101
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
102
|
Host selection and stochastic effects influence bacterial community assembly on the microalgal phycosphere. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101489] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
103
|
Development of bacteria as diagnostics and therapeutics by genetic engineering. J Microbiol 2019; 57:637-643. [DOI: 10.1007/s12275-019-9105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
|
104
|
Leung CY, Weitz JS. Not by (Good) Microbes Alone: Towards Immunocommensal Therapies. Trends Microbiol 2019; 27:294-302. [DOI: 10.1016/j.tim.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
|
105
|
Microencapsulation of Salmonella-Specific Bacteriophage Felix O1 Using Spray-Drying in a pH-Responsive Formulation and Direct Compression Tableting of Powders into a Solid Oral Dosage Form. Pharmaceuticals (Basel) 2019; 12:ph12010043. [PMID: 30909381 PMCID: PMC6469172 DOI: 10.3390/ph12010043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/17/2023] Open
Abstract
The treatment of enteric bacterial infections using oral bacteriophage therapy can be challenging since the harsh acidic stomach environment renders phages inactive during transit through the gastrointestinal tract. Solid oral dosage forms allowing site-specific gastrointestinal delivery of high doses of phages, e.g., using a pH or enzymatic trigger, would be a game changer for the nascent industry trying to demonstrate the efficacy of phages, including engineered phages for gut microbiome modulation in expensive clinical trials. Spray-drying is a scalable, low-cost process for producing pharmaceutical agents in dry powder form. Encapsulation of a model Salmonella-specific phage (Myoviridae phage Felix O1) was carried out using the process of spray-drying, employing a commercially available Eudragit S100® pH-responsive anionic copolymer composed of methyl methacrylate-co-methacrylic acid formulated with trehalose. Formulation and processing conditions were optimised to improve the survival of phages during spray-drying, and their subsequent protection upon exposure to simulated gastric acidity was demonstrated. Addition of trehalose to the formulation was shown to protect phages from elevated temperatures and desiccation encountered during spray-drying. Direct compression of spray-dried encapsulated phages into tablets was shown to significantly improve phage protection upon exposure to simulated gastric fluid. The results reported here demonstrate the significant potential of spray-dried pH-responsive formulations for oral delivery of bacteriophages targeting gastrointestinal applications.
Collapse
|
106
|
Rodríguez Amor D, Dal Bello M. Bottom-Up Approaches to Synthetic Cooperation in Microbial Communities. Life (Basel) 2019; 9:E22. [PMID: 30813538 PMCID: PMC6462982 DOI: 10.3390/life9010022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial cooperation pervades ecological scales, from single-species populations to host-associated microbiomes. Understanding the mechanisms promoting the stability of cooperation against potential threats by cheaters is a major question that only recently has been approached experimentally. Synthetic biology has helped to uncover some of these basic mechanisms, which were to some extent anticipated by theoretical predictions. Moreover, synthetic cooperation is a promising lead towards the engineering of novel functions and enhanced productivity of microbial communities. Here, we review recent progress on engineered cooperation in microbial ecosystems. We focus on bottom-up approaches that help to better understand cooperation at the population level, progressively addressing the challenges of tackling higher degrees of complexity: spatial structure, multispecies communities, and host-associated microbiomes. We envisage cooperation as a key ingredient in engineering complex microbial ecosystems.
Collapse
Affiliation(s)
- Daniel Rodríguez Amor
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
107
|
2017 NIH-wide workshop report on "The Human Microbiome: Emerging Themes at the Horizon of the 21st Century". MICROBIOME 2019; 7:32. [PMID: 30808401 PMCID: PMC6391828 DOI: 10.1186/s40168-019-0627-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/16/2019] [Indexed: 05/31/2023]
Abstract
The National Institutes of Health (NIH) organized a three-day human microbiome research workshop, August 16-18, 2017, to highlight the accomplishments of the 10-year Human Microbiome Project program, the outcomes of the investments made by the 21 NIH Institutes and Centers which now fund this area, and the technical challenges and knowledge gaps which will need to be addressed in order for this field to advance over the next 10 years. This report summarizes the key points in the talks, round table discussions, and Joint Agency Panel from this workshop.
