101
|
Lipsman N, Mainprize TG, Schwartz ML, Hynynen K, Lozano AM. Intracranial applications of magnetic resonance-guided focused ultrasound. Neurotherapeutics 2014; 11:593-605. [PMID: 24850310 PMCID: PMC4121456 DOI: 10.1007/s13311-014-0281-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ability to focus acoustic energy through the intact skull on to targets millimeters in size represents an important milestone in the development of neurotherapeutics. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, noninvasive method, which--under real-time imaging and thermographic guidance--can be used to generate focal intracranial thermal ablative lesions and disrupt the blood-brain barrier. An established treatment for bone metastases, uterine fibroids, and breast lesions, MRgFUS has now been proposed as an alternative to open neurosurgical procedures for a wide variety of indications. Studies investigating intracranial MRgFUS range from small animal preclinical experiments to large, late-phase randomized trials that span the clinical spectrum from movement disorders, to vascular, oncologic, and psychiatric applications. We review the principles of MRgFUS and its use for brain-based disorders, and outline future directions for this promising technology.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, University Health Network, University of Toronto, 399 Bathurst Street, 4W-431, Toronoto, M5T 2S8, Canada,
| | | | | | | | | |
Collapse
|
102
|
Magnetic-resonance imaging for kinetic analysis of permeability changes during focused ultrasound-induced blood-brain barrier opening and brain drug delivery. J Control Release 2014; 192:1-9. [PMID: 24969355 DOI: 10.1016/j.jconrel.2014.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/08/2014] [Accepted: 06/15/2014] [Indexed: 11/22/2022]
Abstract
Focused ultrasound (FUS) with the presence of microbubbles has been shown to induce transient and local opening of the blood-brain barrier (BBB) for the delivery of therapeutic molecules which normally cannot penetrate into the brain. The success of FUS brain-drug delivery relies on its integration with in-vivo imaging to monitor kinetic change of therapeutic molecules into the brain. In this study, we developed a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique for kinetic analysis of delivered molecules during FUS-BBB opening. Three kinetic parameters (Ktrans, Ve, Kep) were characterized dynamically to describe BBB-permeability at two FUS exposure conditions (0.4 or 0.8MPa) over 24h. Ktrans, defined as the influx volume transfer constant from plasma to EES, and Ve, the EES volume fraction, were both found to be pressure-dependent. Ktrans and Ve showed a peak increase of 0.0086-0.0131min(-1) (for 0.4-0.8MPa pressure), and 0.0431-0.0692, respectively, immediately after FUS exposure. Both parameters subsequently decreased exponentially as a function of time, with estimated half-lives of decay of 2.89-5.3 and 2.2-4.93h, respectively. The kinetics of Kep, defined as the efflux rate constant from the extracellular extravascular space (EES) to the plasma, were complementary to Ktrans, with an initial decrease from 0.2010 to 0.1901min(-1) followed by a significantly longer recovery time (half-life of 17.39-99.92h). Our observations strongly supported the existence of imbalanced and mismatched kinetics of influx (Ktrans) and efflux (Kep) between the plasma and EES, indicating the existence of directional permeability during FUS-BBB opening. We further showed that kinetic change determined by DCE-MRI correlated well with the concentration of Evans Blue (EB)-albumin (coefficient of 0.74-0.89). These findings suggest that MRI kinetic monitoring may serve as an alternative method for in-vivo monitoring of pharmacokinetics and pharmacodynamics (PK/PD) change of therapeutic agents during drug delivery to the brain, and provide useful information for future optimization of FUS-BBB opening.
Collapse
|
103
|
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9:2241-57. [PMID: 24872687 PMCID: PMC4026551 DOI: 10.2147/ijn.s61288] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed.
Collapse
Affiliation(s)
- Cui-Tao Lu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| | - Ying-Zheng Zhao
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China ; College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Lei Peng
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China
| | - Xin-Qiao Tian
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| |
Collapse
|
104
|
Westmeyer GG, Emer Y, Lintelmann J, Jasanoff A. MRI-based detection of alkaline phosphatase gene reporter activity using a porphyrin solubility switch. ACTA ACUST UNITED AC 2014; 21:422-9. [PMID: 24613020 DOI: 10.1016/j.chembiol.2014.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/23/2022]
Abstract
The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with MRI could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water-soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by postmortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets.
Collapse
Affiliation(s)
- Gil G Westmeyer
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA; Department of Nuclear Medicine, Technische Universität München, 81675 Munich, Germany; Institutes of Biological and Medical Imaging and Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany
| | - Yelena Emer
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA
| | - Jutta Lintelmann
- Comprehensive Molecular Analytics Cooperation Group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany
| | - Alan Jasanoff
- Departments of Brain & Cognitive Sciences, Biological Engineering, and Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, MA 02139, USA.
