101
|
Bhaskar M, Dinoop KP, Mandal J. Characterization of ceftriaxone-resistant Aeromonas spp. isolates from stool samples of both children and adults in Southern India. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2015; 33:26. [PMID: 26825984 PMCID: PMC5025982 DOI: 10.1186/s41043-015-0036-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/22/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Aeromonas species can cause a wide spectrum of illnesses varying from intestinal to extra intestinal and vary in their susceptibility to different antibiotics. The current study was undertaken to characterize the third generation cephalosporin-resistant strains of Aeromonas spp. which were isolated from stool specimens. METHODS Out of a total of 2780 stool samples, 29 Aeromonas spp. were identified, out of which, 9 were resistant to ceftriaxone by the Kirby-Bauer antibiotic testing method. These strains were subjected to minimum inhibitory concentration (MIC) determination by agar dilution for ceftriaxone. Phenotypic and genotypic testing of AmpC beta-lactamase and extended spectrum beta-lactamase (ESBL) were performed. Gene transfer was carried out to demonstrate transmissibility of these genetic elements by conjugation experiments. RESULTS Out of the 29 strains, 9 showed MIC of ≥4 μg/ml. Seven out of 9 showed presence of blaCTX-M, while 2 more strains showed the presence of inducible AmpC beta-lactamase and presence of MOX gene. Gene transfer experiments showed that these elements were transmissible to recipient (Escherichia coli J53 strain) in the presence of ceftriaxone. CONCLUSIONS Dissemination of these resistance determinants like plasmids is pivotal in the spread of these resistance genes into the aquatic environment into organisms like Aeromonas. This may further limit the future use of antibiotics for the treatment of diarrhoeal diseases. Hence, detection and antibiotic susceptibility testing of Aeromonas spp. should be performed when isolated from stool samples.
Collapse
Affiliation(s)
| | - K P Dinoop
- Department of Microbiology, JIPMER, Puducherry, India
| | - Jharna Mandal
- Department of Microbiology, JIPMER, Puducherry, India.
| |
Collapse
|
102
|
Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:24-31. [PMID: 26150304 DOI: 10.1016/j.scitotenv.2015.06.082] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/21/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.
Collapse
Affiliation(s)
- Xiaohui Bai
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Xiaolin Ma
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fengming Xu
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Li
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hang Zhang
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiang Xiao
- State Key Laboratory of MicrobialMetabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
103
|
Vaz-Moreira I, Varela AR, Pereira TV, Fochat RC, Manaia CM. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. Microb Drug Resist 2015; 22:155-63. [PMID: 26469134 DOI: 10.1089/mdr.2015.0118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Ana Rita Varela
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Thamiris V Pereira
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Romário C Fochat
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| | - Célia M Manaia
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto , Porto, Portugal
| |
Collapse
|
104
|
Topic Popovic N, Kazazic SP, Strunjak-Perovic I, Barisic J, Sauerborn Klobucar R, Kepec S, Coz-Rakovac R. Detection and diversity of aeromonads from treated wastewater and fish inhabiting effluent and downstream waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:235-242. [PMID: 26092555 DOI: 10.1016/j.ecoenv.2015.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
A two-season investigation of the wastewater treatment plant (WWTP) effluent, of related waters, sludge and fish across a wide area and 11 stations, with emphasis on Aeromonas spp. was conducted. Aeromonas veronii was the prevailing aeromonad isolated by MALDI TOF MS in the summer period. A rise of Aeromonas hydrophila was observed in summer in raw sewage, treated wastewater and effluent-carrying canal. The ratio of aeromonad species retrieved from fish tissues did not correspond with the water and sludge findings, as in spring in the effluent-carrying canal fish carried Aeromonas salmonicida ssp. salmonicida and Aeromonas bestiarum, while in summer mainly A. veronii and Acinetobacter johnsonii were isolated from fish tissues in the same location. No correlation was established between fecal coliforms/enterococci and aeromonad occurrence. All retrieved Aeromonas species demonstrated a distinct spectral pattern, with peaks showing unique mass distribution ranging from 4000 to 10,000Da. Hierarchical clustering separated aeromonads of all isolated species and clustered closely related strains together. Resistance was determined towards amoxicillin, and frequently towards sulfamethoxazole and erythromycin. In summer, a high proportion of water and sludge Aeromonas species demonstrated multiple resistance patterns towards five or more antimicrobials. The quinolone resistance of water aeromonads was mostly related to A. veronii. There are potential health concerns regarding aeromonad exposure amongst recreational fishermen who come into contact with fish inhabiting waters downstream from the WWTP, and WWTP workers who are occupationally exposed to wastewaters and their aerosols.
