reveal potential candidate genes for molecular breeding of rice.
Collapse
Affiliation(s)
- Xuejiao Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | | | | | |
Collapse
|
150
|
Wang J, Zhao J, Shi M, Ding Y, Sun H, Yuan F, Zou Z. Elevated expression of miR-210 predicts poor survival of cancer patients: a systematic review and meta-analysis. PLoS One 2014; 9:e89223. [PMID: 24586608 PMCID: PMC3930667 DOI: 10.1371/journal.pone.0089223] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MiRNAs are important regulators of different biological processes, including tumorigenesis. MiR-210 is a potential prognostic factor for survival in patients with cancer according to previous clinical researches. We conducted a systematic review and meta-analysis to summarize the significance of increased miR-210 expression in the prognosis of indicated cancers. METHODOLOGY/PRINCIPAL FINDINGS The present systematic review and meta-analysis of 16 researches included 1809 patients with 7 different types of cancers from 7 countries, and aimed to explore the association between miR-210 expression and the survival of cancer patients. Over-expression of miR-210 may predict poor overall survival (OS, HR = 1.33, 95% CI: 0.85-2.09, P = 0.210), but the effect was not significant. While the predictive effect on disease-free survival (DFS, HR = 1.89, 95% CI: 1.30-2.74, P = 0.001), progression-free survival (PFS, HR = 1.20, 95% CI: 1.05-1.38, P = 0.007) and relapse-free survival(RFS, HR = 4.42, 95% CI: 2.14-9.15, P = 0.000) for patients with breast cancer, primary head and neck squamous cell carcinoma (HNSCC), renal cancer, soft-tissue sarcoma, pediatric osteosarcoma, bladder cancer or glioblastoma was certain. Subgroup analysis showed the limited predictive effect of over-expressed miR-210 on breast cancer OS (HR = 1.63, 95% CI: 0.47-5.67, P = 0.443), breast cancer DFS (HR = 2.03, 95% CI: 0.90-4.57, P = 0.088), sarcoma OS (HR = 1.24, 95% CI: 0.20-7.89, P = 0.818) and renal cancer OS (HR = 1.16, 95% CI: 0.27-4.94, P = 0.842). CONCLUSIONS/SIGNIFICANCE This systematic review and meta-analysis suggests that miR-210 has a predictive effect on survival of patients with studied cancer types as indexed by disease-free survival, progression-free survival and relapse-free survival. While the predictive effect on overall survival, breast cancer overall survival, breast cancer disease-free survival, sarcoma overall survival and renal cancer overall survival was not statistically significant.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jiqing Zhao
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mengjing Shi
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yu Ding
- Department of nephrology, Xinqiao Hospital, Chongqing, China
| | - Huiqin Sun
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fahuan Yuan
- Department of nephrology, Xinqiao Hospital, Chongqing, China
| | - Zhongmin Zou
- Institute of Toxicology, School of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|