Collapse
|
108
|
Baltrus DA, Clark M, Smith C, Hockett KL. Localized recombination drives diversification of killing spectra for phage-derived syringacins. THE ISME JOURNAL 2019; 13:237-249. [PMID: 30171255 PMCID: PMC6331570 DOI: 10.1038/s41396-018-0261-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
To better understand the potential for antagonistic interactions between members of the same bacterial species, we have surveyed bacteriocin killing activity across a diverse suite of strains of the phytopathogen Pseudomonas syringae. Our data demonstrate that killing activity from phage-derived bacteriocins of P. syringae (R-type syringacins) is widespread. Despite a high overall diversity of bacteriocin activity, strains can broadly be classified into five main killing types and two main sensitivity types. Furthermore, we show that killing activity switches frequently between strains and that switches correlate with localized recombination of two genes that together encode the proteins that specify bacteriocin targeting. Lastly, we demonstrate that phage-derived bacteriocin killing activity can be swapped between strains simply through expression of these two genes in trans. Overall, our study characterizes extensive diversity of killing activity for phage-derived bacteriocins of P. syringae across strains and highlights the power of localized recombination to alter phenotypes that mediate strain interactions during evolution of natural populations and communities.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Caitlin Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
109
|
Cao X, Hamilton JJ, Venturelli OS. Understanding and Engineering Distributed Biochemical Pathways in Microbial Communities. Biochemistry 2019; 58:94-107. [PMID: 30457843 PMCID: PMC6733022 DOI: 10.1021/acs.biochem.8b01006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbiomes impact nearly every environment on Earth by modulating the molecular composition of the environment. Temporally changing environmental stimuli and spatial organization are major variables shaping the structure and function of microbiomes. The web of interactions among members of these communities and between the organisms and the environment dictates microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, molecular, and environmental forces shaping microbiomes could inform strategies to control microbiome dynamics and functions. Major challenges for harnessing the potential of microbiomes for diverse applications include the development of predictive modeling frameworks and tools for precise manipulation of microbiome behaviors.
Collapse
Affiliation(s)
| | | | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
110
|
Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH. Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 2019; 16:167-170. [PMID: 30643213 PMCID: PMC6467691 DOI: 10.1038/s41592-018-0301-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Engineering microbial communities in open environments remains challenging. Here, we describe a platform to identify and modify genetically tractable mammalian microbiota by engineering community-wide horizontal gene transfer events in situ. With this approach, we demonstrate that diverse taxa in the murine gut microbiome can be modified directly with a desired genetic payload. In situ microbiome engineering in living animals enables introduction of novel capabilities into established communities in their native milieu.
Collapse
Affiliation(s)
- Carlotta Ronda
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sway P Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vitor Cabral
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie J Yaung
- Program in Medical Engineering and Medical Physics, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
111
|
Jenkins T, Brindley P, Gasser R, Cantacessi C. Helminth Microbiomes – A Hidden Treasure Trove? Trends Parasitol 2019; 35:13-22. [DOI: 10.1016/j.pt.2018.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
|
112
|
Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang J, Freilich S. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME JOURNAL 2018; 13:494-508. [PMID: 30291327 DOI: 10.1038/s41396-018-0288-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
Abstract
Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.
Collapse
Affiliation(s)
- Xihui Xu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.,Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Shany Ofaim
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shunli Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Brom
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Daniella Gat
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Seema Porob
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Hanan Eizenberg
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 8499000, Israel
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|
113
|
Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 2018; 53:12-19. [DOI: 10.1016/j.copbio.2017.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
|
114
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
115
|
Pseudomonas chlororaphis Produces Multiple R-Tailocin Particles That Broaden the Killing Spectrum and Contribute to Persistence in Rhizosphere Communities. Appl Environ Microbiol 2018; 84:AEM.01230-18. [PMID: 30030224 DOI: 10.1128/aem.01230-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
R-tailocins are high-molecular-weight bacteriocins resembling bacteriophage tails. Pseudomonas chlororaphis 30-84 is a plant growth-promoting rhizobacterial (PGPR) strain that produces two distinct R-tailocin particles with different killing spectra. The two R-tailocins have different evolutionary histories but are released by the same lysis cassette. A previous study showed that both tailocins are important for pairwise competition with susceptible rhizosphere-colonizing strains; however, the broader role of tailocins in competition with the native rhizosphere microbiome was not tested. Genomic analysis of the P. chlororaphis 30-84 R-tailocin gene cluster uncovered the presence of three tail fiber genes in the tailocin 2 genetic module that could potentially result in tailocin 2 particles having different tail fibers and thus a wider killing spectrum. In this study, the tail fibers were found to incorporate onto different tailocin 2 particles, each with a distinct killing spectrum. A loss of production of one or both tailocins resulted in decreased P. chlororaphis 30-84 persistence within the wheat rhizosphere when in competition with the native microflora but not bulk soil. The capacity to produce three different versions of a single tailocin, each having one of three different types of tail fibers, is a previously unreported mechanism that leads to a broader R-tailocin killing spectrum. This study also provides evidence for the function of R-tailocins in competition with rhizosphere microbiome communities but not in bulk soil.IMPORTANCE Although R-tailocin gene clusters typically encode one tail fiber protein, three tail fiber-resembling genes were identified in association with one of the two sets of R-tailocin genes within the tailocin cluster of P. chlororaphis 30-84 and other sequenced P. chlororaphis strain genomes. This study confirmed that P. chlororaphis 30-84 not only produces two distinct tailocins, but that one of them is produced with three different types of tail fibers. This is a previously unreported strategy to increase the breadth of strains targeted by an R-tailocin. Our finding that R-tailocins produced by a PGPR Pseudomonas strain enhanced its persistence within the wheat rhizosphere microbiome confirms that R-tailocin production contributes to the population dynamics of rhizobacterial communities.