| |
Collapse
|
105
|
Facilitated brain delivery of poly (ethylene glycol)–poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials 2014; 35:3384-95. [DOI: 10.1016/j.biomaterials.2013.12.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/18/2013] [Indexed: 12/27/2022]
|
106
|
Wu SK, Yang MT, Kang KH, Liou HC, Lu DH, Fu WM, Lin WL. Targeted delivery of erythropoietin by transcranial focused ultrasound for neuroprotection against ischemia/reperfusion-induced neuronal injury: a long-term and short-term study. PLoS One 2014; 9:e90107. [PMID: 24587228 PMCID: PMC3938648 DOI: 10.1371/journal.pone.0090107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/29/2014] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) is a neuroprotective agent against cerebral ischemia/reperfusion (I/R)-induced brain injury. However, its crossing of blood-brain barrier is limited. Focused ultrasound (FUS) sonication with microbubbles (MBs) can effectively open blood-brain barrier to boost the vascular permeability. In this study, we investigated the effects of MBs/FUS on extending the therapeutic time window of EPO and its neuroprotective effects in both acute and chronic phases. Male Wistar rats were firstly subjected to two common carotid arteries and right middle cerebral artery occlusion (three vessels occlusion, 3VO) for 50 min, and then the rats were treated with hEPO (human recombinant EPO, 5000 IU/kg) with or without MBs/FUS at 5 h after occlusion/reperfusion. Acute phase investigation (I/R, I/R+MBs/FUS, I/R+hEPO, and I/R+hEPO+MBs/FUS) was performed 24 h after I/R; chronic tests including cylinder test and gait analysis were performed one month after I/R. The experimental results showed that MBs/FUS significantly increased the cerebral content of EPO by bettering vascular permeability. In acute phase, both significant improvement of neurological score and reduction of infarct volume were found in the I/R+hEPO+MBs/FUS group, as compared with I/R and I/R+hEPO groups. In chronic phase, long-term behavioral recovery and neuronal loss in brain cortex after I/R injury was significantly improved in the I/R+hEPO+MBs/FUS group. This study indicates that hEPO administration with MBs/FUS sonication even at 5 h after occlusion/reperfusion can produce a significant neuroprotection.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Tao Yang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kai-Hsiang Kang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Houng-Chi Liou
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dai-Hua Lu
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Mei Fu
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (WL); (WF)
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: (WL); (WF)
| |
Collapse
|
107
|
Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Comput Biol Med 2014; 44:37-43. [DOI: 10.1016/j.compbiomed.2013.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 12/20/2022]
|
108
|
A novel lactoferrin-modified β-cyclodextrin nanocarrier for brain-targeting drug delivery. Int J Pharm 2013; 458:110-7. [PMID: 24126038 DOI: 10.1016/j.ijpharm.2013.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/10/2013] [Accepted: 10/03/2013] [Indexed: 11/21/2022]
Abstract
The blood-brain barrier (BBB) restricts the transfer and delivery of most drug substances to brain. In this study, a novel nano-drug delivery system for brain-targeting was developed and investigated in vitro and in vivo. Lactoferrin (Lf) was selected as a brain-targeting ligand and conjugated to β-cyclodextrin (β-CD) via the heterobifunctional polyethyleneglycol (PEG) linker NHS-PEG-MAL, yielding Lf conjugated β-cyclodextrin (Lf-CD). UV-vis, FTIR, NMR and transmission electron microscopy (TEM) techniques clearly demonstrated the successful synthesis of Lf-CD nanoparticles with the average diameter of 92.9 ± 16.5 nm. Using near-infrared fluorescent dye IR-775 chloride (IR) as a model compound of poorly water-soluble drugs, IR-loaded Lf-CD nanoparticles (Lf-CD/IR) were successfully prepared with a high entrapment efficiency of 98.1 ± 4.8%. Biodistribution and pharmacokinetics of Lf-CD/IR were evaluated in KM mice after intravenous administration. The results of tissue distribution studies revealed that Lf-CD/IR treatment showed greatly improved BBB transport efficiency. In addition, AUC0-2h of IR in brain after Lf-CD/IR treatment was seven fold higher compared with that of IR treatment without Lf-CD nano-carriers, demonstrating that the introduction of Lf-CD drug-delivery system positively resulted in a higher AUC located in brain tissue. These results provide evidence that Lf-CD nanoparticles could be exploited as a potential brain-targeting drug delivery system for hydrophobic drugs and diagnostic reagents which normally fail to pass through the BBB.
Collapse
|
109
|
Thakkar D, Gupta R, Monson K, Rapoport N. Effect of ultrasound on the permeability of vascular wall to nano-emulsion droplets. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1804-11. [PMID: 23849384 PMCID: PMC3777764 DOI: 10.1016/j.ultrasmedbio.2013.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/08/2013] [Accepted: 04/11/2013] [Indexed: 05/10/2023]
Abstract
The effect of ultrasound on the permeability of blood vessels to nano-emulsion droplets was investigated using excised mouse carotid arteries as model blood vessels. Perfluorocarbon nano-droplets were formed by perfluoro-15-crown-5-ether and stabilized by poly(ethylene oxide)-co-poly(DL-lactide) block co-polymer shells. Nano-droplet fluorescence was imparted by interaction with fluorescein isothiocyanate-dextran (molecular weight = 70,000 Da). The permeability of carotid arteries to nano-droplets was studied in the presence and absence of continuous wave or pulsed therapeutic 1-MHz ultrasound. The data indicated that the application of ultrasound resulted in permeabilization of the vascular wall to nano-droplets. The effect of continuous wave ultrasound was substantially stronger than that of pulsed ultrasound of the same total energy. No effect of blood vessel pre-treatment with ultrasound was observed.
Collapse
Affiliation(s)
- Dhaval Thakkar
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
110
|
Beccaria K, Canney M, Goldwirt L, Fernandez C, Adam C, Piquet J, Autret G, Clément O, Lafon C, Chapelon JY, Carpentier A. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. J Neurosurg 2013; 119:887-98. [DOI: 10.3171/2013.5.jns122374] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The blood-brain barrier (BBB) is a major impediment to the intracerebral diffusion of drugs used in the treatment of gliomas. Previous studies have demonstrated that pulsed focused ultrasound (US) in conjunction with a microbubble contrast agent can be used to open the BBB. To apply the US-induced opening of the BBB in clinical practice, the authors designed an innovative unfocused US device that can be implanted in the skull and used to transiently and repeatedly open the BBB during a standard chemotherapy protocol. The goal of this preliminary work was to study the opening of the BBB induced by the authors' small unfocused US transducer and to evaluate the effects of the sonications on brain parenchyma.
Methods
Craniectomy was performed in 16 healthy New Zealand White rabbits; epidural application of a single-element planar ultrasonic transducer operating at 1 MHz was then used with a pulse-repetition frequency of 1 Hz, pulse lengths of 10–35 msec, in situ acoustic pressure levels of 0.3–0.8 MPa, and sonication for 60–120 seconds. SonoVue was intravenously injected during the US applications, and opening of the BBB was determined by detecting extravasation of Evans blue dye (EBD) in brain tissues, quantitative measurement of EBD with UV-visible spectrophotometry, and contrast enhancement after Gd injection in 4.7-T MRI. A histological study was performed to determine adverse effects.
Results
An opening of the BBB was observed over a large extent of the US beam in the brain corresponding to in situ pressures of greater than 0.2 MPa. The BBB opening observed was highly significant for both EBD (p < 0.01) and MRI Gd enhancement (p < 0.0001). The BBB opening was associated with minor adverse effects that included perivascular red blood cell extravasations that were less than 150 μm in size and not visible on MR images. Moderate edema was visible on FLAIR sequences and limited to the extent of the sonication field.
Conclusions
The results demonstrate that the BBB can be opened in large areas of the brain in rabbits with lowpower, pulsed, and unfocused US with limited damage to healthy tissue.
