101
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
102
|
Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3613319. [PMID: 35281461 PMCID: PMC8916857 DOI: 10.1155/2022/3613319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Stem cell-based therapy has been indicated to be beneficial for intervertebral disc regeneration. However, the underlying mechanisms have not been fully identified. The present study showed that bone marrow mesenchymal stem cells (BMSCs) donated mitochondria to adjacent nucleus pulposus cells (NPCs) in a coculture system. The mode of mitochondrial transfer between these cells was intercellular tunneling nanotube (TNT), which acted as a transportation expressway for mitochondria. NPCs acquired additional mitochondria from BMSCs in a concentration-dependent manner after rotenone-induced mitochondrial dysfunction in NPCs. Further research demonstrated that TNT-mediated mitochondrial transfer rescued NPCs from mitochondrial dysfunction and apoptosis, which was indicated by the recovery of the mitochondrial respiratory chain, the increase in mitochondrial membrane potential, and the decreases in reactive oxygen species (ROS) levels and apoptosis rates. Furthermore, Miro1, a critical protein that regulates mitochondrial movement, was knocked down in BMSCs and significantly reduced mitochondrial transfer from BMSCs to NPCs. These results suggested that Miro1 depletion inhibited the rescue of NPCs with mitochondrial dysfunction. Taken together, our data shed light on a novel mechanism by which BMSCs rescue impaired NPCs, providing a concrete foundation to study the critical role of intercellular interactions in disc regeneration.
Collapse
|
103
|
He T, Han C, Liu C, Chen J, Yang H, Zheng L, Waddington JL, Zhen X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl) 2022; 239:951-964. [PMID: 35190859 DOI: 10.1007/s00213-022-06097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
RATIONALE Clinical studies have revealed that methamphetamine abuse increases risk for developing Parkinson's diseases. It is thus important to elucidate the mechanisms by which methamphetamine damages dopaminergic neurons. OBJECTIVES The present study was designed to elucidate the role of the dopamine D1 receptor in methamphetamine-mediated dopaminergic neuronal damage and its underlying mechanisms. METHODS Mice were treated for 4 days with vehicle, methamphetamine, or the D1 agonist SKF38393 and then assessed for locomotion and performance in the pole and rotarod tests. Cellular indices of autophagy, LC3, P62, and Beclin-1, tyrosine hydroxylase, and the AMPK/FOXO3A pathway were analyzed in striatal tissue from treated mice, in PC12 cells, and in D1 receptor mutant mice. RESULTS Repeated treatment with a relatively high dose of methamphetamine for 4 days induced both loss of dopaminergic neurons and activation of autophagy in the striatum as evidenced by increased expression of LC3 and P62. However, such treatment did not induce either loss of dopaminergic neurons or activation of autophagy in D1 receptor knockout mice. D1 receptor-mediated activation of autophagy was also confirmed in vitro using dopaminergic neuronal PC12 cells. Further studies demonstrated that the AMPK/FOXO3A signaling pathway is responsible for D1 receptor-mediated activation of autophagy. CONCLUSIONS The present data indicate a novel mechanism for methamphetamine-induced dopaminergic neuronal damage and reveal an important role for D1 receptors in the neurotoxicity of this drug.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
104
|
Wang Y, Luan M, Xue L, Jin J, Xie A. Evaluation of the relationship between SORL1 gene polymorphism and Parkinson's disease in the Chinese population. Neurosci Lett 2022; 778:136602. [DOI: 10.1016/j.neulet.2022.136602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
|
105
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|
106
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
107
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
108
|
Abeliovich A, Hefti F, Sevigny J. Gene Therapy for Parkinson's Disease Associated with GBA1 Mutations. JOURNAL OF PARKINSON'S DISEASE 2022; 11:S183-S188. [PMID: 34151863 PMCID: PMC8543272 DOI: 10.3233/jpd-212739] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Human genetic studies as well as studies in animal models indicate that lysosomal dysfunction plays a key role in the pathogenesis of Parkinson's disease. Among the lysosomal genes involved, GBA1 has the largest impact on Parkinson's disease risk. Deficiency in the GBA1 encoded enzyme glucocerebrosidase (GCase) leads to the accumulation of the GCase glycolipid substrates glucosylceramide and glucosylsphingosine and ultimately results in toxicity and inflammation and negatively affect many clinical aspects of Parkinson's disease, including disease risk, the severity of presentation, age of onset, and likelihood of progression to dementia. These findings support the view that re-establishing normal levels of GCase enzyme activity may reduce the progression of Parkinson's disease in patients carrying GBA1 mutations. Studies in mouse models indicate that PR001, a AAV9 vector-based gene therapy designed to deliver a functional GBA1 gene to the brain, suggest that this therapeutic approach may slow or stop disease progression. PR001 is currently being evaluated in clinical trials with Parkinson's disease patients carrying GBA1 mutations.
Collapse
Affiliation(s)
- Asa Abeliovich
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Franz Hefti
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| | - Jeffrey Sevigny
- Prevail Therapeutics, A Wholly-Owned Subsidiary of Eli Lilly and Company, New York, NY, USA
| |
Collapse
|
109
|
NRF2 Activation Ameliorates Oxidative Stress and Improves Mitochondrial Function and Synaptic Plasticity, and in A53T α-Synuclein Hippocampal Neurons. Antioxidants (Basel) 2021; 11:antiox11010026. [PMID: 35052530 PMCID: PMC8772776 DOI: 10.3390/antiox11010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
In Parkinson's disease (PD), brain oxidative stress and mitochondrial dysfunction contribute to neuronal loss as well as motor and cognitive deficits. The transcription factor NRF2 has emerged as a promising therapeutic target in PD because it sits at the intersection of antioxidant and mitochondrial pathways. Here, we investigate the effects of modulating NRF2 activity in neurons isolated from a A53T α-synuclein (A53TSyn) mouse model of synucleinopathy. Embryonic hippocampal neurons were isolated from A53TSyn mice and their wild type (WT) littermates. Neurons were treated with either the NRF2 activator dimethyl fumarate (DMF) or the NRF2 inhibitor ML385. Reactive oxygen species (ROS), dendritic arborization and dendritic spine density were quantified. Mitochondrial bioenergetics were also profiled in these neurons. A53TSyn neurons had increased ROS and reduced basal and maximal mitochondrial respiration relative to WT neurons. A53TSyn neurons also displayed decreased dendritic arborization and reduced spine density. Treatment with DMF reduced ROS levels and improved both mitochondrial function and arborization, while inhibition of NRF2 with ML385 exacerbated these endpoints. Modulation of NRF2 activity had a significant effect on mitochondrial function, oxidative stress, and synaptic plasticity in A53TSyn neurons. These data suggest that NRF2 may be a viable target for therapeutic interventions in PD.