Collapse
|
116
|
Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and Characterization of Synthetic Bacterial Community for Experimental Ecology and Evolution. Front Genet 2018; 9:312. [PMID: 30154827 PMCID: PMC6102323 DOI: 10.3389/fgene.2018.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023] Open
Abstract
Experimental microbial ecology and evolution have yielded foundational insights into ecological and evolutionary processes using simple microcosm setups and phenotypic assays with one- or two-species model systems. The fields are now increasingly incorporating more complex systems and exploration of the molecular basis of observations. For this purpose, simplified, manageable and well-defined multispecies model systems are required that can be easily investigated using culturing and high-throughput sequencing approaches, bridging the gap between simpler and more complex synthetic or natural systems. Here we address this need by constructing a completely synthetic 33 bacterial strain community that can be cultured in simple laboratory conditions. We provide whole-genome data for all the strains as well as metadata about genomic features and phenotypic traits that allow resolving individual strains by amplicon sequencing and facilitate a variety of envisioned mechanistic studies. We further show that a large proportion of the strains exhibit coexistence in co-culture over serial transfer for 48 days in the absence of any experimental manipulation to maintain diversity. The constructed bacterial community can be a valuable resource in future experimental work.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Roosa Jokela
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Manu Tamminen
- Department of Biology, University of Turku, Turku, Finland
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
117
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|
118
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
119
|
Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng 2018; 2:399-415. [PMID: 31011195 DOI: 10.1038/s41551-018-0215-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Abstract
In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network's unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.
Collapse
Affiliation(s)
- Ferdinand Sedlmayer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Dominique Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Lyon, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
120
|
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
|
121
|
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET. Core microbiomes for sustainable agroecosystems. NATURE PLANTS 2018; 4:247-257. [PMID: 29725101 DOI: 10.1038/s41477-018-0139-4] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/23/2018] [Indexed: 05/18/2023]
Abstract
In an era of ecosystem degradation and climate change, maximizing microbial functions in agroecosystems has become a prerequisite for the future of global agriculture. However, managing species-rich communities of plant-associated microbiomes remains a major challenge. Here, we propose interdisciplinary research strategies to optimize microbiome functions in agroecosystems. Informatics now allows us to identify members and characteristics of 'core microbiomes', which may be deployed to organize otherwise uncontrollable dynamics of resident microbiomes. Integration of microfluidics, robotics and machine learning provides novel ways to capitalize on core microbiomes for increasing resource-efficiency and stress-resistance of agroecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, Meguro, Tokyo, Japan
| | - Kazuhiko Narisawa
- Department of Bioresource Science, College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan
| | - Kei Hiruma
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ken Naito
- Genetic Resource Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Ushio
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shinji Nakaoka
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute of Industrial Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro Yoshida
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
- Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, China
| | - Ryo Sugiura
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Hokkaido Agricultural Research Center, NARO (National Agriculture and Food Research Organization), Memuro, Hokkaido, Japan
| | - Yasunori Ichihashi
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai, Japan
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
122
|
de Lorenzo V. Environmental microbiology to the rescue of planet earth. Environ Microbiol 2018; 20:1910-1916. [DOI: 10.1111/1462-2920.14105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología‐CSIC, Campus de CantoblancoMadrid 28049 Spain
| |
Collapse
|
123
|
Forsberg KJ, Malik HS. Microbial Genomics: The Expanding Universe of Bacterial Defense Systems. Curr Biol 2018; 28:R361-R364. [DOI: 10.1016/j.cub.2018.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
124
|
Constraint-based modeling in microbial food biotechnology. Biochem Soc Trans 2018; 46:249-260. [PMID: 29588387 PMCID: PMC5906707 DOI: 10.1042/bst20170268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM.