Collapse
Affiliation(s)
- Natalija Topic Popovic
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia.
| | - Snjezana P Kazazic
- Laboratory for Chemical Kinetics and Atmospheric Chemistry, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | - Josip Barisic
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | - Slavko Kepec
- Virkom d.o.o., Public Water Supply and Wastewater Services, Virovitica, Croatia
| | - Rozelinda Coz-Rakovac
- Laboratory for Ichthyopathology-Biological Materials, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
105
|
Adesoji AT, Ogunjobi AA, Olatoye IO, Call DR, Douglas DR. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. Ann Clin Microbiol Antimicrob 2015; 14:35. [PMID: 26108344 PMCID: PMC4481114 DOI: 10.1186/s12941-015-0093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Background Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. Methodology Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. Results Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. Conclusions This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this strain could shuttle resistance plasmids to pathogenic bacteria.
Collapse
Affiliation(s)
- Ayodele T Adesoji
- Department of Biological Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, Nigeria.
| | - Adeniyi A Ogunjobi
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Isaac O Olatoye
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington State, USA.
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington State, USA. .,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, USA.
| | | |
Collapse
|
106
|
A Severe Accident Caused by an Ocellate River Stingray (Potamotrygon motoro) in Central Brazil: How Well Do We Really Understand Stingray Venom Chemistry, Envenomation, and Therapeutics? Toxins (Basel) 2015; 7:2272-88. [PMID: 26094699 PMCID: PMC4488702 DOI: 10.3390/toxins7062272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/15/2022] Open
Abstract
Freshwater stingrays cause many serious human injuries, but identification of the offending species is uncommon. The present case involved a large freshwater stingray, Potamotrygon motoro (Chondrichthyes: Potamotrygonidae), in the Araguaia River in Tocantins, Brazil. Appropriate first aid was administered within ~15 min, except that an ice pack was applied. Analgesics provided no pain relief, although hot compresses did. Ciprofloxacin therapy commenced after ~18 h and continued seven days. Then antibiotic was suspended; however, after two more days and additional tests, cephalosporin therapy was initiated, and proved successful. Pain worsened despite increasingly powerful analgesics, until debridement of the wound was performed after one month. The wound finally closed ~70 days after the accident, but the patient continued to have problems wearing shoes even eight months later. Chemistry and pharmacology of Potamotrygon venom and mucus, and clinical management of freshwater stingray envenomations are reviewed in light of the present case. Bacterial infections of stingray puncture wounds may account for more long-term morbidity than stingray venom. Simultaneous prophylactic use of multiple antibiotics is recommended for all but the most superficial stingray wounds. Distinguishing relative contributions of venom, mucus, and bacteria will require careful genomic and transcriptomic investigations of stingray tissues and contaminating bacteria.
Collapse
|
107
|
High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals. ASIAN PAC J TROP MED 2015. [DOI: 10.1016/j.apjtm.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
108
|
Piotrowska M, Popowska M. Insight into the mobilome of Aeromonas strains. Front Microbiol 2015; 6:494. [PMID: 26074893 PMCID: PMC4444841 DOI: 10.3389/fmicb.2015.00494] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
The mobilome is a pool of genes located within mobile genetic elements (MGE), such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and integron-associated gene cassettes. These genes are often referred to as “flexible” and may encode virulence factors, toxic compounds as well as resistance to antibiotics. The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer (HGT), is well documented. The genes present on MGE are subject to continuous processes of evolution and environmental changes, largely induced or significantly accelerated by man. For bacteria, the only chance of survival in an environment contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of genes providing the ability to survive in such conditions. The process of acquiring and spreading antibiotic resistance genes (ARG) is of particular significance, as it is important for the health of humans and animals. Therefore, it is important to thoroughly study the mobilome of Aeromonas spp. that is widely distributed in various environments, causing many diseases in fishes and humans. This review discusses the recently published information on MGE prevalent in Aeromonas spp. with special emphasis on plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type. The vast majority of plasmids carry a number of different transposons (Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such as antibiotic and mercury resistance genes, as well as virulence factors. Although the actual role of Aeromonas spp. as a human pathogen remains controversial, species of this genus may pose a serious risk to human health. This is due to the considerable potential of their mobilome, particularly in terms of antibiotic resistance and the possibility of the horizontal transfer of resistance genes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
109
|
Meireles D, Leite-Martins L, Bessa LJ, Cunha S, Fernandes R, de Matos A, Manaia CM, Martins da Costa P. Molecular characterization of quinolone resistance mechanisms and extended-spectrum β-lactamase production in Escherichia coli isolated from dogs. Comp Immunol Microbiol Infect Dis 2015; 41:43-8. [PMID: 25999092 DOI: 10.1016/j.cimid.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 01/30/2023]
Abstract
The increasing prevalence of antimicrobial resistances is now a worldwide problem. Investigating the mechanisms by which pets harboring resistant strains may receive and/or transfer resistance determinants is essential to better understanding how owners and pets can interact safely. Here, we characterized the genetic determinants conferring resistance to β-lactams and quinolones in 38 multidrug-resistant Escherichia coli isolated from fecal samples of dogs, through PCR and sequencing. The most frequent genotype included the β-lactamase groups TEM (n=5), and both TEM+CTX-M-1 (n=5). Within the CTX-M group, we identified the genes CTX-M-32, CTX-M-1, CTX-M-15, CTX-M-55/79, CTX-M-14 and CTX-M-2/44. Thirty isolates resistant to ciprofloxacin presented two mutations in the gyrA gene and one or two mutations in the parC gene. A mutation in gyrA (reported here for the first time), due to a transversion and transition (TCG→GTG) originating a substitution of a serine by a valine in position 83 was also detected. The plasmid-encoded quinolone resistance gene, qnrs1, was detected in three isolates. Dogs can be a reservoir of genetic determinants conferring antimicrobial resistance and thus may play an important role in the spread of antimicrobial resistance to humans and other co-habitant animals.