Collapse
|
110
|
Ordureau A, Kraus F, Zhang J, An H, Park S, Ahfeldt T, Paulo JA, Harper JW. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol Cell 2021; 81:5082-5098.e11. [PMID: 34699746 PMCID: PMC8688335 DOI: 10.1016/j.molcel.2021.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Heeseon An
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sookhee Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA; Department of Neurology at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Zhao YW, Pan HX, Liu Z, Wang Y, Zeng Q, Fang ZH, Luo TF, Xu K, Wang Z, Zhou X, He R, Li B, Zhao G, Xu Q, Sun QY, Yan XX, Tan JQ, Li JC, Guo JF, Tang BS. The Association Between Lysosomal Storage Disorder Genes and Parkinson's Disease: A Large Cohort Study in Chinese Mainland Population. Front Aging Neurosci 2021; 13:749109. [PMID: 34867278 PMCID: PMC8634711 DOI: 10.3389/fnagi.2021.749109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Recent years have witnessed an increasing number of studies indicating an essential role of the lysosomal dysfunction in Parkinson’s disease (PD) at the genetic, biochemical, and cellular pathway levels. In this study, we investigated the association between rare variants in lysosomal storage disorder (LSD) genes and Chinese mainland PD. Methods: We explored the association between rare variants of 69 LSD genes and PD in 3,879 patients and 2,931 controls from Parkinson’s Disease & Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) using next-generation sequencing, which were analyzed by using the optimized sequence kernel association test. Results: We identified the significant burden of rare putative LSD gene variants in Chinese mainland patients with PD. This association was robust in familial or sporadic early-onset patients after excluding the GBA variants but not in sporadic late-onset patients. The burden analysis of variant sets in genes of LSD subgroups revealed a suggestive significant association between variant sets in genes of sphingolipidosis deficiency disorders and familial or sporadic early-onset patients. In contrast, variant sets in genes of sphingolipidoses, mucopolysaccharidoses, and post-translational modification defect disorders were suggestively associated with sporadic late-onset patients. Then, SMPD1 and other four novel genes (i.e., GUSB, CLN6, PPT1, and SCARB2) were suggestively associated with sporadic early-onset or familial patients, whereas GALNS and NAGA were suggestively associated with late-onset patients. Conclusion: Our findings supported the association between LSD genes and PD and revealed several novel risk genes in Chinese mainland patients with PD, which confirmed the importance of lysosomal mechanisms in PD pathogenesis. Moreover, we identified the genetic heterogeneity in early-onset and late-onset of patients with PD, which may provide valuable suggestions for the treatment.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Xu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Huan Fang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Teng-Fei Luo
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Kun Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Qiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jin-Chen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
112
|
Lin KJ, Wang TJ, Chen SD, Lin KL, Liou CW, Lan MY, Chuang YC, Chuang JH, Wang PW, Lee JJ, Wang FS, Lin HY, Lin TK. Two Birds One Stone: The Neuroprotective Effect of Antidiabetic Agents on Parkinson Disease-Focus on Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors. Antioxidants (Basel) 2021; 10:antiox10121935. [PMID: 34943038 PMCID: PMC8750793 DOI: 10.3390/antiox10121935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease affecting more than 1% of the population over 65 years old. The etiology of the disease is unknown and there are only symptomatic managements available with no known disease-modifying treatment. Aging, genes, and environmental factors contribute to PD development and key players involved in the pathophysiology of the disease include oxidative stress, mitochondrial dysfunction, autophagic-lysosomal imbalance, and neuroinflammation. Recent epidemiology studies have shown that type-2 diabetes (T2DM) not only increased the risk for PD, but also is associated with PD clinical severity. A higher rate of insulin resistance has been reported in PD patients and is suggested to be a pathologic driver in this disease. Oral diabetic drugs including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to provide neuroprotective effects in both PD patients and experimental models; additionally, antidiabetic drugs have been demonstrated to lower incidence rates of PD in DM patients. Among these, the most recently developed drugs, SGLT2 inhibitors may provide neuroprotective effects through improving mitochondrial function and antioxidative effects. In this article, we will discuss the involvement of mitochondrial-related oxidative stress in the development of PD and potential benefits provided by antidiabetic agents especially focusing on sglt2 inhibitors.
Collapse
Affiliation(s)
- Kai-Jung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Tzu-Jou Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shang-Der Chen
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kai-Lieh Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Min-Yu Lan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Wen Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Metabolism, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jong-Jer Lee
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hung-Yu Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
113
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
114
|
Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. EXPLORATION (BEIJING, CHINA) 2021; 1:20210115. [PMID: 37323688 PMCID: PMC10191038 DOI: 10.1002/exp.20210115] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) are a class of heterogeneous diseases that includes Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Mitochondria play an important role in oxidative balance and metabolic activity of neurons; therefore, mitochondrial dysfunction is associated with NDs and mitochondria are considered a potential treatment target for NDs. Several obstacles, including the blood-brain barrier (BBB) and cell/mitochondrial membranes, reduce the efficiency of drug entry into the target lesions. Therefore, a variety of neuron mitochondrial targeting strategies has been developed. Among them, nanotechnology-based treatments show especially promising results. Owing to their adjustable size, appropriate charge, and lipophilic surface, nanoparticles (NPs) are the ideal theranostic system for crossing the BBB and targeting the neuronal mitochondria. In this review, we discussed the role of dysfunctional mitochondria in ND pathogenesis as well as the physiological barriers to various treatment strategies. We also reviewed the use and advantages of various NPs (including organic, inorganic, and biological membrane-coated NPs) for the treatment and diagnosis of NDs. Finally, we summarized the evidence and possible use for the promising role of NP-based theranostic systems in the treatment of mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Han Yang
- School of Life and Health ScienceThe Chinese University of Hong KongShenzhenP. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xinhui Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jian Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xiaoli Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| |
Collapse
|
115
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
116
|
Chen J, Li M, Zhou X, Xie A, Cai Z, Fu C, Peng Y, Zhang H, Liu L. Rotenone-Induced Neurodegeneration Is Enabled by a p38-Parkin-ROS Signaling Feedback Loop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13942-13952. [PMID: 34779196 DOI: 10.1021/acs.jafc.1c04190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rotenone, a component of pesticides, is widely used in agriculture and potentially causes Parkinson's disease (PD). However, the regulatory mechanisms of rotenone-induced PD are unclear. Here, we revealed a novel feedback mechanism of p38-Parkin-ROS regulating rotenone-induced PD. Rotenone treatment led to not only the activation of p38 but also Parkin inactivation and reactive oxygen species (ROS) overproduction in SN4741 cells. Meanwhile, p38 activation regulated Parkin phosphorylation at serine 131 to disrupt Parkin-mediated mitophagy. Notably, both p38 inhibition and Parkin overexpression decreased ROS levels. Additionally, the ROS inhibitor N-acetyl-l-cysteine (NAC) inhibited p38 and activated Parkin-mediated mitophagy. Both p38 inhibition and the ROS inhibitor NAC exerted a protective effect by restoring cell death and mitochondrial function in rotenone-induced PD models. Based on these results, the p38-Parkin-ROS signaling pathway is involved in neurodegeneration. This pathway represents a valuable treatment strategy for rotenone-induced PD, and our study provides basic research evidence for the safe use of rotenone in agriculture.