Collapse
Affiliation(s)
- Kevin Beccaria
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 2Departments of Neurosurgery and
| | - Michael Canney
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 5Inserm U1032, LabTau, University of Lyon
| | - Lauriane Goldwirt
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Christine Fernandez
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Clovis Adam
- 4Assistance Publique–Hôpitaux de Paris, Bicêtre Hospital, Pathology Department, Le Kremlin-Bicêtre, Paris
| | | | - Gwennhael Autret
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | - Olivier Clément
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | | | | | - Alexandre Carpentier
- 2Departments of Neurosurgery and
- 8Sorbonne University, Paris 6 School of Medicine, Paris, France
| |
Collapse
|
111
|
Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H. Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg Med 2013; 45:524-32. [PMID: 24037939 DOI: 10.1002/lsm.22172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT)-induced disruption of the blood-brain barrier (BBB) has been investigated as a technique for the delivery of therapeutic agents to selective regions of the brain. The purpose of this study was to determine the effects of PDT on the migration of systemically administered exogenous macrophages (Ma) loaded with iron oxide nanoparticles in non-tumor bearing rats. MATERIALS AND METHODS A control group consisting of three Sprague-Dawley rats was injected with iron oxide-loaded rat alveolar Ma via jugular vein catheter while two animals were subjected to intracranial injection of iron oxide-loaded Ma. PDT-treated animals were injected with photosensitizer (AlPcS2a ; 1 mg/kg i.p.) followed by light irradiation (wavelength = 670 nm; light dose = 2.5 J) 48 hours later. Light irradiation was performed through the skull. Prior to light irradiation, iron oxide-loaded Ma were administered to each animal. Animals in all groups were imaged in a 7 Tesla (T) magnetic resonance (MR) imager to determine the extent of PDT-induced edema and to evaluate for the presence of iron oxide nanoparticles. Animals were sacrificed 7 days post-Ma administration and their brains analyzed for the presence of iron oxide using Perls staining. RESULTS Significant uptake of iron oxide nanoparticles by rat alveolar Ma was observed thus providing the rationale for their use as delivery vectors. Histopathological analyses failed to find evidence of iron oxide in normal rat brain. Accumulations of iron oxide-loaded Ma were observed in both MR images and histological sections of non-tumor bearing rat brain following PDT-induced disruption of the BBB. CONCLUSIONS MR imaging was shown to be useful for localizing iron-oxide loaded Ma in rat brains. Exogenous Ma are incapable of traversing the normal BBB and therefore, the use of Ma as delivery vehicles into the brain requires selective disruption of the BBB.
Collapse
Affiliation(s)
- Steen J Madsen
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Nevada, 89154
| | | | | | | | | | | |
Collapse
|
112
|
Rapoport N, Payne A, Dillon C, Shea J, Scaife C, Gupta R. Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound 2013; 1:11. [PMID: 25516800 PMCID: PMC4265944 DOI: 10.1186/2050-5736-1-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/19/2013] [Indexed: 01/14/2023] Open
Abstract
Background Many aspects of the mechanisms involved in ultrasound-mediated therapy remain obscure. In particular, the relative roles of drug and ultrasound, the effect of the time of ultrasound application, and the effect of tissue heating are not yet clear. The current study was undertaken with the goal to clarify these aspects of the ultrasound-mediated drug delivery mechanism. Methods Focused ultrasound-mediated drug delivery was performed under magnetic resonance imaging guidance (MRgFUS) in a pancreatic ductal adenocarcinoma (PDA) model grown subcutaneously in nu/nu mice. Paclitaxel (PTX) was used as a chemotherapeutic agent because it manifests high potency in the treatment of gemcitabine-resistant PDA. Poly(ethylene oxide)-co-poly(d,l-lactide) block copolymer stabilized perfluoro-15-crown-5-ether nanoemulsions were used as drug carriers. MRgFUS was applied at sub-ablative pressure levels in both continuous wave and pulsed modes, and only a fraction of the tumor was treated. Results Positive treatment effects and even complete tumor resolution were achieved by treating the tumor with MRgFUS after injection of nanodroplet encapsulated drug. The MRgFUS treatment enhanced the action of the drug presumably through enhanced tumor perfusion and blood vessel and cell membrane permeability that increased the drug supply to tumor cells. The effect of the pulsed MRgFUS treatment with PTX-loaded nanodroplets was clearly smaller than that of continuous wave MRgFUS treatment, supposedly due to significantly lower temperature increase as measured with MR thermometry and decreased extravasation. The time of the MRgFUS application after drug injection also proved to be an important factor with the best results observed when ultrasound was applied at least 6 h after the injection of drug-loaded nanodroplets. Some collateral damage was observed with particular ultrasound protocols supposedly associated with enhanced inflammation. Conclusion This presented data suggest that there exists an optimal range of ultrasound application parameters and drug injection time. Decreased tumor growth, or complete resolution, was achieved with continuous wave ultrasound pressures below or equal to 3.1 MPa and drug injection times of at least 6 h prior to treatment. Increased acoustic pressure or ultrasound application before or shortly after drug injection gave increased tumor growth when compared to other protocols.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Payne
- Department of Radiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher Dillon
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Room 3100, Salt Lake City, UT 84112, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Courtney Scaife
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Roohi Gupta
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Room 3100, Salt Lake City, UT 84112, USA ; Current address: Department of Radiation Oncology, Fox Chase Cancer Center, P0103, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
113
|
Forbrich A, Paproski R, Hitt M, Zemp R. Microbubble-enhanced ultrasound liberation of mRNA biomarkers in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1087-1093. [PMID: 23562017 DOI: 10.1016/j.ultrasmedbio.2012.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/29/2012] [Accepted: 12/20/2012] [Indexed: 06/02/2023]
Abstract
Blood-borne biomarkers have great potential in diagnostic medicine, but low concentrations, inability to determine their source and lack of a patient baseline have limited their success in both research and clinical medicine. D'Souza et al. previously demonstrated that ultrasound-induced sonoporation can be used to liberate protein biomarkers from a colorectal cancer into the surrounding serum, overcoming many of the limitations of blood-borne biomarkers. In this study we build on D'Souza's work, extending this technique to nucleic acids, specifically mammaglobin mRNA-a potential diagnostic biomarker for breast cancer metastases. Furthermore, we propose to use ultrasound contrast agents, lipid-stabilized microbubbles, to enhance the effects of sonoporation and further amplify the biomarker levels. We demonstrate that microbubbles can enhance mammaglobin mRNA levels by two to three orders of magnitude greater than background levels and one to two orders of magnitude greater than ultrasound alone.
Collapse
Affiliation(s)
- Alex Forbrich
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
114
|
Abstract
Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.
Collapse
|
115
|
Santin MD, Debeir T, Bridal SL, Rooney T, Dhenain M. Fast in vivo imaging of amyloid plaques using μ-MRI Gd-staining combined with ultrasound-induced blood-brain barrier opening. Neuroimage 2013; 79:288-94. [PMID: 23660031 DOI: 10.1016/j.neuroimage.2013.04.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/25/2013] [Indexed: 01/07/2023] Open
Abstract
Amyloid plaques are one of the major microscopic lesions that characterize Alzheimer's disease. Current approaches to detect amyloid plaques by using magnetic resonance imaging (MRI) contrast agents require invasive procedures to penetrate the blood-brain barrier (BBB) and to deliver the contrast agent into the vicinity of amyloid plaques. Here we have developed a new protocol (US-Gd-staining) that enables the detection of amyloid plaques in the brain of an APP/PS1 transgenic mouse model of amyloidosis after intra-venous injection of a non-targeted, clinically approved MRI contrast agent (Gd-DOTA, Dotarem®) by transiently opening the BBB with unfocused ultrasound (1 MHz) and clinically approved microbubbles (Sonovue®, Bracco). This US-Gd-staining protocol can detect amyloid plaques with a short imaging time (32 min) and high in-plane resolution (29 μm). The sensitivity and resolution obtained is at least equal to that provided by MRI protocols using intra-cerebro-ventricular injection of contrast agents, a reference method used to penetrate the BBB. To our knowledge this is the first study to demonstrate the ability of MR imaging to detect amyloid plaques by using a peripheral intra-venous injection of a clinically approved NMR contrast agent.
