101
|
Chen D, Zhao L, Wang Z, Li Y, Li Y, Yin M, Wang X, Yang Y. Successional dynamics of low C/N activated sludge system under salinity shock: Performance, nitrogen removal pathways, microbial community, and assembly. CHEMOSPHERE 2022; 307:135703. [PMID: 35842038 DOI: 10.1016/j.chemosphere.2022.135703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Limited carbon (low C/N) and salinity stress affect the stability of wastewater treatment plants. However, the effect of salinity shock on activated sludge systems with low C/N ratio wastewater remains unclear. An anaerobic/aerobic/anoxic sequencing batch reactor treating low C/N wastewater was established to investigate the effects of salinity shock on system performance, nitrogen removal pathways, microbial community, interactions, and assembly. The results showed that the effluent COD concentration could maintain a stable level, and the average COD removal efficiency was 94.9%. However, total nitrogen removal was significantly inhibited. With the addition of salinity, efficiencies of total nitrogen removal and simultaneous nitrification and denitrification decreased from 91.4 to 73.8% to 86.7 and 39.7%, respectively; however, nitrite reduction capacity increased by 25.4%. After removing salinity, ammonia oxidation capacity further deteriorated, evidenced by the increase in effluent NH4+-N from 8.0 to 11.8 mg/L. During the salinity shock, partial nitrification became the main nitrogen removal pathway because of the inhibition of Nitrospira and high nitrite accumulation ratio (>99.0%). Molecular ecological network analysis indicated that increased competition, decreased total modules, and disappearance of keystone taxa were related to the deterioration of ammonia oxidation capacity and simultaneous nitrification and denitrification. Moreover, the abundant denitrification module and increased denitrifiers contributed to the increase in nitrite reduction capacity. Salinity shock under low C/N conditions resulted in a stronger stochastic community assembly. This study provided information that can help enable stable operations for treating low C/N wastewater.
Collapse
Affiliation(s)
- Daying Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhimin Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Drainage Group Co., LTD, Beijing, 100061, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meilin Yin
- School of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
102
|
Li J, Peng Y, Yang S, Li S, Feng W, Li X, Zhang Q, Zhang L. Successful Application of Anammox Using the Hybrid Autotrophic-Heterotrophic Denitrification Process for Low-Strength Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13964-13974. [PMID: 36000687 DOI: 10.1021/acs.est.2c02920] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Directly integrating anammox into sewage treatment is attractive, but anammox bacteria (AnAOB) enrichment is complex due to vicious competition from heterotrophic bacteria (HB). A novel strategy of optimal organics management using a preanaerobic stage and subsequent limited-oxygen conditions (0.32 ± 0.15 mg-O2/L) is applied, and a hybrid autotrophic-heterotrophic denitrification process is developed to treat sewage-like wastewater with a COD/N ratio of 3.1 for 420 days. The stable process was achieved, and a high total nitrogen removal rate of 0.53 kg-N/(m3·d) was obtained compared to conventional nitrification/denitrification. The 16S rRNA high-throughput sequencing analysis suggested that the relative abundance of the nonendogenous HB (Denitratisoma and Thauera) was drastically reduced (P ≤ 0.001), whereas the endogenous denitrifying HB (Candidatus (Ca.) Competibacter) was significantly enriched in the anammox granules (9.98%, P ≤ 0.001). Moreover, Ca. Competibacter as an inner core and Nitrospira and Ca. Brocadia as an outside coating of the anammox granules indicated the cooperation of AnAOB with HB as revealed by laser-scanning confocal microscopy and qPCR. In situ tests further confirmed nitrite from two pathways (partial nitritation and endogenous partial denitritation) that favored AnAOB enrichment. Optimal organics management can mitigate the competition of HB with AnAOB by redirecting the metabolic pathways and microbial community, which is critical to directly integrating anammox into sewage treatment.
Collapse
Affiliation(s)
- Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuai Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wanyi Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
103
|
Jiang L, Li J, Wang H, Ge Z, Zhang L, Peng Y. Segregation of effect between granules and flocs in PN/A system treating acrylic fiber wastewater: Performance and mechanism. CHEMOSPHERE 2022; 304:135344. [PMID: 35709850 DOI: 10.1016/j.chemosphere.2022.135344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen removal of petrochemical wastewater through partial nitritation/anammox (PN/A) is appealing, but its feasibility and stability under toxic inhibition remain unclear. This study started a PN/A granular sludge system in a membrane bioreactor and fed it with diluted acrylic fiber wastewater. During long-term operation, the nitritation and anammox performance remained stable at a 30% volume ratio, and declined with increasing volume ratio, resulting in deteriorated nitrogen removal. Meanwhile, the short-term inhibition batch tests further showed that ammonia oxidation bacteria (AOB) in the flocs were suppressed while anammox bacteria (AnAOB) in the granules were not affected. Further analysis indicated suppression of AnAOB over the long-term operation, which was mainly caused by the disintegration of granules as demonstrated by sludge morphology. This selective inhibition is associated with variational sludge morphology, and the distribution of functional bacteria plays an important role in the feasibility and stability of PN/A treating acrylic fiber wastewater. As above, this study demonstrated the feasibility of PN/A for acrylic fiber wastewater treatment, but wastewater dilution or pre-treatment is still required for efficient nitrogen removal.