Collapse
Affiliation(s)
- D Meireles
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - L Leite-Martins
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Clínica Veterinária, ICBAS, Universidade do Porto, Porto, Portugal
| | - L J Bessa
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - S Cunha
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - R Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Tecnologia de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - A de Matos
- Clínica Veterinária, ICBAS, Universidade do Porto, Porto, Portugal; CECA - Centro de Estudos de Ciência Animal, ICETA - Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares, Universidade do Porto, Porto, Portugal
| | - C M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - P Martins da Costa
- Produção Aquática, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
110
|
Varela AR, Macedo GN, Nunes OC, Manaia CM. Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiol Ecol 2015; 91:fiv015. [PMID: 25764463 DOI: 10.1093/femsec/fiv015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli with reduced susceptibility to ciprofloxacin, isolated from urban streams, wastewater treatment plants and hospital effluent between 2004 and 2012, were compared based on multilocus sequence typing (MLST), quinolone and beta-lactam resistance determinants and plasmid replicon type. Isolates from the different types of water and isolation dates clustered together, suggesting the persistence and capacity to propagate across distinct aquatic environments. The most prevalent MLST groups were ST10 complex and ST131. Almost all isolates (98%) carried mutations in the chromosomal genes gyrA and/or parC, and 10% possessed the genes qepA, aac(6('))-Ib-cr and/or qnrS1. Over 80% of the isolates were resistant to three or more classes of antibiotics (MDR ≥ 3). The most prevalent beta-lactamase encoding gene was blaTEM, followed by blaCTX-M-15, co-existing with plasmid mediated quinolone resistance. The plasmid replicon types of the group IncF were the most prevalent and distributed by different MLST groups. The genes aac(6('))-Ib-cr and/or qnrS1 could be transferred by conjugation in combination with the genes blaTEM,blaSHV-12 or blaOXA-1 and the plasmid replicon types I1-Iγ, K, HI2 and/or B/O. The potential of multidrug resistant E. coli with reduced susceptibility to ciprofloxacin, harboring mobile genetic elements and with ability to conjugate and transfer resistance genes, to spread and persist across different aquatic environments was demonstrated.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Gonçalo N Macedo
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| |
Collapse
|
111
|
Harnisz M, Korzeniewska E, Ciesielski S, Gołaś I. tet genes as indicators of changes in the water environment: relationships between culture-dependent and culture-independent approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:704-11. [PMID: 25461073 DOI: 10.1016/j.scitotenv.2014.10.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 05/16/2023]
Abstract
The aim of this study was to identify tetracycline resistance determinants that could be used as molecular indicators of anthropogenic changes in aquatic environments. Two parallel approaches were used to examine the prevalence of tet genes: a culture-based method involving standard PCR and a method relying on quantitative PCR. The studied site was the Łyna River in Olsztyn (Poland). The culture-dependent method revealed that the concentrations of doxycycline-resistant bacteria harboring the tet(B) gene were higher in wastewater and downstream river samples than in upstream water samples. The tet(B) gene was transferred from environmental bacteria to Escherichia coli. The results generated by the culture-independent method validated statistically significant differences in tet(B) concentrations between upstream and downstream river sections, and revealed that tet(B) levels were correlated with the presence of other tetracycline resistance genes, dissolved oxygen concentrations, temperature and doxycycline concentrations in water. Our findings indicate that doxycycline-resistant bacteria, in particular E. coli harboring tet(B) or increased concentrations of tet(B), are potentially robust indicators of changes in water environments.
