101
|
Paranjape SM, Harris E. Y box-binding protein-1 binds to the dengue virus 3'-untranslated region and mediates antiviral effects. J Biol Chem 2007; 282:30497-508. [PMID: 17726010 DOI: 10.1074/jbc.m705755200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dengue virus, a member of the family Flaviviridae, poses a serious public health threat worldwide. Dengue virus is a positive-sense RNA virus that harbors a genome of approximately 10.7 kb. Replication of dengue virus is mediated coordinately by cis-acting genomic sequences, viral proteins, and host cell factors. We have isolated and identified several host cell factors from baby hamster kidney cell extracts that bind with high specificity and high affinity to sequences within the untranslated regions of the dengue virus genome. Among the factors identified, Y box-binding protein-1 (YB-1) and the heterogeneous nuclear ribonucleoproteins (hnRNPs), hnRNP A1, hnRNP A2/B1, and hnRNP Q, bind to the dengue virus 3'-untranslated region. Further analysis indicated that YB-1 binds to the dengue virus 3' stem loop, a conserved structural feature located at the 3' terminus of the 3'-untranslated region of many flaviviruses. Analysis of the impact of YB-1 on replication of dengue virus in YB-1+/+ and YB-1-/- mouse embryo fibroblasts indicated that host YB-1 mediates an antiviral effect. Further studies demonstrated that this antiviral impact is due, at least in part, to a repressive role of YB-1 on dengue virus translation via a mechanism that requires viral genomic sequences. These results suggest a novel role for YB-1 as an antiviral host cell factor.
Collapse
Affiliation(s)
- Suman Marie Paranjape
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720-7360, USA
| | | |
Collapse
|
102
|
Silva PAGC, Molenkamp R, Dalebout TJ, Charlier N, Neyts JH, Spaan WJM, Bredenbeek PJ. Conservation of the pentanucleotide motif at the top of the yellow fever virus 17D 3' stem-loop structure is not required for replication. J Gen Virol 2007; 88:1738-1747. [PMID: 17485534 DOI: 10.1099/vir.0.82811-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pentanucleotide (PN) sequence 5'-CACAG-3' at the top of the 3' stem-loop structure of the flavivirus genome is well conserved in the arthropod-borne viruses but is more variable in flaviviruses with no known vector. In this study, the sequence requirements of the PN motif for yellow fever virus 17D (YFV) replication were determined. In general, individual mutations at either the second, third or fourth positions were tolerated and resulted in replication-competent virus. Mutations at the fifth position were lethal. Base pairing of the nucleotide at the first position of the PN motif and a nucleotide four positions downstream of the PN (ninth position) was a major determinant for replication. Despite the fact that the majority of the PN mutants were able to replicate efficiently, they were outcompeted by parental YFV-17D virus following repeated passages in double-infected cell cultures. Surprisingly, some of the virus mutants at the first and/or the ninth position that maintained the possibility of forming a base pair were found to have a similar fitness to YFV-17D under these conditions. Overall, these experiments suggest that YFV is less dependent on sequence conservation of the PN motif for replication in animal cells than West Nile virus. However, in animal cell culture, YFV has a preference for the wt CACAG PN sequence. The molecular mechanisms behind this preference remain to be elucidated.
Collapse
Affiliation(s)
- Patrícia A G C Silva
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| | - Richard Molenkamp
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| | - Tim J Dalebout
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| | - Nathalie Charlier
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Johan H Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Willy J M Spaan
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| | - Peter J Bredenbeek
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| |
Collapse
|
103
|
Deas TS, Bennett CJ, Jones SA, Tilgner M, Ren P, Behr MJ, Stein DA, Iversen PL, Kramer LD, Bernard KA, Shi PY. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob Agents Chemother 2007; 51:2470-82. [PMID: 17485503 PMCID: PMC1913242 DOI: 10.1128/aac.00069-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We characterize in vitro resistance to and demonstrate the in vivo efficacy of two antisense phosphorodiamidate morpholino oligomers (PMOs) against West Nile virus (WNV). Both PMOs were conjugated with an Arg-rich peptide. One peptide-conjugated PMO (PPMO) binds to the 5' terminus of the viral genome (5'-end PPMO); the other targets an essential 3' RNA element required for genome cyclization (3' conserved sequence I [3' CSI] PPMO). The 3' CSI PPMO displayed a broad spectrum of antiflavivirus activity, suppressing WNV, Japanese encephalitis virus, and St. Louis encephalitis virus, as demonstrated by reductions in viral titers of 3 to 5 logs in cell cultures, likely due to the absolute conservation of the 3' CSI PPMO-targeted sequences among these viruses. The selection and sequencing of PPMO-resistant WNV showed that the 5'-end-PPMO-resistant viruses contained two to three mismatches within the PPMO-binding site whereas the 3' CSI PPMO-resistant viruses accumulated mutations outside the PPMO-targeted region. The mutagenesis of a WNV infectious clone demonstrated that the mismatches within the PPMO-binding site were responsible for the 5'-end PPMO resistance. In contrast, a U insertion or a G deletion located within the 3'-terminal stem-loop of the viral genome was the determinant of the 3' CSI PPMO resistance. In a mouse model, both the 5'-end and 3' CSI PPMOs (administered at 100 or 200 microg/day) partially protected mice from WNV disease, with minimal to no PPMO-mediated toxicity. A higher treatment dose (300 microg/day) caused toxicity. Unconjugated PMOs (3 mg/day) showed neither efficacy nor toxicity, suggesting the importance of the peptide conjugate for efficacy. The results suggest that a modification of the peptide conjugate composition to reduce its toxicity yet maintain its ability to effectively deliver PMO into cells may improve PMO-mediated therapy.