Collapse
Affiliation(s)
- Mathieu D Santin
- URA 2210 CEA/CNRS Laboratoire des maladies neurodégénératives - 18 route du Panorama-BP6 - 92265 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | |
Collapse
|
116
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
117
|
Sanches PG, Rossin R, Böhmer M, Tiemann K, Grüll H. Real-time imaging and kinetics measurements of focused ultrasound-induced extravasation in skeletal muscle using SPECT/CT. J Control Release 2013; 168:262-70. [PMID: 23567044 DOI: 10.1016/j.jconrel.2013.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 02/03/2023]
Abstract
Drugs need to overcome several biological barriers such as the endothelium and cellular membranes in order to reach their target. Promising new therapeutics, many of which are charged and macromolecular, are not able to passively extravasate, let alone cross cell membranes, and stay mainly in the blood pool upon intravenous injection until clearance. Using focused ultrasound (fUS) in combination with circulating microbubbles (MBs) leads to temporary localized tissue permeabilization allowing extravasation of (macro) molecules from the vascular system. Thus, fUS is a promising approach for localized drug delivery. However, little is known about the permeabilization kinetics in skeletal muscle. In this study, we used single photon emission computed tomography (SPECT) to characterize the kinetics of extravasation of ¹¹¹In-labeled bovine serum albumin (BSA), a model macromolecular drug, in muscle treated with fUS and MBs. The same fUS protocol was applied to 6 groups of mice with different times, ∆t, between fUS application and BSA injection (∆t=-10, 2.5, 10, 30, 60, 90 min) followed by SPECT imaging. For ∆t ≤30min we observed an exponential accumulation of activity in an area of the treated muscle which extended to a volume larger than the fUS pattern with highest accumulation for short waiting times ∆t. The extent of extravasation decreased exponentially with increasing ∆t, with a calculated half-life of ca. 21 min, defining the time window of extravasation. The same treatment without MBs did not induce extravasation of BSA thus supporting MBs and drug co-injection strategies. These results provide essential information for the development of fUS based strategies for localized drug delivery.
Collapse
Affiliation(s)
- Pedro Gomes Sanches
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
118
|
Zhao YZ, Lu CT, Li XK, Cai J. Ultrasound-mediated strategies in opening brain barriers for drug brain delivery. Expert Opin Drug Deliv 2013; 10:987-1001. [DOI: 10.1517/17425247.2013.787987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
119
|
Pharmacodynamic analysis of magnetic resonance imaging-monitored focused ultrasound-induced blood-brain barrier opening for drug delivery to brain tumors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:627496. [PMID: 23607093 PMCID: PMC3626247 DOI: 10.1155/2013/627496] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Microbubble-enhanced focused ultrasound (FUS) can enhance the delivery of therapeutic agents into the brain for brain tumor treatment. The purpose of this study was to investigate the influence of brain tumor conditions on the distribution and dynamics of small molecule leakage into targeted regions of the brain after FUS-BBB opening. A total of 34 animals were used, and the process was monitored by 7T-MRI. Evans blue (EB) dye as well as Gd-DTPA served as small molecule substitutes for evaluation of drug behavior. EB was quantified spectrophotometrically. Spin-spin (R1) relaxometry and area under curve (AUC) were measured by MRI to quantify Gd-DTPA. We found that FUS-BBB opening provided a more significant increase in permeability with small tumors. In contrast, accumulation was much higher in large tumors, independent of FUS. The AUC values of Gd-DTPA were well correlated with EB delivery, suggesting that Gd-DTPA was a good indicator of total small-molecule accumulation in the target region. The peripheral regions of large tumors exhibited similar dynamics of small-molecule leakage after FUS-BBB opening as small tumors, suggesting that FUS-BBB opening may have the most significant permeability-enhancing effect on tumor peripheral. This study provides useful information toward designing an optimized FUS-BBB opening strategy to deliver small-molecule therapeutic agents into brain tumors.
Collapse
|
120
|
|
121
|
Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10:573-92. [PMID: 23448121 DOI: 10.1517/17425247.2013.772578] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. AREAS COVERED The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. EXPERT OPINION These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.
Collapse
Affiliation(s)
- Jonathan T Sutton
- University of Cincinnati, College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, and Biomedical Engineering Program, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
122
|
Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 2013; 65:100-3. [PMID: 22960787 DOI: 10.1016/j.addr.2012.07.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/26/2012] [Indexed: 11/28/2022]
Abstract
Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented.
Collapse
Affiliation(s)
- Samir Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
123
|
Fan CH, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 2012; 34:2142-55. [PMID: 23246066 DOI: 10.1016/j.biomaterials.2012.11.048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/27/2012] [Indexed: 11/17/2022]
Abstract
Current chemotherapeutic agents do not only kill tumor cells but also induce systemic toxicity that significantly limits their dosage. Focused ultrasound (FUS) in the presence of microbubbles (MBs) is capable of transient and local opening of the blood-brain barrier (BBB) that enhances chemotherapeutic drug delivery into the brain parenchyma for glioma treatment. Our previous results demonstrated the success of combining the use of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded MBs with FUS-induced BBB opening to improve local drug delivery and reduce systemic toxicity. Here we introduce novel VEGF-targeting, drug-loaded MBs that significantly further enhance targeted drug release and reduce tumor progression in a rat model, using the FUS-BBB opening strategy. This study suggests a promising direction for future MB design aimed at targeted brain tumor therapy, and the possible future extension of MB application towards theragnostic use.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
OBJECTIVE To review novel techniques of noninvasive brain stimulation (NBS), which may have value in assessment and treatment of traumatic brain injury (TBI). METHODS Review of the following techniques: transcranial magnetic stimulation, transcranial direct current stimulation, low-level laser therapy, and transcranial Doppler sonography. Furthermore, we provide a brief overview of TMS studies to date. MAIN FINDINGS We describe the rationale for the use of these techniques in TBI, discuss their possible mechanisms of action, and raise a number of considerations relevant to translation of these methods to clinical use. Depending on the stimulation parameters, NBS may enable suppression of the acute glutamatergic hyperexcitability following TBI and/or counter the excessive GABAergic effects in the subacute stage. In the chronic stage, brain stimulation coupled to rehabilitation may enhance behavioral recovery, learning of new skills, and cortical plasticity. Correlative animal models and comprehensive safety trials seem critical to establish the use of these modalities in TBI. CONCLUSIONS Different forms of NBS techniques harbor the promise of diagnostic and therapeutic utility, particularly to guide processes of cortical reorganization and enable functional restoration in TBI. Future lines of safety research and well-designed clinical trials in TBI are warranted to determine the capability of NBS to promote recovery and minimize disability.