Collapse
Affiliation(s)
- Monika Harnisz
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-957 Olsztyn, Poland
| | - Iwona Gołaś
- Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| |
Collapse
|
112
|
Antibiotic Resistance Elements in Wastewater Treatment Plants: Scope and Potential Impacts. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
113
|
Yang Y, Li B, Zou S, Fang HHP, Zhang T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. WATER RESEARCH 2014; 62:97-106. [PMID: 24937359 DOI: 10.1016/j.watres.2014.05.019] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 05/08/2023]
Abstract
Antibiotic resistance has become a serious threat to human health. Sewage treatment plant (STP) is one of the major sources of antibiotic resistance genes (ARGs) in natural environment. High-throughput sequencing-based metagenomic approach was applied to investigate the broad-spectrum profiles and fate of ARGs in a full scale STP. Totally, 271 ARGs subtypes belonging to 18 ARGs types were identified by the broad scanning of metagenomic analysis. Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge. 78 ARGs subtypes persisted through the biological wastewater and sludge treatment process. The high removal efficiency of 99.82% for total ARGs in wastewater suggested that sewage treatment process is effective in reducing ARGs. But the removal efficiency of ARGs in sludge treatment was not as good as that in sewage treatment. Furthermore, the composition of microbial communities was examined and the correlation between microbial community and ARGs was investigated using redundancy analysis. Significant correlation between 6 genera and the distribution of ARGs were found and 5 of the 6 genera included potential pathogens. This is the first study on the fate of ARGs in STP using metagenomic analysis with high-throughput sequencing and hopefully would enhance our knowledge on fate of ARGs in STP.
Collapse
Affiliation(s)
- Ying Yang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Shichun Zou
- Institute of Marine Science and Technology, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510000, China
| | - Herbert H P Fang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
114
|
Guo X, Li J, Yang F, Yang J, Yin D. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:626-31. [PMID: 24984233 DOI: 10.1016/j.scitotenv.2014.06.035] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 05/21/2023]
Abstract
The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
115
|
Flores Ribeiro A, Bodilis J, Alonso L, Buquet S, Feuilloley M, Dupont JP, Pawlak B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:370-8. [PMID: 24875257 DOI: 10.1016/j.scitotenv.2014.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/04/2014] [Accepted: 05/04/2014] [Indexed: 05/14/2023]
Abstract
Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods.
Collapse
Affiliation(s)
- Angela Flores Ribeiro
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France; UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France.
| | - Josselin Bodilis
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Lise Alonso
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Sylvaine Buquet
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| | - Jean-Paul Dupont
- UMR 6143 Morphodynamique Continentale et Côtière (M2C), Université de Rouen, Place Emile Blondel, Bâtiment IRESE A, 76821 Mont Saint Aignan, France
| | - Barbara Pawlak
- Laboratoire de Microbiologie-Signaux et Environnement (LMSM), EA 4312, Université de Rouen, Place Emile Blondel, Bâtiment IRESE B, 2(ème) étage, 76821 Mont Saint Aignan, France
| |
Collapse
|
116
|
Deng YT, Wu YL, Tan AP, Huang YP, Jiang L, Xue HJ, Wang WL, Luo L, Zhao F. Analysis of Antimicrobial Resistance Genes inAeromonasspp. Isolated from Cultured Freshwater Animals in China. Microb Drug Resist 2014; 20:350-6. [DOI: 10.1089/mdr.2013.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yu-Ting Deng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Ya-Li Wu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
- Academy of Fishery and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Al-Ping Tan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Yu-Ping Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
- Academy of Fishery and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Hui-Juan Xue
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
- Academy of Fishery and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Wei-Li Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Li Luo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
117
|
Laht M, Karkman A, Voolaid V, Ritz C, Tenson T, Virta M, Kisand V. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load. PLoS One 2014; 9:e103705. [PMID: 25084517 PMCID: PMC4118896 DOI: 10.1371/journal.pone.0103705] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs.