Collapse
Affiliation(s)
- Tia S Deas
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Burrer R, Neuman BW, Ting JPC, Stein DA, Moulton HM, Iversen PL, Kuhn P, Buchmeier MJ. Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J Virol 2007; 81:5637-48. [PMID: 17344287 PMCID: PMC1900280 DOI: 10.1128/jvi.02360-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5' terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.
Collapse
Affiliation(s)
- Renaud Burrer
- The Scripps Research Institute, Department of Molecular and Integrative Neurosciences, Mail Drop SP30-2020, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Puig-Basagoiti F, Tilgner M, Bennett CJ, Zhou Y, Muñoz-Jordán JL, García-Sastre A, Bernard KA, Shi PY. A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 2006; 361:229-41. [PMID: 17178141 PMCID: PMC1952232 DOI: 10.1016/j.virol.2006.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/04/2006] [Accepted: 11/09/2006] [Indexed: 01/09/2023]
Abstract
An adaptive mutation (E249G) within West Nile virus (WNV) NS4B gene was consistently recovered from replicon RNAs in C3H/He mouse cells. The E249G is located at the C-terminal tail of NS4B predicted to be on the cytoplasmic side of the endoplasmic reticulum membrane. The E249G substitution reduced replicon RNA synthesis. Compared with the wild-type NS4B, the E249G mutant protein exhibited a similar efficiency in evasion of interferon-beta response. Recombinant E249G virus exhibited smaller plaques, slower growth kinetics, and lower RNA synthesis than the wild-type virus in a host-dependent manner, with the greatest difference in rodent cells (C3H/He and BHK-21) and the least difference in mosquito cells (C3/36). Selection of revertants of E249G virus identified a second site mutation at residue 246, which could compensate for the low replication phenotype in cell culture. These results demonstrate that distinct residues within the C-terminal tail of flavivirus NS4B are critical for viral replication.
Collapse
Affiliation(s)
| | - Mark Tilgner
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Corey J. Bennett
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Yangsheng Zhou
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Dengue Branch, San Juan, Puerto Rico 00920-3860
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | - Kristen A. Bernard
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
| | - Pei-Yong Shi
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12201
- *Corresponding author. Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, E-mail address: (P.-Y. Shi)
| |
Collapse
|
106
|
Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 2006; 80:11418-31. [PMID: 16928749 PMCID: PMC1642597 DOI: 10.1128/jvi.01257-06] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karen Clyde
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, Berkeley, CA 94720-7360, USA
| | | | | |
Collapse
|
107
|
Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 2006; 80:10208-17. [PMID: 17005698 PMCID: PMC1617308 DOI: 10.1128/jvi.00062-06] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lack of an appropriate animal model for dengue virus (DEN), which causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), has impeded characterization of the mechanisms underlying the disease pathogenesis. The cardinal feature of DHF/DSS, the severe form of DEN infection, is increased vascular permeability. To develop a murine model that is more relevant to DHF/DSS, a novel DEN strain, D2S10, was generated by alternately passaging a non-mouse-adapted DEN strain between mosquito cells and mice, thereby mimicking the natural transmission cycle of the virus between mosquitoes and humans. After infection with D2S10, mice lacking interferon receptors died early without manifesting signs of paralysis, carried infectious virus in both non-neuronal and neuronal tissues, and exhibited signs of increased vascular permeability. In contrast, mice infected with the parental DEN strain developed paralysis at late times after infection, contained detectable levels of virus only in the central nervous system, and displayed normal vascular permeability. In the mice infected with D2S10, but not the parental DEN strain, significant levels of serum tumor necrosis factor alpha (TNF-alpha) were produced, and the neutralization of TNF-alpha activity prevented early death of D2S10-infected mice. Sequence analysis comparing D2S10 to its parental strain implicated a conserved region of amino acid residues in the envelope protein as a possible source for the D2S10 phenotype. These results demonstrate that D2S10 causes a more relevant disease in mice and that TNF-alpha may be one of several key mediators of severe DEN-induced disease in mice. This report represents a significant advance in animal models for severe DEN disease, and it begins to provide mechanistic insights into DEN-induced disease in vivo.