Collapse
|
125
|
Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chem Rev 2012; 113:1877-903. [DOI: 10.1021/cr200472g] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silke Krol
- Fondazione IRCCS Institute of Neurology “Carlo Besta”, Milan, Italy
| | - Richard Macrez
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
- Department of Neurology, University Hospital of Caen, Caen, France
| | - Fabian Docagne
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
| | - Gilles Defer
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
- Department of Neurology, University Hospital of Caen, Caen, France
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Masoud Rahman
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad J. Hajipour
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Patrick G. Kehoe
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, John James Laboratories, Frenchay Hospital, Bristol, U.K
| | - Morteza Mahmoudi
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Current address: School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
126
|
Marty B, Larrat B, Van Landeghem M, Robic C, Robert P, Port M, Le Bihan D, Pernot M, Tanter M, Lethimonnier F, Mériaux S. Dynamic study of blood-brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 2012; 32:1948-58. [PMID: 22805875 PMCID: PMC3463875 DOI: 10.1038/jcbfm.2012.100] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of therapeutic or diagnostic agents to the brain is majorly hindered by the blood-brain barrier (BBB). Recently, many studies have demonstrated local and transient disruption of the BBB using low power ultrasound sonication combined with intravascular microbubbles. However, BBB opening and closure mechanisms are poorly understood, especially the maximum gap that may be safely generated between endothelial cells and the duration of opening of the BBB. Here, we studied BBB opening and closure under magnetic resonance (MR) guidance in a rat model. First, MR contrast agents (CA) of different hydrodynamic diameters (1 to 65 nm) were employed to estimate the largest molecular size permissible across the cerebral tissues. Second, to estimate the duration of the BBB opening, the CA were injected at various times post-BBB disruption (12 minutes to 24 hours). A T(1) mapping strategy was developed to assess CA concentration at the ultrasound (US) focal point. Based on our experimental data and BBB closure modeling, a calibration curve was obtained to compute the half closure time as a function of CA hydrodynamic diameter. These findings and the model provide an invaluable basis for optimal design and delivery of nanoparticles to the brain.
Collapse
Affiliation(s)
- Benjamin Marty
- NeuroSpin, IBM, Commissariat à l'Énergie Atomique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Eggers J. Sonothrombolysis for treatment of acute ischemic stroke: Current evidence and new developments. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.permed.2012.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
128
|
Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2012; 1:819-48. [PMID: 21785679 DOI: 10.4155/tde.10.66] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective delivery of therapeutic agents into the brain can greatly improve the treatments of neurological and neurodegenerative diseases. Application of focused ultrasound facilitated by microbubbles has shown the potential to deliver drugs across the blood-brain barrier into targeted sites within the brain noninvasively. This review provides a summary of the technological background and principle, highlights of recent significant developments and research progress, as well as a critical commentary on the challenges and future directions in the field. This review also outlines and discusses the tasks that researchers face in order to successfully translate the technology into a clinical reality, including obtaining improved understanding of the mechanisms, demonstration of therapeutic efficacy and safety for specific applications, and development of methodology for rational design to achieve optimized and consistent outcomes.
Collapse
|
129
|
Hsieh V, Jasanoff A. Bioengineered probes for molecular magnetic resonance imaging in the nervous system. ACS Chem Neurosci 2012; 3:593-602. [PMID: 22896803 DOI: 10.1021/cn300059r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 01/20/2023] Open
Abstract
The development of molecular imaging probes has changed the nature of neurobiological research. Some of the most notable successes have involved the use of biological engineering techniques for the creation of fluorescent protein derivatives for optical imaging, but recent work has also led to a number of bioengineered probes for magnetic resonance imaging (MRI), the preeminent technique for noninvasive investigation of brain structure and function. Molecular MRI agents are beginning to be applied for experiments in the nervous system, where they have the potential to bridge from molecular to systems or organismic levels of analysis. Compared with canonical synthetic small molecule agents, biomolecular or semibiosynthetic MRI contrast agents offer special advantages due to their amenability to molecular engineering approaches, their properties in some cases as catalysts, and their specificity in targeting and ligand binding. Here, we discuss an expanding list of instances where biological engineering techniques have aided in the design of MRI contrast agents and reporter systems, examining both advantages and limitations of these types of probes for studies in the central nervous system.
Collapse
Affiliation(s)
- Vivian Hsieh
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| | - Alan Jasanoff
- Departments of Chemical Engineering, ‡Biological Engineering, §Brain & Cognitive Sciences, and ∥Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
130
|
|
131
|
Abstract
The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed.
