101
|
Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N, Samy A, Abdelhalim A, Hassan MK, Abdelwhab EM, Makonnen Y, Dauphin G, Lubroth J, Mettenleiter TC, Beer M, Grund C, Harder TC. Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. ACTA ACUST UNITED AC 2015; 20:2-8. [PMID: 25860390 DOI: 10.2807/1560-7917.es2015.20.13.21085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A distinct cluster of highly pathogenic avian influenzaviruses of subtype A(H5N1) has been found to emergewithin clade 2.2.1.2 in poultry in Egypt since summer2014 and appears to have quickly become predominant.Viruses of this cluster may be associated withincreased incidence of human influenza A(H5N1) infectionsin Egypt over the last months.
Collapse
Affiliation(s)
- A S Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Rhyoo MY, Lee KH, Moon OK, Park WH, Bae YC, Jung JY, Yoon SS, Kim HR, Lee MH, Lee EJ, Ki MR, Jeong KS. Analysis of signs and pathology of H5N1-infected ducks from the 2010-2011 Korean highly pathogenic avian influenza outbreak suggests the influence of age and management practices on severity of disease. Avian Pathol 2015; 44:175-81. [PMID: 25703639 DOI: 10.1080/03079457.2015.1021295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We compared the clinical signs, histopathological lesions and distribution of viral antigens among infected young (meat-type) and older (breeder) ducks that were naturally infected with the highly pathogenic avian influenza (HPAI) virus during the 2010-2011 Korean outbreak. The meat-type ducks had a high mortality rate (30%) and showed severe neurological signs such as head tremors and paresis. In contrast, HPAI-infected breeder ducks had minimal clinical signs but a decreased egg production rate. The histopathological characteristics of infected meat-type ducks included necrotic lesions of heart and brain, which may have primarily contributed to the high mortality rate. In contrast, the breeder ducks only presented necrotic splenitis, and viral antigens were only detected in the trachea, lungs and spleen. Younger ducks had a high viral titre in the organs, high levels of viral shedding and a high mortality rate after experimental HPAI virus infection. Compared to the breeder ducks, the meat-type ducks were raised in smaller farms that had poor quarantine and breeding facilities. It is therefore possible that better biosecurity in the breeder farms could have reduced the infection dose and subsequently the severity of the disease. Thus, age and management may be the influencing factors for HPAI susceptibility in ducks.
Collapse
Affiliation(s)
- Moon-Young Rhyoo
- a Animal and Plant Quarantine Agency (QIA) , Anyang , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
|
104
|
Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg Microbes Infect 2014; 3:e75. [PMID: 26038499 PMCID: PMC4217095 DOI: 10.1038/emi.2014.75] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022]
Abstract
The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.
Collapse
|
105
|
Rao DM. Enhancing epidemiological analysis of intercontinental dispersion of H5N1 viral strains by migratory waterfowl using phylogeography. BMC Proc 2014; 8:S1. [PMID: 25374610 PMCID: PMC4202179 DOI: 10.1186/1753-6561-8-s6-s1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Intercontinental migratory waterfowl are the primary vectors for dispersion of H5N1 viruses and have been implicated in several zoonotic epidemics and pandemics. Recent investigations have established that with a single mutation, the virus gains the ability to transmit between humans. Consequently, there is a heightened urgency to identify innovative approaches to proactively mitigate emergent epidemics. Accordingly, a novel methodology combining temporo-geospatial epidemiology and phylogeographic analysis of viral strains is proposed to identify critical epicenters and epidemic pathways along with high risk candidate regions for increased surveillance. RESULTS Epidemiological analysis was used to identify 91,245 candidate global infection transmission pathways between 22 high risk waterfowl species. Dominant infection pathways (25,625 and 54,500 in summering and wintering zones) were identified through annotation using phylogeographical data computed from the phylogram of 2417 H5N1 HA isolates (from GISAID EpiFlu database). Annotation of infection pathways in turn delineated 23 influential clades out of 130 clades in the phylogram. CONCLUSIONS The phylogeographic analyses provides strong cross-validation of epidemic pathways and identifies the dominant pathways for use in other epidemiological and prophylactic studies. The temporo-geospatial characteristics of infection transmission provides corroborating, but novel evidence for rapid genesis of H5N1 lineages in S.E. Asia. The proposed method pinpoints several regions, particularly in the southern hemisphere, as candidates for increased surveillance.