Collapse
Affiliation(s)
- Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Mingque Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Xueqiong Zhou
- Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Ailun Xie
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan 523808, Guangdong, P. R. China
| | - Yongming Peng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Linhua Liu
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, P. R. China
| |
Collapse
|
117
|
Choudhry H, Aggarwal M, Pan PY. Mini-review: Synaptojanin 1 and its implications in membrane trafficking. Neurosci Lett 2021; 765:136288. [PMID: 34637856 PMCID: PMC8572151 DOI: 10.1016/j.neulet.2021.136288] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
This mini-review aims to summarize a growing body of literature on synaptojanin 1 (Synj1), a phosphoinositide phosphatase that was initially known to have a prominent role in synaptic vesicle recycling. Synj1 is coded by the SYNJ1 gene, whose mutations and variants are associated with an increasing number of neurological disorders. To better understand the mechanistic role of Synj1 in disease pathogenesis, we review details of phosphoinositide signaling pathways and the reported involvement of Synj1 in membrane trafficking with a specific focus on Parkinson’s disease (PD). Recent studies have tremendously advanced our understanding of Synj1 protein structure and function while broadening our view of how Synj1 regulates synaptic membrane trafficking and endosomal trafficking in various organisms and cell types. A growing body of evidence points to inefficient membrane trafficking as key pathogenic mechanisms in neurodegenerative diseases associated with abnormal Synj1 expression. Despite significant progress made in the field, the mechanism by which Synj1 connects to trafficking, signaling, and pathogenesis is lacking and remains to be addressed.
Collapse
Affiliation(s)
- Hassaam Choudhry
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Dept. of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
118
|
Tian Y, He M, Pan L, Yuan X, Xiong M, Meng L, Yao Z, Yu Z, Ye K, Zhang Z. Transgenic Mice Expressing Human α-Synuclein 1-103 Fragment as a Novel Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:760781. [PMID: 34744697 PMCID: PMC8569470 DOI: 10.3389/fnagi.2021.760781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. However, its cellular and molecular mechanisms still wrap in the mist. This is partially caused by the absence of appropriate animal models mimicking sporadic PD that constitutes the majority of cases. Previously, we reported that a cysteine protease, asparagine endopeptidase (AEP), is activated in an age-dependent manner, and cleaves α-synuclein in the brain of sporadic PD patients. The AEP-derived α-synuclein 1-103 fragment is required for the pathogenesis of PD. Thus, we designed and characterized a novel transgenic mouse line expressing α-synuclein 1-103 (designated N103 mice). This model shows an abundant accumulation of pathological α-synuclein in the central nervous system, loss of dopaminergic neurons in the substantia nigra, and progressive striatal synaptic degeneration. The N103 mice also manifest age-dependent PD-like behavioral impairments. Notably, the mice show weight loss and constipation, which are the common non-motor symptoms in PD. The RNA-sequencing analysis found that the transcriptomics pattern was extensively altered in N103 mice. In conclusion, the N103 mouse line, as a brand-new tool, might provide new insights into PD research.
Collapse
Affiliation(s)
- Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
119
|
Pan L, Meng L, He M, Zhang Z. Tau in the Pathophysiology of Parkinson's Disease. J Mol Neurosci 2021; 71:2179-2191. [PMID: 33459970 PMCID: PMC8585831 DOI: 10.1007/s12031-020-01776-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
The pathological hallmarks of Parkinson's disease (PD) are the progressive loss of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies (LBs) in remaining neurons. LBs primarily consist of aggregated α-Synuclein (α-Syn). However, accumulating evidence suggests that Tau, which is associated with tauopathies such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and argyrophilic grain disease, is also involved in the pathophysiology of PD. A genome-wide association study (GWAS) identified MAPT, the gene encoding the Tau protein, as a risk gene for PD. Autopsy of PD patients also revealed the colocalization of Tau and α-Syn in LBs. Experimental evidence has shown that Tau interacts with α-Syn and influences the pathology of α-Syn in PD. In this review, we discuss the structure and function of Tau and provide a summary of the current evidence supporting Tau's involvement as either an active or passive element in the pathophysiology of PD, which may provide novel targets for the early diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
120
|
Meng J, Wang F, Ji L, Liang Y, Nian W, Song L, Zhu A. Comprehensive methylation profile of CSF cfDNA revealed pathogenesis and diagnostic markers for early-onset Parkinson's disease. Epigenomics 2021; 13:1637-1651. [PMID: 34664993 DOI: 10.2217/epi-2021-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background: Early-onset Parkinson's disease (EOPD) is one uncommon Parkinson's disease subtype with characteristic clinicopathological features. The full epigenomic profile of EOPD is largely unknown. Methods: We performed the first study to investigate the EOPD full methylation profile of cerebrospinal fluid (CSF) cell-free DNA (cfDNA) from 26 EOPD patients and 10 control patients. Results: 2220 differentially methylated genes were identified in EOPD. Hypermethylation far outweighed hypomethylation in gene numbers. Clustering and enrichment analyses identified aberrant neuronal function and immune response. Weighted correlation network analysis demonstrated significant correlation between methylation signatures and clock drawing test (CDT), mini-mental state examination (MMSE), education, working status, alcohol drinking history and Hamilton anxiety scale (HAMA). Several key networking genes in EOPD aberrant methylation were also identified. Conclusions: The methylation profile and signatures of CSF cfDNA were revealed for the first time in EOPD. Aberrant methylation signatures were correlated with education, working status, alcohol drinking history, CDT, MMSE and HAMA.
Collapse
Affiliation(s)
- Jie Meng
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China.,Department of Neurology & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, & Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Fenglin Wang
- Department of genetics and cell biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Lei Ji
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China
| | - Yuhua Liang
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China
| | - Wei Nian
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China
| | - Lele Song
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China.,Department of Radiotherapy, The Eighth Medical Center of the Chinese PLA General Hospital, Beijing, 100091, PR China
| | - Aiqin Zhu
- Institution of Geriatric, Qinghai Provincial People's Hospital, Xining, 810007, PR China
| |
Collapse
|
121
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
122
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
123
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
124
|
|
125
|
Visanji NP, Ghani M, Yu E, Kakhki EG, Sato C, Moreno D, Naranian T, Poon YY, Abdollahi M, Naghibzadeh M, Rajalingam R, Lozano AM, Kalia SK, Hodaie M, Cohn M, Statucka M, Boutet A, Elias GJB, Germann J, Munhoz R, Lang AE, Gan-Or Z, Rogaeva E, Fasano A. Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. JOURNAL OF PARKINSONS DISEASE 2021; 12:117-128. [PMID: 34602499 PMCID: PMC8842751 DOI: 10.3233/jpd-212730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed “surgicogenomics”. Objective: We aimed to identify genetic variants associated with clinical heterogeneity in DBS outcome of Parkinson’s disease (PD) patients that could then be applied clinically to target selection leading to improved surgical outcome. Methods: Retrospective clinical data was extracted from 150 patient’s charts. Each individual was genotyped using the genome-wide NeuroX array tailored to study neurologic diseases. Genetic data were clustered based on surgical outcome assessed by comparing pre- and post-operative scores of levodopa equivalent daily dose and axial impairment at one and five years post-surgery. Allele frequencies were compared between patients with excellent vs. moderate/poor outcomes grouped using a priori defined cut-offs. We analyzed common variants, burden of rare coding variants, and PD polygenic risk score. Results: NeuroX identified 2,917 polymorphic markers at 113 genes mapped to known PD loci. The gene-burden analyses of 202 rare nonsynonymous variants suggested a nominal association of axial impairment with 14 genes (most consistent with CRHR1, IP6K2, and PRSS3). The strongest association with surgical outcome was detected between a reduction in levodopa equivalent daily dose and common variations tagging two linkage disequilibrium blocks with SH3GL2. Conclusion: Once validated in independent populations, our findings may be implemented to improve patient selection for DBS in PD.