Collapse
Affiliation(s)
- Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Zheng Ge
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
104
|
Wang D, Meng Y, Meng F. Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia. WATER RESEARCH 2022; 224:119062. [PMID: 36116192 DOI: 10.1016/j.watres.2022.119062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Denitrifying bacteria with high abundances in anammox communities play crucial roles in achieving stable anammox-based systems. Despite the relative constant composition of denitrifying bacteria, their functional diversity remains to be explored in anammox communities. Herein, a total of 77 high-quality metagenome-assembled genomes (MAGs) of denitrifying bacteria were recovered from the anammox community in a full-scale swine wastewater treatment plant. Among these microbes, a total of 26 MAGs were affiliated with the seven dominant denitrifying genera that have total abundances higher than 1%. A meta-analysis of these species suggested that external organics reduced the abundances of genus Ignavibacterium and species MAG.305 of UTPRO2 in anammox communities. Comparative genome analysis revealed functional divergence across different denitrifying bacteria, largely owing to their distinct capabilities for carbohydrate (including endogenous and exogenous) utilization and vitamin (e.g., pantothenate and thiamine) biosynthesis. Serval microbes in this system contained fewer genes encoding biotin, pantothenate and methionine biosynthesis compared with their related species from other habitats. In addition, the genes encoding energy production and conversion (73 genes) and inorganic ion transport (53 genes) putatively transferred from other species to denitrifying bacteria, while these denitrifying bacteria (especially genera UTPRO2 and SCN-69-89) likely donated the genes encoding nutrients (e.g., inorganic ion and amino acid) transporter (64 genes) for other members to utilize new metabolites. Collectively, these findings highlighted the functional divergence of these denitrifying bacteria and speculated that the genetic interactions within anammox communities through horizontal gene transfer may be one of the reasons for their functional divergence.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Yabing Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
105
|
Zhang M, Tan Y, Fan Y, Gao J, Liu Y, Lv X, Ge L, Wu J. Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: The combined effects of carbon source and nitrate concentration. BIORESOURCE TECHNOLOGY 2022; 361:127604. [PMID: 35835421 DOI: 10.1016/j.biortech.2022.127604] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of carbon source (HAc, HPr, Glu, Glu + HAc) and nitrate concentration (40, 80 mg/L labeling as R40, R80) on partial denitrification (PD) were discussed at C/N ratio of 2.5 (COD = 100, 200 mg/L). The optimal NO2--N and NTR reached to 67.03 mg/L, 99.14% in HAc-R80 system, and denitrification kinetics revealed the same conclusion, corresponding to higher COD utilization rate (CUR: 58.46 mgCOD/(gVSS·h)), nitrate reduction rate (NaRR: 29.94 mgN/(gVSS·h)) and nitrite accumulation rate (NiAR: 29.68 mgN/(gVSS·h)). The preference order was HAc > HPr > Glu + HAc > Glu in both R40 and R80 systems due to different metabolic pathways, however, the NO2--N accumulation and kinetic parameters of R80 group were dramatically higher than those in R40 for the same carbon source. The R80 group facilitated more concentrated biodiversity (607-808 OTUs) with Terrimonas and norank_f_Saprospiraceae responsible for high NO2--N accumulation in HAc and HPr served systems, while norank_f_norank_o_Saccharimonadales and OLB13 dominated the Glu containing systems.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yufei Tan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Jing Gao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yizhong Liu
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, PR China
| | - Xiaofan Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liying Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
106
|
Tang CC, Wang TY, Zhang XY, Wang R, He ZW, Li Z, Wang XC. Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127755. [PMID: 35944866 DOI: 10.1016/j.biortech.2022.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the roles of cations with low valance states, including Mg2+, K+ and Li+, on microalgal-bacterial symbiosis (MABS) system treating wastewater. Results showed that Mg2+ and K+ improved pollutants removal at dosages of less than 1 mM, and a further increase led to poorer performances. Conversely, Li+ inhibited pollutants removal. Mechanism study indicated Mg2+ and K+ with dosages of 10 mM and Li + inhibited the activities of MABS biomass (especially Chlorella), with bad absorption efficiencies of 20.64 %, 13.65 % and lower than 10 %, leading to more extracellular polymeric substances production. Larger ions' charge density resulted in larger attraction of water molecules, contributing to the decreased distance between microalgae cells and increased biomass aggregation. Both these two impacts led to the order of impact degree on MABS aggregates: Mg2+ > Li+ > K+. The findings can present some new perspectives on assessing effects of cations on MABS system.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin-Yi Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
107
|
Xue Z, Zhang T, Sun Y, Yin T, Cao J, Fang F, Feng Q, Luo J. Integrated moving bed biofilm reactor with partial denitrification-anammox for promoted nitrogen removal: Layered biofilm structure formation and symbiotic functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156339. [PMID: 35636549 DOI: 10.1016/j.scitotenv.2022.156339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Partial denitrification/anaerobic ammonia oxidation (anammox) (PD/A) is currently an advanced nitrogen removal process. This study developed a PD/A system in a moving bed biofilm reactor. Results showed that the nitrogen removal efficiency reached 76.60% with a COD/NO3-N of 2.0, and the contribution of anammox was 88.01%. Further analysis showed that the biocarriers could form layered pH and dissolved oxygen structures to promote the aggregation of different functional bacteria at various depths, thus stabilizing the coupled process. Microbial structure analysis showed that the abundance of Saccharimonadales, responsible for denitrification, increased from 0% to 36.27% between day 0 and day 120, while the abundance of Candidatus Jettenia, responsible for anammox, decreased from 10.41% to 2.20%. The synergistic effect of Saccharimonadales and Candidatus Jettenia enabled stable and efficient removal of nitrogen. This study proposed a novel configuration of the PD/A process and provided a theoretical basis for its promotion and application.