Collapse
|
125
|
Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat Methods 2018; 15:323-329. [PMID: 30052624 PMCID: PMC6065261 DOI: 10.1038/nmeth.4633] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
Abstract
Robust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions. We also observed substantial differences between species in terms of their capacity to utilize exogenous regulatory sequences. Finally, we demonstrate programmable species-selective gene expression that produces distinct and diverse output patterns in different microbes. Together, these findings provide a rich resource of characterized natural regulatory sequences and a framework that can be used to engineer synthetic gene circuits with unique and tunable cross-species functionality and properties, and also suggest the prospect of ultimately engineering complex behaviors at the community level.
Collapse
|
126
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
127
|
Waldman AJ, Balskus EP. The Human Microbiota, Infectious Disease, and Global Health: Challenges and Opportunities. ACS Infect Dis 2018; 4:14-26. [PMID: 29207239 DOI: 10.1021/acsinfecdis.7b00232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant advances in treating infectious diseases worldwide, morbidity and mortality associated with pathogen infection remains extraordinarily high and represents a critical scientific and global health challenge. Current strategies to combat these infectious agents include a combination of vaccines, small molecule drugs, increased hygiene standards, and disease-specific interventions. While these approaches have helped to drastically reduce the incidence and number of deaths associated with infection, continued investment in current strategies and the development of novel therapeutic approaches will be required to address these global health threats. Recently, human- and vector-associated microbiotas, the assemblages of microorganisms living on and within their hosts, have emerged as a potentially important factor mediating both infection risk and disease progression. These complex microbial communities are involved in intricate and dynamic interactions with both pathogens as well as the innate and adaptive immune systems of their hosts. Here, we discuss recent findings that have illuminated the importance of resident microbiotas in infectious disease, emphasizing opportunities for novel therapeutic intervention and future challenges for the field. Our discussion will focus on four major global health threats: tuberculosis, malaria, HIV, and enteric/diarrheal diseases. We hope this Perspective will highlight the many opportunities for chemists and chemical biologists in this field as well as inspire efforts to elucidate the mechanisms underlying established disease correlations, identify novel microbiota-based risk factors, and develop new therapeutic interventions.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
128
|
Modern Approaches in Synthetic Biology: Genome Editing, Quorum Sensing, and Microbiome Engineering. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
129
|
Hu HW, He JZ. Manipulating the soil microbiome for improved nitrogen management. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The soil microbiome, including bacteria, archaea, fungi, viruses, and other microbial eukaryotes, has crucial roles in the biogeochemical cycling of nitrogen (N), the maintenance of soil fertility, and the plant N use efficiency (NUE) in agro-ecosystems1. Recent advances in omics-based technologies (e.g. metagenomics, metatranscriptomics, and metaproteomics) have expanded our understanding of the soil microbiome and their controls on specific N-cycling processes1–3. Given the growing N-based fertiliser consumption and continuous land degradation, innovative technologies are needed to manipulate the soil microbiome to improve crop NUE, reduce N losses and increase N reservation in soil. This article discusses the research directions to facilitate the development of microbiome-manipulating technologies for sustainable management of N transformation processes.
Collapse
|
130
|
Singh BK, Trivedi P, Singh S, Macdonald CA, Verma JP. Emerging microbiome technologies for sustainable increase in farm productivity and environmental security. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Farming systems are under pressure to sustainably increase productivity to meet demand for food and fibre for a growing global population under shrinking arable lands and changing climatic conditions. Furthermore, conventional farming has led to declines in soil fertility and, in some cases, inappropriate and excessive use of chemical fertilisers and pesticides has caused soil degradation, negatively impacting human and environmental health. The soil and plant microbiomes are significant determinants of plant fitness and productivity. Microbes are also the main drivers of global biogeochemical cycles and thus key to sustainable agriculture. There is increasing evidence that with development of appropriate technologies, the plant microbiome can be harnessed to potentially decrease the frequency of plant diseases, increase resource use efficiencies and ultimately enhance agricultural productivity, while simultaneously decreasing the input of chemical fertilisers and pesticides, resulting in reduced greenhouse gas emissions and promoting environmental sustainability. However, to successfully translate potential to practical outcomes, both fundamental and applied research are needed to overcome current constraints. Research efforts need to be embedded in industrial requirements and policy and social frameworks to expedite the process of innovation, commercialisation and adoption. We propose that learning from the advancement in the human microbiome can significantly expedite the discovery and innovation of effective microbial products for sustainable and productive farming. This article summarises the emergence of microbiome technologies for the agriculture industry and how to facilitate the development and adoption of environmentally friendly microbiome technologies for sustainable increase in farm productivity.