Collapse
Affiliation(s)
- Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erfan Ghani Kakhki
- DisorDATA Analytics, Ottawa, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Taline Naranian
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Yu-Yan Poon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Abdollahi
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Naghibzadeh
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Melanie Cohn
- Krembil Brain Institute, Toronto, Ontario, Canada
| | | | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Renato Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|
126
|
Ayagama T, Bose SJ, Capel RA, Priestman DA, Berridge G, Fischer R, Galione A, Platt FM, Kramer H, Burton RA. A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. iScience 2021; 24:102949. [PMID: 34466782 PMCID: PMC8384914 DOI: 10.1016/j.isci.2021.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.
Collapse
Affiliation(s)
- Thamali Ayagama
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Samuel J. Bose
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Rebecca A. Capel
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | | | - Georgina Berridge
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Frances M. Platt
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
127
|
Benaroya H. Brain energetics, mitochondria, and traumatic brain injury. Rev Neurosci 2021; 31:363-390. [PMID: 32004148 DOI: 10.1515/revneuro-2019-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
We review current thinking about, and draw connections between, brain energetics and metabolism, and between mitochondria and traumatic brain injury. Energy is fundamental to proper brain function. Its creation in a useful form for neurons and glia, and consistently in response to the brain's high energy needs, is critical for physiological pathways. Dysfunction in the mechanisms of energy production is at the center of neurological and neuropsychiatric pathologies. We examine the connections between energetics and mitochondria - the organelle responsible for almost all the energy production in the cell - and how secondary pathologies in traumatic brain injury result from energetic dysfunction. This paper interweaves these topics, a necessity since they are closely coupled, and identifies where there exist a lack of understanding and of data. In addition to summarizing current thinking in these disciplines, our goal is to suggest a framework for the mathematical modeling of mechanisms and pathways based on optimal energetic decisions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
128
|
Jiang W, Zou W, Hu M, Tian Q, Xiao F, Li M, Zhang P, Chen YJ, Jiang JM. Hydrogen sulphide attenuates neuronal apoptosis of substantia nigra by re-establishing autophagic flux via promoting leptin signalling in a 6-hydroxydopamine rat model of Parkinson's disease. Clin Exp Pharmacol Physiol 2021; 49:122-133. [PMID: 34494284 DOI: 10.1111/1440-1681.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/30/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Previous studies reveal that hydrogen sulphide (H2 S) exerts neuroprotection against neurotoxin-induced Parkinson's disease (PD), but the underlying mechanism remains elusive. The present study was aimed to investigate whether H2 S inhibits neuronal apoptosis of substantia nigra with the involvement of autophagy via promoting leptin signalling in 6-hydroxydopamine (6-OHDA)-induced PD rats. In this study, neuronal apoptosis was analysed by TUNEL staining, the activity of caspase-3 was measured by Caspase-3 fluorometric assay kit, the expressions of Bax, Bcl-2, Beclin-1, LC3II, P62 and leptin were determined by Western blot analysis, and the numbers of autophagosomes and autolysosomes were assessed by transmission electron microscopy. Results showed that NaHS, a donor of exogenous H2 S, mitigates 6-OHDA-induced the increases in the numbers of TUNEL-positive cells, the activity of caspase-3 and the expression of Bax, and attenuates 6-OHDA-induced a decrease in the expression of Bcl-2 in substantia nigra of rats. In addition, 6-OHDA enhanced the expressions of Beclin-1, LC3-II and P62, increased the number of autophagosomes, and decreased the number of autolysosomes in the substantia nigra, which were also blocked by administration of NaHS. Furthermore, NaHS reversed 6-OHDA-induced the down-regulation of leptin expression in the substantia nigra, and treatment with leptin-OBR, a blocking antibody of leptin receptor, attenuated the inhibition of NaHS on neuronal apoptosis and the improvement of NaHS on the blocked autophagic flux in substantia nigra of 6-OHDA-treated rats. Taken together, these results demonstrated that H2 S attenuates neuronal apoptosis of substantia nigra depending on restoring impaired autophagic flux through up-regulating leptin signalling in PD.
Collapse
Affiliation(s)
- Wu Jiang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Hu
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Tian
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong-Jun Chen
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
129
|
Miyazaki M, Hiramoto M, Takano N, Kokuba H, Takemura J, Tokuhisa M, Hino H, Kazama H, Miyazawa K. Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics. Int J Mol Med 2021; 48:195. [PMID: 34468012 PMCID: PMC8416139 DOI: 10.3892/ijmm.2021.5028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
The autophagy-lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G-associated kinase (GAK) is involved in the regulation of clathrin-dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy-lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome-lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho-associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO-mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
130
|
Leggio L, Paternò G, Vivarelli S, Falzone GG, Giachino C, Marchetti B, Iraci N. Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. Aging Dis 2021; 12:1494-1515. [PMID: 34527424 PMCID: PMC8407885 DOI: 10.14336/ad.2021.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Giovanna G Falzone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| |
Collapse
|
131
|
Gupta R, Karczewski KJ, Howrigan D, Neale BM, Mootha VK. Human genetic analyses of organelles highlight the nucleus in age-related trait heritability. eLife 2021; 10:68610. [PMID: 34467851 PMCID: PMC8476128 DOI: 10.7554/elife.68610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open question, however, is the degree to which inherited variation in or near genes encoding each organelle contributes to age-related disease pathogenesis. Here, we evaluate if genetic loci encoding organelle proteomes confer greater-than-expected age-related disease risk. As mitochondrial dysfunction is a 'hallmark' of aging, we begin by assessing nuclear and mitochondrial DNA loci near genes encoding the mitochondrial proteome and surprisingly observe a lack of enrichment across 24 age-related traits. Within nine other organelles, we find no enrichment with one exception: the nucleus, where enrichment emanates from nuclear transcription factors. In agreement, we find that genes encoding several organelles tend to be 'haplosufficient,' while we observe strong purifying selection against heterozygous protein-truncating variants impacting the nucleus. Our work identifies common variation near transcription factors as having outsize influence on age-related trait risk, motivating future efforts to determine if and how this inherited variation then contributes to observed age-related organelle deterioration.