Collapse
Affiliation(s)
- Mailis Laht
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Antti Karkman
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Veiko Voolaid
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Virta
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
118
|
Wu XL, Xiang L, Yan QY, Jiang YN, Li YW, Huang XP, Li H, Cai QY, Mo CH. Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:399-406. [PMID: 24797736 DOI: 10.1016/j.scitotenv.2014.04.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Organic fertilizer or manure containing antibiotics has been widely used in organic farms, but the distribution and potential impacts of antibiotics to the local environment are not well understood. In this study, four quinolone antibiotics in soil samples (n=69) from five organic vegetable farms in a subtropical city, Southern China, were analyzed using high performance liquid chromatography-tandem mass spectrometry. Our results indicated that quinolone compounds were ubiquitous in soil samples (detection frequency>97% for all compounds), and their concentrations ranged from not detectable to 42.0 μg/kg. Among the targets, enrofloxacin (ENR) was the dominant compound, followed by ciprofloxacin (CIP) and norfloxacin (NOR). The average total concentrations of four compounds in the soils were affected by vegetable types and species cultivated, decreasing in the order of fruit>rhizome>leaf vegetables. Moreover, the average concentrations of quinolone compounds (except ENR) in open-field soils were higher than those in greenhouse soils. The concentrations of quinolone antibiotics in this study were lower than the ecotoxic effect trigger value (100 μg/kg) proposed by the Veterinary Medicine International Coordination commission. Risk assessment based on the calculated risk quotients indicated that NOR, CIP, and ENR posed mainly medium to low risks to bacteria.
Collapse
Affiliation(s)
- Xiao-Lian Wu
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Qing-Yun Yan
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| | - Yuan-Neng Jiang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xian-Pei Huang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions, Department of Environmental Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
119
|
Piotrowska M, Popowska M. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0911-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
120
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
121
|
Pavankumar AR, Norén J, Singh L, Chandappa Gowda NK. Scaling-up the production of recombinant Moringa oleifera coagulant protein for large-scale water treatment applications. RSC Adv 2014. [DOI: 10.1039/c3ra46654j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Scaling-up the production of Moringa oleifera coagulant protein to industrial level reveals it multiple advantages over the usage of chemical disinfectants and serves as a natural remedy for water treatment processes.
Collapse
Affiliation(s)
- Asalapuram Ramachandran Pavankumar
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
- Lab4Life Bio-Research Private Limited
| | - Johan Norén
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
| | - Lakhvinder Singh
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
| | | |
Collapse
|
122
|
Manageiro V, Ferreira E, Caniça M, Manaia CM. GES-5 among theβ-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiol Lett 2013; 351:64-69. [DOI: 10.1111/1574-6968.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
- Centre for the Study of Animal Sciences (CECA/ICETA); University of Oporto; Oporto Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antimicrobial Resistances; National Institute of Health Dr. Ricardo Jorge; Lisbon Portugal
| | - Célia M. Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado; Escola Superior de Biotecnologia; Universidade Católica Portuguesa/Porto; Porto Portugal
| |
Collapse
|
123
|
Anssour L, Messai Y, Derkaoui M, Alouache S, Estepa V, Somalo S, Torres C, Bakour R. ESBL, plasmidic AmpC, and associated quinolone resistance determinants in coliforms isolated from hospital effluent: first report ofqnrB2,qnrB9,qnrB19, andblaCMY-4in Algeria. J Chemother 2013; 26:74-9. [DOI: 10.1179/1973947813y.0000000115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
124
|
Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant aeromonas isolates from Lake Erie. Appl Environ Microbiol 2013; 80:841-8. [PMID: 24242249 DOI: 10.1128/aem.03645-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.
Collapse
|
125
|
Maravić A, Skočibušić M, Šamanić I, Fredotović Ž, Cvjetan S, Jutronić M, Puizina J. Aeromonas spp. simultaneously harbouring blaCTX-M-15, blaSHV-12, blaPER-1 and blaFOX-2, in wild-growing Mediterranean mussel (Mytilus galloprovincialis) from Adriatic Sea, Croatia. Int J Food Microbiol 2013; 166:301-8. [DOI: 10.1016/j.ijfoodmicro.2013.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
|
126
|
Vredenburg J, Varela AR, Hasan B, Bertilsson S, Olsen B, Narciso-da-Rocha C, Bonnedahl J, Stedt J, Da Costa PM, Manaia CM. Quinolone-resistant Escherichia coli isolated from birds of prey in Portugal are genetically distinct from those isolated from water environments and gulls in Portugal, Spain and Sweden. Environ Microbiol 2013; 16:995-1004. [PMID: 24034690 DOI: 10.1111/1462-2920.12231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/17/2013] [Accepted: 07/28/2013] [Indexed: 11/27/2022]
Abstract
The influence of geographic distribution and type of habitat on the molecular epidemiology of ciprofloxacin resistant Escherichia coli was investigated. Ciprofloxacin resistant E. coli from wastewater, urban water with faecal contamination and faeces of gulls, pigeons and birds of prey, from Portugal, Spain and Sweden were compared based on multi-locus sequence typing (MLST) and quinolone resistance genetic determinants. Multi-locus sequence typing allowed the differentiation of E. coli lineages associated with birds of prey from those inhabiting gulls and waters. E. coli lineages of clinical relevance, such as the complex ST131, were detected in wastewater, streams and gulls in Portugal, Spain and Sweden. Quinolone resistance was due to gyrA and parC mutations, although distinct mutations were detected in birds of prey and in wastewater, streams and gulls isolates. These differences were correlated with specific MLST lineages, suggesting resistance inheritance. Among the plasmid-mediated quinolone resistance genes, only aac(6')-ib-cr and qnrS were detected in wastewater, streams and gulls isolates, but not in birds of prey. The horizontal transfer of the gene aac(6')-ib-cr could be inferred from its occurrence in different MLST lineages.