Collapse
Affiliation(s)
- Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
108
|
Ge Q, Pastey M, Kobasa D, Puthavathana P, Lupfer C, Bestwick RK, Iversen PL, Chen J, Stein DA. Inhibition of multiple subtypes of influenza A virus in cell cultures with morpholino oligomers. Antimicrob Agents Chemother 2006; 50:3724-33. [PMID: 16966399 PMCID: PMC1635187 DOI: 10.1128/aac.00644-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/07/2006] [Accepted: 08/19/2006] [Indexed: 12/31/2022] Open
Abstract
Peptide-conjugated phosphorodiamidate morpholino oligomers (P-PMO) are single-stranded nucleic acid-like antisense agents that can reduce gene expression by sterically blocking complementary RNA sequence. P-PMO are water soluble and nuclease resistant, and they readily achieve uptake into cells in culture under standard conditions. Eight P-PMO, each 20 to 22 bases in length, were evaluated for their ability to inhibit influenza A virus (FLUAV) A/PR/8/34 (H1N1) replication in cell culture. The P-PMO were designed to base pair with FLUAV RNA sequences that are highly conserved across viral subtypes and considered critical to the FLUAV biological-cycle, such as gene segment termini and mRNA translation start site regions. Several P-PMO were highly efficacious, each reducing viral titer in a dose-responsive and sequence-specific manner in A/PR/8/34-infected cells. Two P-PMO, one designed to target the AUG translation start site region of PB1 mRNA and the other the 3'-terminal region of nucleoprotein viral genome RNA, also proved to be potent against several other FLUAV strains, including A/WSN/33 (H1N1), A/Memphis/8/88 (H3N2), A/Eq/Miami/63 (H3N8), A/Eq/Prague/56 (H7N7), and the highly pathogenic A/Thailand/1(KAN-1)/04 (H5N1). The P-PMO exhibited minimal cytotoxicity in cell viability assays. High efficacy by two of the P-PMO against multiple FLUAV subtypes suggests that these oligomers represent a broad-spectrum therapeutic approach against a high percentage of known FLUAV strains.
Collapse
Affiliation(s)
- Qing Ge
- AVI BioPharma Inc., 4575 SW Research Way, Corvallis, OR 97333, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abes S, Moulton HM, Clair P, Prevot P, Youngblood DS, Wu RP, Iversen PL, Lebleu B. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 2006; 116:304-13. [PMID: 17097177 DOI: 10.1016/j.jconrel.2006.09.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/07/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
Abstract
The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.
Collapse
Affiliation(s)
- Saïd Abes
- UMR 5124 CNRS, Université Montpellier 2, place Eugene Bataillon, 34095 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Van Aerschot A. Oligonucleotides as antivirals: dream or realistic perspective? Antiviral Res 2006; 71:307-16. [PMID: 16621039 DOI: 10.1016/j.antiviral.2006.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 01/01/2023]
Abstract
Many reports have been published on antiviral activity of synthetic oligonucleotides, targeted to act either by a true antisense effect or via non-sequence specific interactions. This short review will try to evaluate the current status of the field by focusing on the effects as reported for inhibition of either HSV-1, HCMV or HIV-1. Following an introduction with a historical background and a brief discussion on the different types of constructs and mechanisms of action, the therapeutic potential of antisense oligonucleotides as antivirals, as well as possible pitfalls upon their evaluation will be discussed.
Collapse
Affiliation(s)
- Arthur Van Aerschot
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
111
|
Edgil D, Harris E. End-to-end communication in the modulation of translation by mammalian RNA viruses. Virus Res 2005; 119:43-51. [PMID: 16307817 PMCID: PMC7172311 DOI: 10.1016/j.virusres.2005.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 09/14/2005] [Accepted: 10/20/2005] [Indexed: 02/05/2023]
Abstract
A 5′–3′ end interaction leading to stimulation of translation has been described for many cellular and viral mRNAs. Enhancement of viral translational efficiency mediated by 5′ and 3′ untranslated regions (UTRs) has been shown to occur via RNA–RNA interactions or novel RNA–protein interactions. Mammalian RNA viruses make use of end-to-end communication in conjunction with both viral and cellular factors to regulate multiple processes including translation initiation and the switch between translation and RNA synthesis during the viral lifecycle.
Collapse
Affiliation(s)
- Dianna Edgil
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | | |
Collapse
|