Collapse
Affiliation(s)
- Rahul Gupta
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
| | - Konrad J Karczewski
- Broad Institute of MIT and Harvard, Cambridge, United States.,Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
| | - Daniel Howrigan
- Broad Institute of MIT and Harvard, Cambridge, United States.,Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Cambridge, United States.,Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, United States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
132
|
Marsili L, Mata IF, Kauffman MA. Editorial: Genotype-Phenotype Correlation in Parkinsonian Conditions. Front Neurol 2021; 12:743953. [PMID: 34497580 PMCID: PMC8420997 DOI: 10.3389/fneur.2021.743953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Ignacio F. Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
133
|
Wen G, Pang H, Wu X, Jiang E, Zhang X, Zhan X. Proteomic characterization of secretory granules in dopaminergic neurons indicates chromogranin/secretogranin-mediated protein processing impairment in Parkinson's disease. Aging (Albany NY) 2021; 13:20335-20358. [PMID: 34420933 PMCID: PMC8436928 DOI: 10.18632/aging.203415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Parkinson’s disease (PD) is an aging disorder related to vesicle transport dysfunctions and neurotransmitter secretion. Secretory granules (SGs) are large dense-core vesicles for the biosynthesis of neuropeptides and hormones. At present, the involvement of SGs impairment in PD remains unclear. In the current study, we found that the number of SGs in tyrosine hydroxylase-positive neurons and the marker proteins secretogranin III (Scg3) significantly decreased in the substantia nigra and striatum regions of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) exposed mice. Proteomic study of SGs purified from the dopaminergic SH-sy5Y cells under 1-methyl-4-phenylpyridinium (MPP+) treatments (ProteomeXchange PXD023937) identified 536 significantly differentially expressed proteins. The result indicated that disabled lysosome and peroxisome, lipid and energy metabolism disorders are three characteristic features. Protein-protein interaction analysis of 56 secretory proteins and 140 secreted proteins suggested that the peptide processing mediated by chromogranin/secretogranin in SGs was remarkably compromised, accompanied by decreased candidate proteins and peptides neurosecretory protein (VGF), neuropeptide Y, apolipoprotein E, and an increased level of proenkephalin. The current study provided an extensive proteinogram of SGs in PD. It is helpful to understand the molecular mechanisms in the disease.
Collapse
Affiliation(s)
- Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Enzhu Jiang
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Xique Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, PR China
| |
Collapse
|
134
|
McFarthing K, Buff S, Rafaloff G, Dominey T, Wyse RK, Stott SRW. Parkinson's Disease Drug Therapies in the Clinical Trial Pipeline: 2020. JOURNAL OF PARKINSONS DISEASE 2021; 10:757-774. [PMID: 32741777 PMCID: PMC7458531 DOI: 10.3233/jpd-202128] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The majority of current pharmacological treatments for Parkinson’s disease (PD) were approved for clinical use in the second half of the last century and they only provide symptomatic relief. Derivatives of these therapies continue to be explored in clinical trials, together with potentially disease modifying therapies that can slow, stop or reverse the condition. Objective: To provide an overview of the pharmacological therapies— both symptomatic and disease modifying— currently being clinically evaluated for PD, with the goal of creating greater awareness and opportunities for collaboration amongst commercial and academic researchers as well as between the research and patient communities. Methods: We conducted a review of clinical trials of drug therapies for PD using trial data obtained from the ClinicalTrials.gov database and performed a breakdown analysis of studies that were active as of January 21, 2020. Results: We identified 145 registered and ongoing clinical trials for therapeutics targeting PD, of which 51 were Phase 1 (35% of the total number of trials), 66 were Phase 2 (46% ), and 28 were Phase 3 (19% ). There were 57 trials (39% ) focused on long-term disease modifying therapies, with the remaining 88 trials (61% ) focused on therapies for symptomatic relief. A total of 50 (34% ) trials were testing repurposed therapies. Conclusion: There is a broad pipeline of both symptomatic and disease modifying therapies currently being tested in clinical trials for PD.
Collapse
Affiliation(s)
| | - Sue Buff
- Parkinson's Research Advocate, Sunnyvale, CA, USA
| | | | | | | | | |
Collapse
|
135
|
Liu Y, Hong H, Xue J, Luo J, Liu Q, Chen X, Pan Y, Zhou J, Liu Z, Chen T. Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood-Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37746-37760. [PMID: 34318658 DOI: 10.1021/acsami.1c12675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial dysfunction, which is directly involved in Parkinson's disease (PD), is characterized by the production of reactive oxygen species (ROS) and aberrant energy metabolism. Thus, regulating mitochondrial function might be an effective strategy to treat PD. However, the blood-brain barrier (BBB) presents a significant challenge for the intracerebral delivery of drugs. Here, we synthesized a zeolitic imidazolate framework 8-coated Prussian blue nanocomposite (ZIF-8@PB), which was encapsulated with quercetin (QCT), a natural antioxidant, to treat PD. ZIF-8@PB-QCT exhibited superior near-infrared radiation (NIR) response and penetrated through the BBB to the site of mitochondrial damage guided by the photothermal effect. In the mice model of PD, the QCT released from ZIF-8@PB-QCT significantly increased the adenosine triphosphate levels, reduced the oxidative stress levels, and reversed dopaminergic neuronal damage as well as PD-related behavioral deficits without any damage to the normal tissues. Furthermore, we explored the underlying neuroprotective mechanism of ZIF-8@PB-QCT that was mediated by activating the PI3K/Akt signaling pathway. Thus, combined with noninvasive NIR radiation, the biocompatible ZIF-8@PB-QCT nanocomposite could be used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jincheng Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
136
|
Sackner-Bernstein J. Estimates of Intracellular Dopamine in Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSONS DISEASE 2021; 11:1011-1018. [PMID: 34024786 PMCID: PMC8461729 DOI: 10.3233/jpd-212715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The hallmark of Parkinson’s disease is depletion of dopamine in the basal ganglia. Models of Parkinson’s disease include dopamine as a contributor to disease progression. However, intraneuronal levels of dopamine have not been reported. Objective: Meta-analytic methods were utilized to determine intracellular dopamine levels in Parkinson’s disease. Methods: A systematic review of the literature and frequentist meta-analyses were performed. Dopamine levels were scaled for cell and axon numbers as well as VMAT2 protein levels. Results: Reduced tissue dopamine, dopaminergic cell bodies and VMAT2 protein were confirmed. The ratio of Parkinson’s to normal brain intracellular dopamine scaled for either cell or axon number, each with VMAT2 level in the caudate ranged from 1.49 to 1.87 (p = 0.51 and p = 0.12, respectively) and in the putamen from 0.75 to 4.61 (p = 0.40 and 0.001, respectively). Conclusion: Free, intracellular dopamine levels are not reduced in Parkinson’s disease compared to normals to a similar degree as are total tissue concentrations, supporting the relevance of modulating VMAT2, neuromelanin and/or dopamine synthesis as rational neuroprotective strategies.