Collapse
|
132
|
Huang Q, Deng J, Xie Z, Wang F, Chen S, Lei B, Liao P, Huang N, Wang Z, Wang Z, Cheng Y. Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood-brain barrier. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1234-1243. [PMID: 22677255 DOI: 10.1016/j.ultrasmedbio.2012.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 06/01/2023]
Abstract
To investigate whether ultrasound-targeted microbubble destruction (UTMD) could transfer gene into central nervous system (CNS) following blood-brain barrier disruption (BBBD), DNA-loaded microbubbles were infused into the mice intravenously following ultrasonic exposure. Opening of the BBB, changes of mRNA and expression of enhanced green fluorescent protein (EGFP), and safety evaluation were measured. By UTMD, EGFP were substantially expressed in the cytoplasm of the neurons at the sonicated area with minor erythrocytes extravasation and the mRNA and expression of EGFP were markedly enhanced by about 15-fold and 10-fold, respectively, than that with US alone (p < 0.01). No EGFP was detected in the mice treated with DNA-loaded microbubbles or plasmid alone. The gene expression reached a climax at 48 h, gradually reduced to a much lower level thereafter. These results demonstrated UTMD could effectively enhance exogenous gene delivery and expression in CNS following BBBD, and this technique may provide a new method for CNS gene therapy.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Rapoport N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:492-510. [PMID: 22730185 DOI: 10.1002/wnan.1176] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
134
|
Park J, Zhang Y, Vykhodtseva N, Jolesz FA, McDannold NJ. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release 2012; 162:134-42. [PMID: 22709590 DOI: 10.1016/j.jconrel.2012.06.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/29/2012] [Accepted: 06/09/2012] [Indexed: 01/05/2023]
Abstract
Focused ultrasound (FUS) combined with a circulating microbubble agent is a promising strategy to non-invasively disrupt the blood-brain barrier (BBB) and could enable targeted delivery of therapeutics that normally do not leave the brain vasculature. This study investigated the kinetics of the BBB permeability using dynamic contrast-enhanced MRI (DCE-MRI) and the resulting payload of the chemotherapy agent, doxorubicin (DOX). We also investigated how the disruption and drug delivery were affected by a double sonication (DS) with two different time intervals (10 or 120 min). Two locations were sonicated transcranially in one hemisphere of the brain in 20 rats using a 690 kHz FUS transducer; the other hemisphere served as a control. For BBB disruption, 10 ms bursts were applied at 1 Hz for 60s and combined with IV injection of a microbubble ultrasound contrast agent (Definity; 10 μl/kg). DOX was injected immediately after the second location was sonicated. The transfer coefficient (K(trans)) for an MRI contrast agent (Gd-DTPA) was estimated serially at 4-5 time points ranging from 30 min to 7.5 hrs after sonication using DCE-MRI. After a single sonication (SS), the mean K(trans) was 0.0142 ± 0.006 min(-1) at 30 min and was two or more orders of magnitude higher than the non-sonicated targets. It decreased exponentially as a function of time with an estimated half-life of 2.22 hrs (95% confidence intervals (CI): 1.06-3.39 hrs). Adding a second sonication increased K(trans), and with a 120 min interval between sonications, prolonged the duration of the BBB disruption. Mean K(trans) estimates of 0.0205 (CI: 0.016-0.025) and 0.0216 (CI: 0.013-0.030) min(-1) were achieved after DS with 10 and 120 min delays, respectively. The half-life of the K(trans) decay that occurred as the barrier was restored was 1.8 hrs (CI: 1.20-2.41 hrs) for a 10 min interval between sonications and increased to 3.34 hrs (CI: 0.84-5.84 hrs) for a 120 min interval. DOX concentrations were significantly greater than in the non-sonicated brain for all experimental groups (p<0.0001), and 1.5-fold higher for DS with a 10 min interval between sonications. A linear correlation was found between the DOX concentration achieved and the K(trans) measured at 30 min after sonication (R: 0.7). These data suggest that one may be able to use Gd-DTPA as a surrogate tracer to estimate DOX delivery to the brain after FUS-induced BBB disruption. The results of this study provide information needed to take into account the dynamics BBB disruption over time after FUS.
Collapse
Affiliation(s)
- Juyoung Park
- Department of Radiology, Brigham and Women's hospital and Harvard Medical School, 221 Longwood Ave. Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
135
|
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64:686-700. [PMID: 22100125 DOI: 10.1016/j.addr.2011.10.007] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022]
Abstract
Effective non-invasive treatment of neurological diseases is often limited by the poor access of therapeutic agents into the central nervous system (CNS). The majority of drugs and biotechnological agents do not readily permeate into brain parenchyma due to the presence of two anatomical and biochemical dynamic barriers: the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Therefore, one of the most significant challenges facing CNS drug development is the availability of effective brain targeting technology. Recent advances in nanotechnology have provided promising solutions to this challenge. Several nanocarriers ranging from the more established systems, e.g. polymeric nanoparticles, solid lipid nanoparticles, liposomes, micelles to the newer systems, e.g. dendrimers, nanogels, nanoemulsions and nanosuspensions have been studied for the delivery of CNS therapeutics. Many of these nanomedicines can be effectively transported across various in vitro and in vivo BBB models by endocytosis and/or transcytosis, and demonstrated early preclinical success for the management of CNS conditions such as brain tumors, HIV encephalopathy, Alzheimer's disease and acute ischemic stroke. Future development of CNS nanomedicines need to focus on increasing their drug-trafficking performance and specificity for brain tissue using novel targeting moieties, improving their BBB permeability and reducing their neurotoxicity.
Collapse
|
136
|
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:640-65. [PMID: 22154620 DOI: 10.1016/j.addr.2011.11.010] [Citation(s) in RCA: 628] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
137
|
Melzer A, Cochran S, Prentice P, MacDonald MP, Wang Z, Cuschieri A. The importance of physics to progress in medical treatment. Lancet 2012; 379:1534-43. [PMID: 22516559 DOI: 10.1016/s0140-6736(12)60428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Physics in therapy is as diverse as it is substantial. In this review, we highlight the role of physics--occasionally transitioning into engineering--through discussion of several established and emerging treatments. We specifically address minimal access surgery, ultrasound, photonics, and interventional MRI, identifying areas in which complementarity is being exploited. We also discuss some of the fundamental physical principles involved in the application of each treatment to medical practice.
Collapse
Affiliation(s)
- Andreas Melzer
- Institute for Medical Science and Technology, University of Dundee, UK
| | | | | | | | | | | |
Collapse
|
138
|
Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS. Overview of therapeutic ultrasound applications and safety considerations. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:623-34. [PMID: 22441920 PMCID: PMC3810427 DOI: 10.7863/jum.2012.31.4.623] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Applications of ultrasound in medicine for therapeutic purposes have been accepted and beneficial uses of ultrasonic biological effects for many years. Low-power ultrasound of about 1 MHz has been widely applied since the 1950s for physical therapy in conditions such as tendinitis and bursitis. In the 1980s, high-pressure-amplitude shock waves came into use for mechanically resolving kidney stones, and "lithotripsy" rapidly replaced surgery as the most frequent treatment choice. The use of ultrasonic energy for therapy continues to expand, and approved applications now include uterine fibroid ablation, cataract removal (phacoemulsification), surgical tissue cutting and hemostasis, transdermal drug delivery, and bone fracture healing, among others. Undesirable bioeffects can occur, including burns from thermal-based therapies and severe hemorrhage from mechanical-based therapies (eg, lithotripsy). In all of these therapeutic applications of ultrasound bioeffects, standardization, ultrasound dosimetry, benefits assurance, and side-effect risk minimization must be carefully considered to ensure an optimal benefit to risk ratio for the patient. Therapeutic ultrasound typically has well-defined benefits and risks and therefore presents a manageable safety problem to the clinician. However, safety information can be scattered, confusing, or subject to commercial conflicts of interest. Of paramount importance for managing this problem is the communication of practical safety information by authoritative groups, such as the American Institute of Ultrasound in Medicine, to the medical ultrasound community. In this overview, the Bioeffects Committee of the American Institute of Ultrasound in Medicine outlines the wide range of therapeutic ultrasound methods, which are in clinical use or under study, and provides general guidance for ensuring therapeutic ultrasound safety.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan, 3240A Medical Science Building I, 1301 Catherine St, Ann Arbor, MI 48109-5667, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 2012; 33:457-516. [PMID: 22434495 DOI: 10.1002/med.21252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The central nervous system (CNS) is protected by various barriers, which regulate nervous tissue homeostasis and control the selective and specific uptake, efflux, and metabolism of endogenous and exogenous molecules. Among these barriers is the blood-brain barrier (BBB), a physical and physiological barrier that filters very efficiently and selectively the entry of compounds from the blood to the brain and protects nervous tissue from harmful substances and infectious agents present in the bloodstream. The BBB also prevents the entry of potential drugs. As a result, various drug targeting and delivery strategies are currently being developed to enhance the transport of drugs from the blood to the brain. Following a general introduction, we briefly overview in this review article the fundamental physiological properties of the BBB. Then, we describe current strategies to bypass the BBB (i.e., invasive methods, alternative approaches, and temporary opening) and to cross it (i.e., noninvasive approaches). This section is followed by a chapter addressing the chemical and technological solutions developed to cross the BBB. A special emphasis is given to prodrug-targeting approaches and targeted nanotechnology-based systems, two promising strategies for BBB targeting and delivery of drugs to the brain.