Collapse
|
131
|
Zerfaß C, Chen J, Soyer OS. Engineering microbial communities using thermodynamic principles and electrical interfaces. Curr Opin Biotechnol 2017; 50:121-127. [PMID: 29268107 DOI: 10.1016/j.copbio.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Microbial communities present the next research frontier. We argue here that understanding and engineering microbial communities requires a holistic view that considers not only species-species, but also species-environment interactions, and feedbacks between ecological and evolutionary dynamics (eco-evo feedbacks). Due this multi-level nature of interactions, we predict that approaches aimed soley at altering specific species populations in a community (through strain enrichment or inhibition), would only have a transient impact, and species-environment and eco-evo feedbacks would eventually drive the microbial community to its original state. We propose a higher-level engineering approach that is based on thermodynamics of microbial growth, and that considers specifically microbial redox biochemistry. Within this approach, the emphasis is on enforcing specific environmental conditions onto the community. These are expected to generate higher-level thermodynamic bounds onto the system, which the community structure and function can then adapt to. We believe that the resulting end-state can be ecologically and evolutionarily stable, mimicking the natural states of complex communities. Toward designing the exact nature of the environmental enforcement, thermodynamics and redox biochemistry can act as coarse-grained principles, while the use of electrodes-as electron providing or accepting redox agents-can provide implementation with spatiotemporal control.
Collapse
Affiliation(s)
- Christian Zerfaß
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom
| | - Jing Chen
- School of Life Sciences, University of Warwick, United Kingdom
| | - Orkun S Soyer
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
132
|
Zeng Q, Tian X, Wang L. Genetic adaptation of microbial populations present in high-intensity catfish production systems with therapeutic oxytetracycline treatment. Sci Rep 2017; 7:17491. [PMID: 29235508 PMCID: PMC5727513 DOI: 10.1038/s41598-017-17640-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Microbial communities that are present in aquaculture production systems play significant roles in degrading organic matter, controlling diseases, and formation of antibiotic resistance. It is important to understand the diversity and abundance of microbial communities and their genetic adaptations associated with environmental physical and chemical changes. Here we collected water and sediment samples from a high-intensity catfish production system and its original water reservoir. The metagenomic analysis showed that Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were the top five phyla identified from all samples. The aquaculture production system significantly changed the structure of aquatic microbial populations. Substantial changes were also observed in SNP patterns among four sample types. The gene-specific sweep was found to be more common than genome-wide sweep. The selective sweep analysis revealed that 21 antibiotic resistant (AR) genes were under selection, with most belonging to antibiotic efflux pathways. Over 200 AR gene gains and losses were determined by changes in gene frequencies. Most of the AR genes were characterized as ABC efflux pumps, RND efflux pumps, and tetracycline MFS efflux pumps. Results of this study suggested that aquaculture waste, especially waste containing therapeutic antibiotics, has a significant impact on microbial population structures and their genetic structures.
Collapse
Affiliation(s)
- Qifan Zeng
- Food Microbiology and Safety Lab, Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Qingdao, China
| | - Luxin Wang
- Food Microbiology and Safety Lab, Department of Animal Sciences, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
133
|
Pham HL, Ho CL, Wong A, Lee YS, Chang MW. Applying the design-build-test paradigm in microbiome engineering. Curr Opin Biotechnol 2017; 48:85-93. [DOI: 10.1016/j.copbio.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 12/11/2022]
|
134
|
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81:e00036-17. [PMID: 29118049 PMCID: PMC5706746 DOI: 10.1128/mmbr.00036-17] [Citation(s) in RCA: 1004] [Impact Index Per Article: 143.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Eoghan Casey
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Jennifer Mahony
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Susana Delgado Palacio
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Silvia Arboleya Montes
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Juan Miguel Rodriguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, California, USA
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Bacteriology & Immunology, RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Miguel Gueimonde
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
135
|
The human gut virome: form and function. Emerg Top Life Sci 2017; 1:351-362. [PMID: 33525769 DOI: 10.1042/etls20170039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.