Collapse
Affiliation(s)
- Jana Vredenburg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, 4200-072, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Examination of a Culturable Microbial Population from the Gastrointestinal Tract of the Wood-Eating Loricariid Catfish Panaque nigrolineatus. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5030641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
128
|
Varela AR, Manaia CM. Human health implications of clinically relevant bacteria in wastewater habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3550-3569. [PMID: 23508533 DOI: 10.1007/s11356-013-1594-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
The objective of this review is to reflect on the multiple roles of bacteria in wastewater habitats with particular emphasis on their harmful potential for human health. Indigenous bacteria promote a series of biochemical and metabolic transformations indispensable to achieve wastewater treatment. Some of these bacteria may be pathogenic or harbour antibiotic resistance or virulence genes harmful for human health. Several chemical contaminants (heavy metals, disinfectants and antibiotics) may select these bacteria or their genes. Worldwide studies show that treated wastewater contain antibiotic resistant bacteria or genes encoding virulence or antimicrobial resistance, evidencing that treatment processes may fail to remove efficiently these bio-pollutants. The contamination of the surrounding environment, such as rivers or lakes receiving such effluents, is also documented in several studies. The current state of the art suggests that only some of antibiotic resistance and virulence potential in wastewater is known. Moreover, wastewater habitats may favour the evolution and dissemination of new resistance and virulence genes and the emergence of new pathogens. For these reasons, additional research is needed in order to obtain a more detailed assessment of the long-term effects of wastewater discharges. In particular, it is important to measure the human and environmental health risks associated with wastewater reuse.
Collapse
Affiliation(s)
- Ana Rita Varela
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | | |
Collapse
|
129
|
Gros M, Rodríguez-Mozaz S, Barceló D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 2013; 1292:173-88. [DOI: 10.1016/j.chroma.2012.12.072] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/29/2012] [Accepted: 12/30/2012] [Indexed: 02/06/2023]
|
130
|
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:345-60. [PMID: 23396083 DOI: 10.1016/j.scitotenv.2013.01.032] [Citation(s) in RCA: 1271] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 05/20/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB.
Collapse
Affiliation(s)
- L Rizzo
- Department of Civil Engineering, University of Salerno, 84084, Fisciano (SA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Beaz-Hidalgo R, Shakèd T, Laviad S, Halpern M, Figueras MJ. Chironomid egg masses harbour the clinical speciesAeromonas taiwanensisandAeromonas sanarellii. FEMS Microbiol Lett 2012; 337:48-54. [DOI: 10.1111/1574-6968.12003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/07/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Roxana Beaz-Hidalgo
- Facultat de Medicina i Ciències de la Salut; Departament de Ciènces Médiques Bàsiques; Unitat de Microbiologia; IISPV; Universitat Rovira i Virgili; Reus; Spain
| | - Tamar Shakèd
- Faculty of Natural Sciences; Department of Biology; University of Haifa; Oranim; Tivon; Israel
| | - Sivan Laviad
- Faculty of Natural Sciences; Department of Biology; University of Haifa; Oranim; Tivon; Israel
| | - Malka Halpern
- Faculty of Natural Sciences; Department of Biology; University of Haifa; Oranim; Tivon; Israel
| | - María J. Figueras
- Facultat de Medicina i Ciències de la Salut; Departament de Ciènces Médiques Bàsiques; Unitat de Microbiologia; IISPV; Universitat Rovira i Virgili; Reus; Spain
| |
Collapse
|
132
|
Carvalho MJ, Martínez-Murcia A, Esteves AC, Correia A, Saavedra MJ. Phylogenetic diversity, antibiotic resistance and virulence traits of Aeromonas spp. from untreated waters for human consumption. Int J Food Microbiol 2012; 159:230-9. [PMID: 23107502 DOI: 10.1016/j.ijfoodmicro.2012.09.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/11/2012] [Accepted: 09/14/2012] [Indexed: 01/14/2023]