Collapse
Affiliation(s)
- Patrick Vlieghe
- VECT-HORUS S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | |
Collapse
|
140
|
Leighton TG, Jiang J, Baik K. Demonstration comparing sound wave attenuation inside pipes containing bubbly water and water droplet fog. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:2413-2421. [PMID: 22423788 DOI: 10.1121/1.3676732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes a demonstration and explanation of sound absorption in water due to bubbles, and in air due to a fog of water droplets. It is suitable for 10-12 year olds, but the paper indicates where further exploration of the simplifications in the explanations provided for that age range would allow the demonstration to be used for undergraduate and Masters-level teaching. Applications to submarines, the space shuttle, and neutron generators are described. The demonstration is designed for transportation in a family-sized car.
Collapse
Affiliation(s)
- Timothy G Leighton
- Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.
| | | | | |
Collapse
|
141
|
Yoon SH, Kwon SK, Park SR, Min BH. Effect of ultrasound treatment on brain edema in a traumatic brain injury model with the weight drop method. Pediatr Neurosurg 2012; 48:102-8. [PMID: 23154513 DOI: 10.1159/000343011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/28/2012] [Indexed: 01/16/2023]
Abstract
BACKGROUND For the treatment of traumatic brain edema, an efficient modality has not yet emerged. There have been many studies to date which have reported the employment of low-frequency ultrasound for blood-brain barrier disruption (BBBD). However, the authors have observed that low-intensity ultrasound increases water permeability without cellular damage in cartilage cells. We have therefore attempted to observe the effects of applying this low-intensity ultrasound to an experimental animal model. METHODS A traumatic brain injury rat model was established according to the weight drop method developing the traumatic brain edema. The degree of BBBD was measured by the changes in the water content and spectrophotometric absorbance of Evans blue dye in the cerebrum after low-frequency ultrasound. RESULTS The cerebral water content levels showed that the BBBD gradually increased after impact and thereafter decreased after 6 h. After low-frequency ultrasound exposure, the values of water content and spectrophotometric absorbance of Evans blue dye were the lowest at 0 h, and were increased at 2 and 5 h of ultrasonic exposure (after impact). CONCLUSION We suggest that traumatic brain edema in the rat model may be alleviated by low-frequency ultrasound, and low-frequency ultrasound might be proposed as a novel treatment modality for brain edema.
Collapse
Affiliation(s)
- Soo Han Yoon
- Department of Neurosurgery, School of Medicine, Ajou University, Suwon, Korea
| | | | | | | |
Collapse
|
142
|
Gao Y, Gao S, Zhao B, Zhao Y, Hua X, Tan K, Liu Z. Vascular effects of microbubble-enhanced, pulsed, focused ultrasound on liver blood perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:91-98. [PMID: 22104531 DOI: 10.1016/j.ultrasmedbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to investigate the vascular effects of microbubble-enhanced pulsed high-pressure ultrasound on liver blood perfusion. In the presence of circulating lipid-shell microbubbles, a focused ultrasound transducer was used to transcutaneously treat eight livers of healthy rabbits for perfusion analysis and to treat three livers with the abdomen open for histologic analysis. Twenty-two livers treated with the ultrasound only (n = 11) or microbubbles only (n = 11) served as the controls. The focused ultrasound was operated at a frequency of 1.22 MHz with a peak negative pressure of 4.6 MPa. The liver blood perfusion was estimated by performing contrast-enhanced ultrasound and gray-scale quantification on the livers before and after treatment. A temporary, nonenhanced region occurred in all of the experimental livers. The regional contrast gray-scale values of the experimental group dropped significantly from 88.4 before treatment to 2.7 after treatment. The liver perfusion also demonstrated a gradual recovery over a 60-min period. The liver perfusion of the control groups remained the same after treatment. We found microvascular rupture, hemorrhage and swelling hepatocytes upon histologic examination of the experimental group. Regional liver blood perfusion can be temporarily blocked by microbubble-enhanced focused ultrasound with high-pressure amplitude. These vascular effects can be explained as acute microvascular injury of the liver and may have clinical implications.