Collapse
|
137
|
Malinova D, Wasim L, Newman R, Martínez-Riaño A, Engels N, Tolar P. Endophilin A2 regulates B-cell endocytosis and is required for germinal center and humoral responses. EMBO Rep 2021; 22:e51328. [PMID: 34323351 PMCID: PMC8419706 DOI: 10.15252/embr.202051328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Antigen‐specific B‐cell responses require endosomal trafficking to regulate antigen uptake and presentation to helper T cells, and to control expression and signaling of immune receptors. However, the molecular composition of B‐cell endosomal trafficking pathways and their specific roles in B‐cell responses have not been systematically investigated. Here, we report high‐throughput identification of genes regulating B‐cell receptor (BCR)‐mediated antigen internalization using genome‐wide functional screens. We show that antigen internalization depends both on constitutive, clathrin‐mediated endocytosis and on antigen‐induced, clathrin‐independent endocytosis mediated by endophilin A2. Although endophilin A2‐mediated endocytosis is dispensable for antigen presentation, it is selectively required for metabolic support of B‐cell proliferation, in part through regulation of iron uptake. Consequently, endophilin A2‐deficient mice show defects in GC B‐cell responses and production of high‐affinity IgG. The requirement for endophilin A2 highlights a unique importance of clathrin‐independent intracellular trafficking in GC B‐cell clonal expansion and antibody responses.
Collapse
Affiliation(s)
- Dessislava Malinova
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Laabiah Wasim
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca Newman
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Ana Martínez-Riaño
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
138
|
Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T. Progress towards therapies for disease modification in Parkinson's disease. Lancet Neurol 2021; 20:559-572. [PMID: 34146514 DOI: 10.1016/s1474-4422(21)00061-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
The development of interventions to slow or halt the progression of Parkinson's disease remains a priority for patients and researchers alike. To date, no agents have been shown to have unequivocal evidence of disease-modifying effects in Parkinson's disease. The absence of disease-modifying treatments might relate not only to inadequate approaches for the selection of therapeutic candidates but also to insufficient attention to detail in clinical trial design. Better understanding of Parkinson's disease pathogenesis associated with advances in laboratory models, the use of objective biomarkers of disease progression and target engagement, and a focus on agents known to be safe for human use, alongside the use of precision medicine approaches, should together greatly increase the likelihood for successful identification of disease-modifying treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
139
|
Kong F, Lv Z, Wang L, Zhang K, Cai Y, Ding Q, Sun Z, Zhen H, Jiao F, Ma Q, Nie C, Yang Y. RNA-sequencing of peripheral blood circular RNAs in Parkinson disease. Medicine (Baltimore) 2021; 100:e25888. [PMID: 34114985 PMCID: PMC8202568 DOI: 10.1097/md.0000000000025888] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play an important role in many neurological diseases and can serve as biomarkers for these diseases. However, the information about circRNAs in Parkinson disease (PD) remained limited. In this study, we aimed to determine the circRNAs expression profile in PD patients and discuss the significance of circRNAs in the diagnosis of PD. METHODS AND RESULTS Using RNA-sequencing in peripheral blood RNAs, we showed that a significant number of mRNAs or circRNAs were differentially expressed between PD patients and normal controls (NCs), which included 273 up-regulated and 493 down-regulated mRNAs, and 129 up-regulated and 282 down-regulated circRNAs, respectively. Functional analysis was performed using the Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis, and the results showed that the second most enriched KEGG pathway was PD. These data suggest that the levels of mRNAs and circRNAs in peripheral blood could be potentially used as biomarkers for PD. In addition, we correlated mRNAs and circRNAs by constructing a competing endogenous RNA (ceRNA) network in PD. The resulted-in ceRNA network included 10 differentially expressed mRNAs from PD pathway, 13 predicted miRNAs, and 10 differentially expressed circRNAs. CONCLUSION Collectively, we first characterized the expression profiles of circRNAs and mRNAs in peripheral blood from PD patients and proposed their possible characters in the pathogenesis of PD. These results provided valuable insights into the clues underlying the pathogenesis of PD.
Collapse
Affiliation(s)
- Fancong Kong
- Department of Neurology, The Affiliated Hospital of Jining Medical University
- Clinical Medical College
| | - Zhanyun Lv
- Department of Neurology, The Affiliated Hospital of Jining Medical University
| | - Lifang Wang
- BGI-Shenzhen
- China National GeneBank
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen
| | - Kui Zhang
- Department of Neurology, The Affiliated Hospital of Jining Medical University
| | - Ying Cai
- Department of Neurology, The Affiliated Hospital of Jining Medical University
- Clinical Medical College
| | - Qingqing Ding
- Department of Neurology, The Affiliated Hospital of Jining Medical University
- Clinical Medical College
| | - Zuzhen Sun
- Department of Neurology, The Affiliated Hospital of Jining Medical University
| | - Hefu Zhen
- BGI-Shenzhen
- China National GeneBank
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen
| | - Fengjuan Jiao
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Qianqian Ma
- Department of Neurology, The Affiliated Hospital of Jining Medical University
| | - Chao Nie
- BGI-Shenzhen
- China National GeneBank
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University
- Clinical Medical College
| |
Collapse
|
140
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
141
|
Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Prog Neurobiol 2021; 204:102086. [PMID: 34052305 DOI: 10.1016/j.pneurobio.2021.102086] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Successful clinical translation of stem cell-based therapy largely relies on the scalable and reproducible preparation of donor cells with potent therapeutic capacities. In this study, midbrain organoids were yielded from human pluripotent stem cells (hPSCs) to prepare cells for Parkinson's disease (PD) therapy. Neural stem/precursor cells (NSCs) isolated from midbrain organoids (Og-NSCs) expanded stably and differentiated into midbrain-type dopamine(mDA) neurons, and an unprecedentedly high proportion expressed midbrain-specific factors, with relatively low cell line and batch-to-batch variations. Single cell transcriptome analysis followed by in vitro assays indicated that the majority of cells in the Og-NSC cultures are ventral midbrain (VM)-patterned with low levels of cellular senescence/aging and mitochondrial stress, compared to those derived from 2D-culture environments. Notably, in contrast to current methods yielding mDA neurons without astrocyte differentiation, mDA neurons that differentiated from Og-NSCs were interspersed with astrocytes as in the physiologic brain environment. Thus, the Og-NSC-derived mDA neurons exhibited improved synaptic maturity, functionality, resistance to toxic insults, and faithful expressions of the midbrain-specific factors, in vitro and in vivo long after transplantation. Consequently, Og-NSC transplantation yielded potent therapeutic outcomes that are reproducible in PD model animals. Collectively, our observations demonstrate that the organoid-based method may satisfy the demands needed in the clinical setting of PD cell therapy.