Collapse
|
136
|
Wintle BC, Boehm CR, Rhodes C, Molloy JC, Millett P, Adam L, Breitling R, Carlson R, Casagrande R, Dando M, Doubleday R, Drexler E, Edwards B, Ellis T, Evans NG, Hammond R, Haseloff J, Kahl L, Kuiken T, Lichman BR, Matthewman CA, Napier JA, ÓhÉigeartaigh SS, Patron NJ, Perello E, Shapira P, Tait J, Takano E, Sutherland WJ. A transatlantic perspective on 20 emerging issues in biological engineering. eLife 2017; 6:e30247. [PMID: 29132504 PMCID: PMC5685469 DOI: 10.7554/elife.30247] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
Advances in biological engineering are likely to have substantial impacts on global society. To explore these potential impacts we ran a horizon scanning exercise to capture a range of perspectives on the opportunities and risks presented by biological engineering. We first identified 70 potential issues, and then used an iterative process to prioritise 20 issues that we considered to be emerging, to have potential global impact, and to be relatively unknown outside the field of biological engineering. The issues identified may be of interest to researchers, businesses and policy makers in sectors such as health, energy, agriculture and the environment.
Collapse
Affiliation(s)
- Bonnie C Wintle
- Centre for the Study of Existential RiskUniversity of CambridgeCambridgeUnited Kingdom
| | - Christian R Boehm
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Centre for the Study of Existential RiskUniversity of CambridgeCambridgeUnited Kingdom
| | - Catherine Rhodes
- Centre for the Study of Existential RiskUniversity of CambridgeCambridgeUnited Kingdom
| | - Jennifer C Molloy
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Piers Millett
- Future of Humanity InstituteUniversity of OxfordOxfordUnited Kingdom
| | - Laura Adam
- Department of Electrical EngineeringUniversity of WashingtonSeattleUnited States
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre (SYNBIOCHEM), Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUnited Kingdom
| | | | | | - Malcolm Dando
- Division of Peace Studies and the Bradford Centre for International DevelopmentUniversity of BradfordBradfordUnited Kingdom
| | - Robert Doubleday
- Centre for Science and PolicyUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric Drexler
- Future of Humanity InstituteUniversity of OxfordOxfordUnited Kingdom
| | - Brett Edwards
- Department of Politics, Languages & International StudiesUniversity of BathBathUnited Kingdom
| | - Tom Ellis
- Centre for Synthetic Biology and InnovationImperial College LondonLondonUnited Kingdom
| | - Nicholas G Evans
- Department of PhilosophyUniversity of MassachusettsLowellUnited States
| | | | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Linda Kahl
- BioBricks FoundationSan FranciscoUnited States
| | - Todd Kuiken
- Genetic Engineering & Society CenterNorth Carolina State UniversityRaleighUnited States
| | | | | | | | - Seán S ÓhÉigeartaigh
- Centre for the Study of Existential RiskUniversity of CambridgeCambridgeUnited Kingdom
| | | | | | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business SchoolUniversity of ManchesterManchesterUnited Kingdom
- School of Public PolicyGeorgia Institute of TechnologyAtlantaUnited States
| | - Joyce Tait
- Innogen InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre (SYNBIOCHEM), Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUnited Kingdom
| | | |
Collapse
|
137
|
Trivedi P, Schenk PM, Wallenstein MD, Singh BK. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microb Biotechnol 2017; 10:999-1003. [PMID: 28840959 PMCID: PMC5609239 DOI: 10.1111/1751-7915.12804] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 01/19/2023] Open
Abstract
Plant‐associated microbiomes have tremendous potential to improve plant resilience and yields in farming systems. There is increasing evidence that biological technologies that use microbes or their metabolites can enhance nutrient uptake and yield, control pests and mitigate plant stress responses. However, to fully realize the potential of microbial technology, their efficacy and consistency under the broad range of real‐world conditions need to be improved. While the optimization of microbial biofertilizers and biopesticides is advancing rapidly to enable use in various soils, crop varieties and environments, crop breeding programmes have yet to incorporate the selection of beneficial plant–microbe interactions to breed ‘microbe‐optimized plants’. Emerging efforts exploring microbiome engineering could lead to microbial consortia that are better suited to support plants. The combination of all three approaches could be integrated to achieve maximum benefits and significantly improved crop yields to address food security.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Bioagricultural Science and Pest Management, Colorado State University, Fort Collins, CO, 80523, USA
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew D Wallenstein
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA.,Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.,Global Center for Land Based Innovation, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
138
|
Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8:162-173. [PMID: 28828194 PMCID: PMC5547374 DOI: 10.4292/wjgpt.v8.i3.162] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infection. Although much about phages and human health is still being discovered, the time to take phage therapy serious again seems to be rapidly approaching.