Abstract
It is well known that water constitutes an important contamination route for microorganisms. This is especially true for Aeromonas which are widespread in untreated and treated waters. In this study, Portuguese untreated waters not regularly monitored were screened for the presence and diversity of aeromonads. A total of 206 isolates were discriminated by RAPD-PCR and 80 distinct strains were identified by gyrB based phylogenetic analysis. The most frequently detected species were Aeromonas hydrophila, Aeromonas bestiarum and Aeromonas media. The antibiotic susceptibility profile of these strains was determined and showed a typical profile of the genus. Nonetheless, the percentage of resistant strains to tetracycline, chloramphenicol and/or trimethoprim/sulfamethoxazole was lower than that reported for clinical isolates and isolates recovered from aquacultures and other environments historically subjected to antibiotic contamination. This suggests that the existence of such pressures in those environments selects for resistant Aeromonas. A similar trend for integron presence was found. Genes coding for CphA and TEM, and tet(A), (E), (C) or (D) genes were found in 28%, 1%, and 10% of the strains, respectively. 10% of the strains contained an integron. Variable regions of seven class 1 integrons and one class 2 integron were characterised. Furthermore, strains displayed virulence related phenotypes such as extracellular lipolytic and proteolytic activities as well as aerolysin related genes (43% of strains). The ascV and aexT genes were found in 16% and 3% of strains respectively and, in some cases, concomitantly in the same specimen. This study shows that diverse Aeromonas spp. presenting distinct antibiotic resistance features and putative virulence traits are frequently present in waters for human and animal consumption in Portugal. Genes associated to antibiotic resistance and microbial virulence previously identified in organisms with human health significance were detected in these aeromonads, suggesting that these waters may act as a pivotal route for infections.
Collapse
|
133
|
Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 2012; 97:329-40. [DOI: 10.1007/s00253-012-4190-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/26/2022]
|
134
|
Henriques IS, Araújo S, Azevedo JSN, Alves MS, Chouchani C, Pereira A, Correia A. Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. Microb Drug Resist 2012; 18:531-7. [PMID: 22663561 DOI: 10.1089/mdr.2012.0029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the prevalence and diversity of carbapenem-resistant bacteria (CRB) in untreated drinking water. Prevalence was estimated in plate count agar (PCA) and R2A media with or without antibiotics. Clonal relatedness of isolates was established by repetitive extragenic palindroitic (REP)-PCR. Phylogeny was based on the 16S rRNA gene. Antimicrobial susceptibility was assessed by disc diffusion methods. Genes encoding beta-lactamases and integrases were inspected by PCR. CRB ranged from 0.02% to 15.9% of cultivable bacteria, while ampicillin-resistant bacteria ranged from 1.5% to 31.4%. Carbapenem-resistant isolates affiliated with genera Stenotrophomonas, Pseudomonas, Janthinobacterium, Chryseobacterium, Sphingobacterium, Acidovorax, Caulobacter, Cupriavidus, and Sphingomonas. CRB were highly resistant to beta-lactams, but mostly susceptible to other classes. Transmissible beta-lactamase genes and integrase genes were not detected. The genus-specific bla(L1) was detected in 61% of the Stenotrophomonas isolates. Contrarily to what has been reported for extensively used antibiotics, low levels of carbapenem resistance were detected in untreated drinking water, often represented by intrinsically resistant genera. Production of chromosomal-encoded carbapenemases was the prevalent carbapenem resistance mechanism. Results suggest that the dissemination of anthropogenic-derived carbapenem resistance is at an early stage. This presents an opportunity to rationally develop monitoring strategies to identify dissemination routes and assess the impact of human actions in the environmental resistome.