Collapse
Affiliation(s)
- Dhananjai M Rao
- CSE Department, Miami University, 510 E. High Street, Oxford 45056 OHIO, USA
| |
Collapse
|
106
|
Zhang W, Li L, Deng X, Kapusinszky B, Delwart E. What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 2014; 468-470:303-310. [PMID: 25217712 PMCID: PMC4252299 DOI: 10.1016/j.virol.2014.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
We describe here the metagenomics-derived viral sequences detected in beef, pork, and chicken purchased from stores in San Francisco. In beef we detected four previously reported viruses (two parvoviruses belonging to different genera, an anellovirus, and one circovirus-like virus) and one novel bovine polyomavirus species (BPyV2-SF) whose closest relatives infect primates. Detection of porcine hokovirus in beef indicated that this parvovirus can infect both ungulate species. In pork we detected four known parvoviruses from three genera, an anellovirus, and pig circovirus 2. Chicken meat contained numerous gyrovirus sequences including those of chicken anemia virus and of a novel gyrovirus species (GyV7-SF). Our results provide an initial characterization of some of the viruses commonly found in US store-bought meats which included a diverse group of parvoviruses and viral families with small circular DNA genomes. Whether any of these viruses can infect humans will require testing human sera for specific antibodies. Eukaryotic viral genomes in store-bought beef, pork, and chicken are identified. A novel bovine polyomavirus genome, closest to a group of viruses from primates, is sequenced. Porcine hokovirus is detected in beef samples. A small circovirus-like circular DNA genome in beef is genetically characterized. Several species of gyrovirus including a novel species are detected in chicken meat.
Collapse
Affiliation(s)
- Wen Zhang
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Microbiology, School of Medicine, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
107
|
Wikramaratna PS, Pybus OG, Gupta S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc Natl Acad Sci U S A 2014; 111:10767-72. [PMID: 24958867 PMCID: PMC4115569 DOI: 10.1073/pnas.1401849111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Outbreaks of highly pathogenic strains of avian influenza viruses (AIVs) cause considerable economic losses to the poultry industry and also pose a threat to human life. The possibility that one of these strains will evolve to become transmissible between humans, sparking a major influenza pandemic, is a matter of great concern. Most studies so far have focused on assessing these odds from the perspective of the intrinsic mutability of AIV rather than the ecological constraints to invasion faced by the virus population. Here we present an alternative multihost model for the evolution of AIV in which the mode and tempo of mutation play a limited role, with the emergence of strains being determined instead principally by the prevailing profile of population-level immunity. We show that (i) many of the observed differences in influenza virus dynamics among species can be captured by our model by simply varying host lifespan and (ii) increased contact between species of different lifespans can promote the emergence of potentially more virulent strains that were hitherto suppressed in one of the species.
Collapse
Affiliation(s)
- Paul S Wikramaratna
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; andInstitute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and
| |
Collapse
|
108
|
Pascua PNQ, Choi YK. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clin Exp Vaccine Res 2014; 3:140-8. [PMID: 25003087 PMCID: PMC4083066 DOI: 10.7774/cevr.2014.3.2.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/15/2022] Open
Abstract
Various direct avian-to-human transmissions of influenza A virus subtypes upon exposure to infected poultry have been previously observed in the past decades. Although some of these strains caused lethal infections, the lack of sustained person-to-person transmission has been the major factor that prevented these viruses from causing new pandemics. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) yet again breached the animal-human host species barrier in Asia. Notably, roughly 20% of the A/H7N9-infected patients succumbed to the zoonotic infection whereas two of three A/H10N8 human infections were also lethal. Thus, these events revived the concerns of potential pandemic threats by AIVs in the horizon. This article reviews the various human incursions with AIV variants and provides insight on how continued circulation of these viruses poses perpetual challenge to global public health. As the world anticipates for the next human pandemic, constant vigilance for newly emerging viruses in nature is highly encouraged. With the various numbers of AIVs demonstrating their capacity to breach the animal-human host interface and apparent limitations of current antivirals, there is a need to broaden the selection of pre-pandemic vaccine candidate viruses and development of novel alternative therapeutic strategies.
Collapse
Affiliation(s)
- Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
109
|
Le TH, Nguyen NTB. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 2014; 3:117-27. [PMID: 25003084 PMCID: PMC4083063 DOI: 10.7774/cevr.2014.3.2.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|