Collapse
|
139
|
Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. CHILDREN-BASEL 2017; 4:children4080066. [PMID: 28767077 PMCID: PMC5575588 DOI: 10.3390/children4080066] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent type of chronic liver disease in the pediatric age group, paralleling an obesity pandemic. A “multiple-hit” hypothesis has been invoked to explain its pathogenesis. The “first hit” is liver lipid accumulation in obese children with insulin resistance. In the absence of significant lifestyle modifications leading to weight loss and increased physical activity, other factors may act as “second hits” implicated in liver damage progression leading to more severe forms of inflammation and hepatic fibrosis. In this regard, the gut–liver axis (GLA) seems to play a central role. Principal players are the gut microbiota, its bacterial products, and the intestinal barrier. A derangement of GLA (namely, dysbiosis and altered intestinal permeability) may promote bacteria/bacterial product translocation into portal circulation, activation of inflammation via toll-like receptors signaling in hepatocytes, and progression from simple steatosis to non-alcoholic steato-hepatitis (NASH). Among other factors a relevant role has been attributed to the farnesoid X receptor, a nuclear transcriptional factor activated from bile acids chemically modified by gut microbiota (GM) enzymes. The individuation and elucidation of GLA derangement in NAFLD pathomechanisms is of interest at all ages and especially in pediatrics to identify new therapeutic approaches in patients recalcitrant to lifestyle changes. Specific targeting of gut microbiota via pre-/probiotic supplementation, feces transplantation, and farnesoid X receptor modulation appear promising.
Collapse
|
140
|
Hu HW, He JZ, Singh BK. Harnessing microbiome-based biotechnologies for sustainable mitigation of nitrous oxide emissions. Microb Biotechnol 2017; 10:1226-1231. [PMID: 28696064 PMCID: PMC5609469 DOI: 10.1111/1751-7915.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/03/2017] [Indexed: 01/21/2023] Open
Abstract
Achieving the Sustainable Development Goal of climate change mitigation within this century will require adoption of new innovative technologies to control emissions of nitrous oxide (N2O), an important greenhouse gas leading to global warming. This is particularly important in the face of growing fertilizer consumption and continuous land degradation. Currently used tools to mitigate N2O emissions are based on agrochemical inputs and agronomic practices. Emerging technologies include plant breeding approaches to manipulate microbiome activities in agro‐ecosystems, and microbial biotechnology approaches for in situ microbiome manipulation and engineering via use of biochemical, cellular and genome‐editing methods. This article assessed the likely contribution of microbial biotechnology to the mitigation of N2O emissions and discussed how to facilitate the development of environmental‐friendly microbiome‐based biotechnology for sustainable climate change mitigation.