Collapse
Affiliation(s)
- Yuejuan Gao
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
143
|
Colen RR, Jolesz FA. MR-Guided Focused Ultrasound of the Brain. INTERVENTIONAL MAGNETIC RESONANCE IMAGING 2012. [DOI: 10.1007/174_2012_616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
144
|
Huang Q, Deng J, Wang F, Chen S, Liu Y, Wang Z, Wang Z, Cheng Y. Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Exp Neurol 2011; 233:350-6. [PMID: 22079586 DOI: 10.1016/j.expneurol.2011.10.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/22/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
This study aimed to investigate the feasibility of targeted gene transfer into central nervous system (CNS) by MRI-guided focused ultrasound-induced blood-brain barrier (BBB) disruption. Before each sonication, T2-weighted images were obtained to select the target region. Followed by injecting DNA-loaded microbubbles into the tail vein, sonication was performed. The state of local BBB, distribution of plasmid DNA through the opened BBB, the ultrastructural changes of neurons and BDNF expression were detected. The results showed that MRI-guided focused ultrasound (FUS) could accomplish noninvasive, transient, and local BBB disruption, at 1h after sonication, plasmid DNA across the opened BBB had been internalized into the neurons presenting heterogeneous distribution and numerous transparent vesicles were observed in the cytoplasm of the neurons at the sonicated region, suggesting vesicle-mediated endocytosis. At 48 h after sonication, the expressions of exogenous gene pBDNF-EGFP were observed in the cytoplasm of some neurons, and BDNF expressions were markedly enhanced by the combination of ultrasound and pBDNF-EGFP-loaded microbubbles about 20-fold than that of the control group (P<0.01). The method by using MRI-guided FUS to induce the local BBB disruption could accomplish effective targeted exogenous gene transfer in CNS. This technique may provide a new option for the treatment of various CNS diseases.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 2011; 33:704-12. [PMID: 22019122 DOI: 10.1016/j.biomaterials.2011.09.096] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. The blood-brain barrier (BBB) provides a major obstacle to chemotherapy since therapeutic doses cannot be achieved by traditional drug delivery without severe systemic cytotoxic effects. Recently, microbubble (MB)-enhanced focused ultrasound (FUS) was shown to temporally and locally disrupt the BBB thereby enhancing drug delivery into brain tumors. Here we propose the concept of smart, multifunctional MBs capable of facilitating FUS-induced BBB disruption while serving as drug-carrying vehicles and protecting drugs from rapid degradation. The designed MBs had a high loading capacity (efficiency of 68.01 ± 4.35%) for 1,3-bis(2-chloroethyl)-1- nitrosourea (BCNU). When combined with FUS (1-MHz), these BCNU-MBs facilitated local BBB disruption and simultaneously released BCNU at the target site, thus increasing local BCNU deposition. Encapsulation of BCNU in MBs prolonged its circulatory half-life by 5-fold, and accumulation of BCNU in the liver was reduced 5-fold due to the slow reticuloendothelial system uptake of BCNU-MBs. In tumor-bearing animals, BCNU-MBs with FUS controlled tumor progression (915.3%-39.6%) and improved median survival (29 days-32.5 days). This study provides a new approach for designing multifunctional MBs to facilitate FUS-mediated chemotherapy for brain tumor treatment.
Collapse
|
146
|
Herickhoff CD, Wilson CM, Grant GA, Britz GW, Light ED, Palmeri ML, Wolf PD, Smith SW. Dual-mode IVUS transducer for image-guided brain therapy: preliminary experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1667-76. [PMID: 21856073 PMCID: PMC3177008 DOI: 10.1016/j.ultrasmedbio.2011.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 05/11/2023]
Abstract
In this study, we investigated the feasibility of using 3.5-Fr intravascular ultrasound (IVUS) catheters for minimally-invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated by: (1) retro-fitting a commercial 3.5-Fr IVUS catheter with a 5 × 0.5 × 0.22 mm PZT-4 transducer for 9-MHz imaging and (2) testing an identical transducer for therapy potential with 3.3-MHz continuous-wave excitation. The imaging transducer was compared with a 9-Fr, 9-MHz ICE catheter when visualizing the post-mortem ovine brain and was also used to attempt vascular access to an in vivo porcine brain. A net average electrical power input of 700 mW was applied to the therapy transducer, producing a temperature rise of +13.5°C at a depth of 1.5 mm in live brain tumor tissue in the mouse model. These results suggest that it may be feasible to combine the imaging and therapeutic capabilities into a single device as a clinically-viable instrument.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University Medical Center, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Min BK, Bystritsky A, Jung KI, Fischer K, Zhang Y, Maeng LS, In Park S, Chung YA, Jolesz FA, Yoo SS. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci 2011; 12:23. [PMID: 21375781 PMCID: PMC3061951 DOI: 10.1186/1471-2202-12-23] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/06/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS) to non-invasively suppress epileptic activity in an animal model (rat), which was induced by the intraperitonial injection of pentylenetetrazol (PTZ). RESULTS After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG) monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm) operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm2) used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue. CONCLUSIONS These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Bystritsky
- The Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kwang-Ik Jung
- Department of Physical Medicine & Rehabilitation, Hallym University Sacred Heart Hospital, Medical College of Hallym University, Anyang, Korea
| | - Krisztina Fischer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine (ICIM), Incheon Saint Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon Saint Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Yong-An Chung
- Institute of Catholic Integrative Medicine (ICIM), Incheon Saint Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Ferenc A Jolesz
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
148
|
Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011; 153:4-15. [PMID: 21277919 DOI: 10.1016/j.jconrel.2011.01.022] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/08/2023]
Abstract
Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or (19)F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine ((19)F) MR contrast properties, which allows using multimodal imaging and (19)F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the (19)F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation 2h after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200nm to 350nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Sandhu GS, Solorio L, Broome AM, Salem N, Kolthammer J, Shah T, Flask C, Duerk JL. Whole animal imaging. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:398-421. [PMID: 20836038 DOI: 10.1002/wsbm.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be used to investigate the whole animal, oftentimes in a single exam which provides opportunities to perform longitudinal studies and dynamic imaging of the same subject, and hence minimizes the experimental variability, requirement for the number of animals, and the time to perform a given experiment. Whole animal imaging can be performed by a number of techniques including x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, positron emission tomography, single photon emission computed tomography, fluorescence imaging, and bioluminescence imaging, among others. Individual imaging techniques provide different kinds of information regarding the structure, metabolism, and physiology of the animal. Each technique has its own strengths and weaknesses, and none serves every purpose of image acquisition from all regions of an animal. In this review, a broad overview of basic principles, available contrast mechanisms, applications, challenges, and future prospects of many imaging techniques employed for whole animal imaging is provided. Our main goal is to briefly describe the current state of art to researchers and advanced students with a strong background in the field of animal research.
Collapse
Affiliation(s)
- Gurpreet Singh Sandhu
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ann-Marie Broome
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicolas Salem
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeff Kolthammer
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tejas Shah
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris Flask
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey L Duerk
- Department of Biomedical Engineering, Case Center of Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
150
|
Colen RR, Jolesz FA. Future potential of MRI-guided focused ultrasound brain surgery. Neuroimaging Clin N Am 2010; 20:355-66. [PMID: 20708551 DOI: 10.1016/j.nic.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Magnetic resonance image-guided focused ultrasound surgery (MRgFUS) has surfaced as a viable noninvasive image-guided therapeutic method that integrates focused ultrasound (FUS), the therapeutic component, with magnetic resonance imaging (MRI), the image guidance module, into a real-time therapy delivery system with closed-loop control of energy delivery. The main applications for MRgFUS of the brain are thermal ablations for brain tumors and functional neurosurgery, and nonthermal, nonablative uses for disruption of the blood brain barrier (BBB) or blood clot and hematoma dissolution by liquification. The disruption of the BBB by FUS can be used for targeted delivery of chemotherapy and other therapeutic agents. MRI is used preoperatively for target definition and treatment planning, intraoperatively for procedure monitoring and control, and postoperatively for validating treatment success. Although challenges still remain, this integrated noninvasive therapy delivery system is anticipated to change current treatment paradigms in neurosurgery and the clinical neurosciences.
Collapse
Affiliation(s)
- Rivka R Colen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|