Collapse
|
142
|
Sarkar S, Bardai F, Olsen AL, Lohr KM, Zhang YY, Feany MB. Oligomerization of Lrrk controls actin severing and α-synuclein neurotoxicity in vivo. Mol Neurodegener 2021; 16:33. [PMID: 34030727 PMCID: PMC8142648 DOI: 10.1186/s13024-021-00454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mutations in LRRK2 are the most common cause of familial Parkinson's disease and typically cause disease in the context of abnormal aggregation and deposition of α-synuclein within affected brain tissue. METHODS We combine genetic analysis of Lrrk-associated toxicity in a penetrant Drosophila model of wild type human α-synuclein neurotoxicity with biochemical analyses and modeling of LRRK2 toxicity in human neurons and transgenic mouse models. RESULTS We demonstrate that Lrrk and α-synuclein interact to promote neuronal degeneration through convergent effects on the actin cytoskeleton and downstream dysregulation of mitochondrial dynamics and function. We find specifically that monomers and dimers of Lrrk efficiently sever actin and promote normal actin dynamics in vivo. Oligomerization of Lrrk, which is promoted by dominant Parkinson's disease-causing mutations, reduces actin severing activity in vitro and promotes excess stabilization of F-actin in vivo. Importantly, a clinically protective Lrrk mutant reduces oligomerization and α-synuclein neurotoxicity. CONCLUSIONS Our findings provide a specific mechanistic link between two key molecules in the pathogenesis of Parkinson's disease, α-synuclein and LRRK2, and suggest potential new approaches for therapy development.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Farah Bardai
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Abby L. Olsen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Kelly M. Lohr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Ying-Yi Zhang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| |
Collapse
|
143
|
Zou L, Tian Y, Zhang Z. Dysfunction of Synaptic Vesicle Endocytosis in Parkinson's Disease. Front Integr Neurosci 2021; 15:619160. [PMID: 34093144 PMCID: PMC8172812 DOI: 10.3389/fnint.2021.619160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is a chronic and progressive disorder estimated to affect at least 4 million people worldwide. Although the etiology of PD remains unclear, it has been found that the dysfunction of synaptic vesicle endocytosis (SVE) in neural terminal happens before the loss of dopaminergic neurons. Recently, accumulating evidence reveals that the PD-linked synaptic genes, including DNAJC6, SYNJ1, and SH3GL2, significantly contribute to the disruptions of SVE, which is vital for the pathogenesis of PD. In addition, the proteins encoded by other PD-associated genes such as SNCA, LRRK2, PRKN, and DJ-1 also play key roles in the regulation of SVE. Here we present the facts about SVE-related genes and discussed their potential relevance to the pathogenesis of PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
144
|
Na + leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson's disease. J Neural Transm (Vienna) 2021; 128:749-762. [PMID: 33961117 DOI: 10.1007/s00702-021-02348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder often accompanied by neuropsychiatric symptoms that stem from the loss of dopaminergic function in the basal ganglia and altered neurotransmission more generally. Akinesia, postural instability, tremors and frozen gait constitute the major motor disturbances, whereas neuropsychiatric symptoms include altered circadian rhythms, disordered sleep, depression, psychosis and cognitive impairment. Evidence is emerging that the motor and neuropsychiatric symptoms may share etiologic factors. Calcium/ion channels (CACNA1C, NALCN), synaptic proteins (SYNJ1) and neuronal RNA-binding proteins (RBFOX1) are among the risk genes that are common to PD and various psychiatric disorders. The Na+ leak-current channel (NALCN) is the focus of this review because it has been implicated in dystonia, regulation of movement, cognitive impairment, sleep and circadian rhythms. It regulates the resting membrane potential in neurons, mediates pace-making activity, participates in synaptic vesicle recycling and is functionally co-localized to the endoplasmic reticulum (ER)-several of the major processes adversely affected in PD. Here, we summarize the literature on mechanisms and pathways that connect the motor and neuropsychiatric symptoms of PD with a focus on recurring relationships to the NALCN. It is hoped that the various connections outlined here will stimulate further discussion, suggest additional areas for exploration and ultimately inspire novel treatment strategies.
Collapse
|
145
|
Kobiec T, Otero-Losada M, Chevalier G, Udovin L, Bordet S, Menéndez-Maissonave C, Capani F, Pérez-Lloret S. The Renin-Angiotensin System Modulates Dopaminergic Neurotransmission: A New Player on the Scene. Front Synaptic Neurosci 2021; 13:638519. [PMID: 33967734 PMCID: PMC8100578 DOI: 10.3389/fnsyn.2021.638519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is an extrapyramidal disorder characterized by neuronal degeneration in several regions of the peripheral and central nervous systems. It is the second most frequent neurodegenerative disease after Alzheimer's. It has become a major health problem, affecting 1% of the world population over 60 years old and 3% of people beyond 80 years. The main histological findings are intracellular Lewy bodies composed of misfolded α-synuclein protein aggregates and loss of dopaminergic neurons in the central nervous system. Neuroinflammation, apoptosis, mitochondrial dysfunction, altered calcium homeostasis, abnormal protein degradation, and synaptic pathobiology have been put forward as mechanisms leading to cell death, α-synuclein deposition, or both. A progressive loss of dopaminergic neurons in the substantia nigra late in the neurodegeneration leads to developing motor symptoms like bradykinesia, tremor, and rigidity. The renin-angiotensin system (RAS), which is involved in regulating blood pressure and body fluid balance, also plays other important functions in the brain. The RAS is involved in the autocrine and paracrine regulation of the nigrostriatal dopaminergic synapses. Dopamine depletion, as in PD, increases angiotensin II expression, which stimulates or inhibits dopamine synthesis and is released via AT1 or AT2 receptors. Furthermore, angiotensin II AT1 receptors inhibit D1 receptor activation allosterically. Therefore, the RAS may have an important modulating role in the flow of information from the brain cortex to the basal ganglia. High angiotensin II levels might even aggravate neurodegeneration, activating the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, which leads to increased reactive oxygen species production.