Collapse
Affiliation(s)
- Isabel S Henriques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
135
|
Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:366-74. [PMID: 22521167 DOI: 10.1016/j.scitotenv.2012.03.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 05/06/2023]
Abstract
Pseudomonas spp. are common inhabitants of aquatic environments, including drinking water. Multi-antibiotic resistance in clinical isolates of P. aeruginosa is widely reported and deeply characterized. However, the information regarding other species and environmental isolates of this genus is scant. This study was designed based on the hypothesis that members of the genus Pseudomonas given their high prevalence, wide distribution in waters and genetic plasticity can be important reservoirs of antibiotic resistance in drinking water. With this aim, the diversity and antibiotic resistance phenotypes of Pseudomonas isolated from different drinking water sources were evaluated. The genotypic diversity analyses were based on six housekeeping genes (16S rRNA, rpoD, rpoB, gyrB, recA and ITS) and on pulsed field gel electrophoresis. Susceptibility to 21 antibiotics of eight classes was tested using the ATB PSE EU (08) and disk diffusion methods. Pseudomonas spp. were isolated from 14 of the 32 sampled sites. A total of 55 non-repetitive isolates were affiliated to twenty species. Although the same species were isolated from different sampling sites, identical genotypes were never observed in distinct types of water (water treatment plant/distribution system, tap water, cup fillers, biofilm, and mineral water). In general, the prevalence of antibiotic resistance was low and often the resistance patterns were related with the species and/or the strain genotype. Resistance to ticarcillin, ticarcillin with clavulanic acid, fosfomycin and cotrimoxazol were the most prevalent (69-84%). No resistance to piperacillin, levofloxacin, ciprofloxacin, tetracycline, gentamicin, tobramycin, amikacin, imipenem or meropenem was observed. This study demonstrates that Pseudomonas spp. are not so widespread in drinking water as commonly assumed. Nevertheless, it suggests that water Pseudomonas can spread acquired antibiotic resistance, preferentially via vertical transmission.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| | | | | |
Collapse
|
136
|
Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 2012; 1248:104-21. [PMID: 22704668 DOI: 10.1016/j.chroma.2012.05.084] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022]
Abstract
The present work describes the development of an analytical method, based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UPLC-QqLIT) for the determination of 81 pharmaceutical residues, covering various therapeutic groups, and some of their main metabolites, in surface and treated waters (influent and effluent wastewaters, river, reservoir, sea and drinking water). For unequivocal identification and confirmation, two selected reaction monitoring (SRM) transitions per compound are monitored. Quantification is performed by the internal standard approach, indispensable to correct matrix effects. Moreover, to obtain an extra tool for confirmation of positive findings, an information dependent acquisition (IDA) experiment was performed, with SRM as survey scan and an enhanced product ion (EPI) scan as dependent scan. Compound identification was carried out by library search, matching the EPI spectra achieved at one fixed collision energy with those present in a library. The main advantages of the method are automation and speed-up of sample preparation by the reduction of extraction volumes for some matrices, the fast separation of a big number of pharmaceuticals, its high sensitivity (limits of detection in the low ng/L range), selectivity, due to the use of tandem mass spectrometry, reliability since a significant number of isotopically labeled compounds are used as internal standards for quantification and finally, the analysis of tap, reservoir and sea waters, since information about occurrence of pharmaceuticals in these matrices is still sparse. As part of the validation procedure, the method developed was applied to the analysis of pharmaceutical residues in waste and surface waters from different sites in Catalonia (North East of Spain).
Collapse
|
137
|
Lupo A, Coyne S, Berendonk TU. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 2012; 3:18. [PMID: 22303296 PMCID: PMC3266646 DOI: 10.3389/fmicb.2012.00018] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
The environment, and especially freshwater, constitutes a reactor where the evolution and the rise of new resistances occur. In water bodies such as waste water effluents, lakes, and rivers or streams, bacteria from different sources, e.g., urban, industrial, and agricultural waste, probably selected by intensive antibiotic usage, are collected and mixed with environmental species. This may cause two effects on the development of antibiotic resistances: first, the contamination of water by antibiotics or other pollutants lead to the rise of resistances due to selection processes, for instance, of strains over-expressing broad range defensive mechanisms, such as efflux pumps. Second, since environmental species are provided with intrinsic antibiotic resistance mechanisms, the mixture with allochthonous species is likely to cause genetic exchange. In this context, the role of phages and integrons for the spread of resistance mechanisms appears significant. Allochthonous species could acquire new resistances from environmental donors and introduce the newly acquired resistance mechanisms into the clinics. This is illustrated by clinically relevant resistance mechanisms, such as the fluoroquinolones resistance genes qnr. Freshwater appears to play an important role in the emergence and in the spread of antibiotic resistances, highlighting the necessity for strategies of water quality improvement. We assume that further knowledge is needed to better understand the role of the environment as reservoir of antibiotic resistances and to elucidate the link between environmental pollution by anthropogenic pressures and emergence of antibiotic resistances. Only an integrated vision of these two aspects can provide elements to assess the risk of spread of antibiotic resistances via water bodies and suggest, in this context, solutions for this urgent health issue.
Collapse
Affiliation(s)
- Agnese Lupo
- Institute of Hydrobiology, Department of Hydrosciences, Technical University Dresden Dresden, Germany
| | | | | |
Collapse
|
138
|
Manaia CM, Vaz-Moreira I, Nunes OC. Antibiotic Resistance in Waste Water and Surface Water and Human Health Implications. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/698_2011_118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|