Collapse
Affiliation(s)
- Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
141
|
|
142
|
Hu HW, Trivedi P, He JZ, Singh BK. Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environ Microbiol 2017; 19:4808-4828. [DOI: 10.1111/1462-2920.13795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences; the University of Melbourne, Parkville; Victoria 3010, Australia
| | - Pankaj Trivedi
- Department of Bioagricultural Sciences and Pest Management; Colorado State University; Fort Collins CO USA
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences; the University of Melbourne, Parkville; Victoria 3010, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith South DC NSW 2751, Australia
- Global Centre for Land-Based Innovation; Western Sydney University; Penrith South DC NSW 2751, Australia
| |
Collapse
|
143
|
Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 2017; 15:397-408. [DOI: 10.1038/nrmicro.2017.30] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
144
|
Motley J, Stamps BW, Mitchell CA, Thompson AT, Cross J, You J, Powell DR, Stevenson BS, Cichewicz RH. Opportunistic Sampling of Roadkill as an Entry Point to Accessing Natural Products Assembled by Bacteria Associated with Non-anthropoidal Mammalian Microbiomes. JOURNAL OF NATURAL PRODUCTS 2017; 80:598-608. [PMID: 28335605 PMCID: PMC5368682 DOI: 10.1021/acs.jnatprod.6b00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 05/09/2023]
Abstract
Few secondary metabolites have been reported from mammalian microbiome bacteria despite the large numbers of diverse taxa that inhabit warm-blooded higher vertebrates. As a means to investigate natural products from these microorganisms, an opportunistic sampling protocol was developed, which focused on exploring bacteria isolated from roadkill mammals. This initiative was made possible through the establishment of a newly created discovery pipeline, which couples laser ablation electrospray ionization mass spectrometry (LAESIMS) with bioassay testing, to target biologically active metabolites from microbiome-associated bacteria. To illustrate this process, this report focuses on samples obtained from the ear of a roadkill opossum (Dideiphis virginiana) as the source of two bacterial isolates (Pseudomonas sp. and Serratia sp.) that produced several new and known cyclic lipodepsipeptides (viscosin and serrawettins, respectively). These natural products inhibited biofilm formation by the human pathogenic yeast Candida albicans at concentrations well below those required to inhibit yeast viability. Phylogenetic analysis of 16S rRNA gene sequence libraries revealed the presence of diverse microbial communities associated with different sites throughout the opossum carcass. A putative biosynthetic pathway responsible for the production of the new serrawettin analogues was identified by sequencing the genome of the Serratia sp. isolate. This study provides a functional roadmap to carrying out the systematic investigation of the genomic, microbiological, and chemical parameters related to the production of natural products made by bacteria associated with non-anthropoidal mammalian microbiomes. Discoveries emerging from these studies are anticipated to provide a working framework for efforts aimed at augmenting microbiomes to deliver beneficial natural products to a host.
Collapse
Affiliation(s)
- Jeremy
L. Motley
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Blake W. Stamps
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019-0390, United States
| | - Carter A. Mitchell
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Alec T. Thompson
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Jayson Cross
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Jianlan You
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Douglas R. Powell
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Bradley S. Stevenson
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019-0390, United States
| | - Robert H. Cichewicz
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
145
|
Madison JD, Berg EA, Abarca JG, Whitfield SM, Gorbatenko O, Pinto A, Kerby JL. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica. Front Microbiol 2017; 8:290. [PMID: 28293222 PMCID: PMC5329008 DOI: 10.3389/fmicb.2017.00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 01/21/2023] Open
Abstract
Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response.
Collapse
Affiliation(s)
- Joseph D Madison
- Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Elizabeth A Berg
- Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Juan G Abarca
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica
| | | | - Oxana Gorbatenko
- Life Science Laboratory, Westcore DNA Sequencing Facility, Black Hills State University Spearfish, SD, USA
| | - Adrian Pinto
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa RicaSan Pedro de Montes de Oca, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Centro de Investigación en Biología Celular y Molecular, Universidad de Costa RicaSan Pedro de Montes de Oca, Costa Rica
| | - Jacob L Kerby
- Department of Biology, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
146
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
147
|
Singh BK, Trivedi P. Microbiome and the future for food and nutrient security. Microb Biotechnol 2017; 10:50-53. [PMID: 28074557 PMCID: PMC5270726 DOI: 10.1111/1751-7915.12592] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023] Open
Abstract
Microbiome and the future for food and nutrient security![]()
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Pankaj Trivedi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
148
|
Biotechnology and the Mine of Tomorrow. Trends Biotechnol 2017; 35:79-89. [DOI: 10.1016/j.tibtech.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023]
|
149
|
He XZ, Ma JJ, Wang HQ, Hu TM, Sun B, Gao YF, Liu SB, Wang W, Wang P. Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves. Neural Regen Res 2017; 12:987-994. [PMID: 28761434 PMCID: PMC5514876 DOI: 10.4103/1673-5374.208595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was (or was not) induced. After sciatic nerve injury, tacrolimus, an immunosuppressant, was (or was not) intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus exhibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Xin-Ze He
- Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China.,Binzhou Central Hospital, Binzhou, Shandong Province, China
| | - Jian-Jun Ma
- Postgraduate School, Chengde Medical College, Chengde, Hebei Province, China
| | - Hao-Qi Wang
- Postgraduate School, Chengde Medical College, Chengde, Hebei Province, China
| | - Tie-Min Hu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Bo Sun
- Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Yun-Feng Gao
- Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Shi-Bo Liu
- Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Wei Wang
- Department of Hand and Foot Surgery, the First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, China
| | - Pei Wang
- Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| |
Collapse
|
150
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|