Collapse
Affiliation(s)
- Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Guenson Chevalier
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Camila Menéndez-Maissonave
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina
- Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John F. Kennedy, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | - Santiago Pérez-Lloret
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Medicina, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
146
|
Kwon O, Song J, Yang Y, Kim S, Kim JY, Seok M, Hwang I, Yu J, Karmacharya J, Maeng H, Kim J, Jho E, Ko SY, Son H, Chang M, Lee S. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 2021; 13:e13076. [PMID: 33646633 PMCID: PMC8033538 DOI: 10.15252/emmm.202013076] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes and microglia are brain-resident glia that can establish harmful inflammatory environments in disease contexts and thereby contribute to the progression of neuronal loss in neurodegenerative disorders. Correcting the diseased properties of glia is therefore an appealing strategy for treating brain diseases. Previous studies have shown that serum/ glucocorticoid related kinase 1 (SGK1) is upregulated in the brains of patients with various neurodegenerative disorders, suggesting its involvement in the pathogenesis of those diseases. In this study, we show that inhibiting glial SGK1 corrects the pro-inflammatory properties of glia by suppressing the intracellular NFκB-, NLRP3-inflammasome-, and CGAS-STING-mediated inflammatory pathways. Furthermore, SGK1 inhibition potentiated glial activity to scavenge glutamate toxicity and prevented glial cell senescence and mitochondrial damage, which have recently been reported as critical pathologic features of and therapeutic targets in Parkinson disease (PD) and Alzheimer disease (AD). Along with those anti-inflammatory/neurotrophic functions, silencing and pharmacological inhibition of SGK1 protected midbrain dopamine neurons from degeneration and cured pathologic synuclein alpha (SNCA) aggregation and PD-associated behavioral deficits in multiple in vitro and in vivo PD models. Collectively, these findings suggest that SGK1 inhibition could be a useful strategy for treating PD and other neurodegenerative disorders that share the common pathology of glia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Oh‐Chan Kwon
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Jae‐Jin Song
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Yunseon Yang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Seong‐Hoon Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Ji Young Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Min‐Jong Seok
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Inhwa Hwang
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | - Je‐Wook Yu
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | | | | | - Jiyoung Kim
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Eek‐hoon Jho
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Seung Yeon Ko
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Hyeon Son
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Mi‐Yoon Chang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Sang‐Hun Lee
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| |
Collapse
|
147
|
Wang M, Zhang S, Zhong R, Wan F, Chen L, Liu L, Yi B, Zhang H. Olive Fruit Extracts Supplement Improve Antioxidant Capacity via Altering Colonic Microbiota Composition in Mice. Front Nutr 2021; 8:645099. [PMID: 33889594 PMCID: PMC8055859 DOI: 10.3389/fnut.2021.645099] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, one of the most common biological dysfunctions, is usually associated with pathological conditions and multiple diseases in humans and animals. Chinese olive fruit (Canarium album L.) extracts (OE) are natural plant extracts rich in polyphenols (such as hydroxytyrosol, HT) and with antioxidant, anti-hyperlipidemia, and anti-inflammatory potentials. This study was conducted to investigate the antioxidant capacity of OE supplementation and its related molecular mechanism in mice. Mice (25.46 ± 1.65 g) were treated with 100 mg/kg body weight (BW) OE or saline solution for 4 weeks, and then the antioxidant and anti-inflammatory capacities of mice were examined. The results showed that OE supplement significantly increased the serum antioxidative enzyme activities of total antioxidant activity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and decreased the serum malondialdehyde (MDA) level, indicating that OE treatment enhanced the antioxidant capacity in mice. qPCR results showed that the transcriptional expression of antioxidant SOD1, CAT, Gpx1, and Gpx2 were significantly down-regulated in the small intestine (jejunum and ileum) after OE administration. Meanwhile, OE treatment significantly decreased the T-AOC and increased the MDA level in the small intestine. Furthermore, OE administration dramatically reduced the mRNA expression of pro-inflammatory cytokines (TNF-α and IL-1β), which confirmed its antioxidant and anti-inflammatory capacities with OE administration. Using amplicon sequencing technology, 16S rRNA sequencing results showed that OE supplement significantly increased the colonic Firmicutes/Bacteroidetes ratio, which also had a negative correlation with the serum MDA level and positively correlated with serum GSH-Px activity through Pearson correlation analysis. Besides that, Alloprevotella was negatively correlated with serum T-AOC. Colidextribacter was positively correlated with serum MDA and negatively correlated with serum T-AOC, SOD, and GSH-Px levels. In summary, this study showed that treatment with 100 mg/kg BW polyphenol-rich OE could alter colonic microbiota community, which was strongly associated with improved antioxidant capacity in mice.
Collapse
Affiliation(s)
- Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
148
|
Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson's disease. Nat Commun 2021; 12:1807. [PMID: 33753743 PMCID: PMC7985376 DOI: 10.1038/s41467-021-22113-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria-lysosome contacts are recently identified sites for mediating crosstalk between both organelles, but their role in normal and diseased human neurons remains unknown. In this study, we demonstrate that mitochondria-lysosome contacts can dynamically form in the soma, axons, and dendrites of human neurons, allowing for their bidirectional crosstalk. Parkinson's disease patient derived neurons harboring mutant GBA1 exhibited prolonged mitochondria-lysosome contacts due to defective modulation of the untethering protein TBC1D15, which mediates Rab7 GTP hydrolysis for contact untethering. This dysregulation was due to decreased GBA1 (β-glucocerebrosidase (GCase)) lysosomal enzyme activity in patient derived neurons, and could be rescued by increasing enzyme activity with a GCase modulator. These defects resulted in disrupted mitochondrial distribution and function, and could be further rescued by TBC1D15 in Parkinson's patient derived GBA1-linked neurons. Together, our work demonstrates a potential role of mitochondria-lysosome contacts as an upstream regulator of mitochondrial function and dynamics in midbrain dopaminergic neurons in GBA1-linked Parkinson's disease.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
149
|
Dakik H, Mantash S, Nehme A, Kobeissy F, Zabet-Moghaddam M, Mirzaei P, Mechref Y, Gaillard A, Prestoz L, Zibara K. Analysis of the Neuroproteome Associated With Cell Therapy After Intranigral Grafting in a Mouse Model of Parkinson Disease. Front Neurosci 2021; 15:621121. [PMID: 33776636 PMCID: PMC7991918 DOI: 10.3389/fnins.2021.621121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
Advances in large-scale proteomics analysis have been very useful in understanding pathogenesis of diseases and elaborating therapeutic strategies. Proteomics has been employed to study Parkinson disease (PD); however, sparse studies reported proteome investigation after cell therapy approaches. In this study, we used liquid chromatography–tandem mass spectrometry and systems biology to identify differentially expressed proteins in a translational mouse model of PD after cell therapy. Proteins were extracted from five nigrostriatal-related brain regions of mice previously lesioned with 6-hydroxydopamine in the substantia nigra. Protein expression was compared in non-grafted brain to 1 and 7 days after intranigral grafting of E12.5 embryonic ventral mesencephalon (VM). We found a total of 277 deregulated proteins after transplantation, which are enriched for lipid metabolism, oxidative phosphorylation and PD, thus confirming that our animal model is similar to human PD and that the presence of grafted cells modulates the expression of these proteins. Notably, seven proteins (Acta1, Atp6v1e1, Eci3, Lypla2, Pip4k2a, Sccpdh, and Sh3gl2) were commonly down-regulated after engraftment in all studied brain regions. These proteins are known to be involved in the formation of lipids and recycling of dopamine (DA) vesicle at the synapse. Moreover, intranigral transplantation of VM cells decreased the expression of proteins related to oxidative stress, especially in the nigrostriatal pathway containing the DA grafted neurons. In the same regions, an up-regulation of several proteins including α-synuclein and tyrosine hydroxylase was observed, whereas expression of tetraspanin 7 was shut down. Overall, these results suggest that intranigral transplantation of VM tissue in an animal model of PD may induce a decrease of oxidative stress in the nigrostriatal pathway and a restoration of the machinery of neurotransmitters, particularly DA release to promote DA transmission through a decrease of D2 DA receptors endocytosis. Identification of new mechanistic elements involved in the nigrostriatal reconstruction process, using translational animal models and systems biology, is a promising approach to enhance the repair of this pathway in PD patients undergoing cell therapy.
Collapse
Affiliation(s)
- Hassan Dakik
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Université de Tours, Tours, France
| | - Sarah Mantash
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Ali Nehme
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,McGill University and Génome Québec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Afsaneh Gaillard
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Laetitia Prestoz
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Kazem Zibara
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
150
|
Garza NM, Griffin AT, Zulkifli M, Qiu C, Kaplan CD, Gohil VM. A genome-wide copper-sensitized screen identifies novel regulators of mitochondrial cytochrome c oxidase activity. J Biol Chem 2021; 296:100485. [PMID: 33662401 PMCID: PMC8027276 DOI: 10.1016/j.jbc.2021.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022] Open
Abstract
Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.
Collapse
Affiliation(s)
- Natalie M Garza
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Aaron T Griffin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|