Collapse
Affiliation(s)
- Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yiwen Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tongxin Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing 211599, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
108
|
Zungu PV, Kosgey K, Kumari S, Bux F. Effects of antimicrobials in anammox mediated systems: critical review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1551-1564. [PMID: 36178823 DOI: 10.2166/wst.2022.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Anammox-mediated systems are thought to be cost-effective and efficient technologies for removing nitrogen from wastewater by converting nitrite and ammonium into dinitrogen gas. However, there are inhibitory substances that reduce the effectiveness and efficiency of these processes, preventing their widespread application. Antimicrobial agents are among these substances that have been observed to inhibit anammox-mediated processes. Therefore, this review provides a comprehensive overview of the effects of various antimicrobials on the anammox-based systems with emphasis on the effects in different reactor configurations, sludge types and microbial population of anammox-based systems. In addition, this review also discusses the mechanisms by which nitrifying bacteria are inhibited by the antimicrobials. Gaps in knowledge based on this review as well as future research needs have also been suggested. This review gives a better knowledge of antimicrobial effects on anammox-based systems and provides some guidance on the type of system to use to treat antimicrobial-containing wastewater using anammox-based processes.
Collapse
Affiliation(s)
- Phumza Vuyokazi Zungu
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Kiprotich Kosgey
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa E-mail:
| |
Collapse
|
109
|
He J, Zhang Q, Tan B, Guo N, Peng H, Feng J, Su J, Zhang Y. Understanding the effect of residual aluminum salt coagulant on activated sludge in sequencing batch reactor: Performance response, activity restoration and microbial community evolution. ENVIRONMENTAL RESEARCH 2022; 212:113449. [PMID: 35561832 DOI: 10.1016/j.envres.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effect of residual coagulant after coagulation pretreatment on activated sludge system of wastewater treatment plants (WWTPs), comparative evaluation of lab-scale sequencing batch reactors under different poly-aluminum chloride (PAC) concentrations (20 and 55 mg/L), presenting the performance differences of reactors. Results showed that the PAC concentration of 20 mg/L slightly enhanced the average removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN), up to 93.43% and 72.52%. Whereas, an inhibition effect was exerted at the PAC concentration of 55 mg/L, the average removal efficiencies decreased to 88.56% and 57.80% respectively. Similarly, the residual aluminum salts showed a concentration effect of low promotion and high inhibition on sludge activity index. The content of specific oxygen utilization rate (SOUR) and dehydrogenase (DHA) sharply decreased by 30.17% and 53.56% under the high PAC concentration of 55 mg/L. Activity recovery phase showed that the suppression of aluminum salt coagulant on biological system was reversible. High-throughput sequencing presented that the relative abundance of microbes showed obvious variations at different PAC concentrations, and certain bacteria in Chloroflexi and Bacteroidota exhibited better adaptability to the high PAC concentration environment. Nevertheless, the antagonism action between denitrifying genera and other genera as well as the downregulation of functional enzymes regarding nitrogen metabolism gave rise to the deterioration of denitrification under the high PAC concentration of 55 mg/L. This study revealed the influence mechanism of residual aluminum salt coagulant on activated sludge system, providing strategies for efficient decontamination and long-term stable operation of biological system in wastewater treatment plant under the condition of adding PAC.
Collapse
Affiliation(s)
- Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Bin Tan
- Wuhan Branch, Chengdu JiZhun FangZhong Architectural Design, Wuhan, 40061, PR China
| | - Nuowei Guo
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
110
|
Zhang SZ, Chen S, Jiang H. A back propagation neural network model for accurately predicting the removal efficiency of ammonia nitrogen in wastewater treatment plants using different biological processes. WATER RESEARCH 2022; 222:118908. [PMID: 35917670 DOI: 10.1016/j.watres.2022.118908] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Accurately predicting the water quality of treated water from a water treatment plant (WWTP) based on the obtained operating database is of great significance. However, it is difficult for common mechanistic models to work well. In this study, a back propagation artificial neural network (BPANN) model with high accuracy was developed to predict the denitrification efficiency based on a 1-year operating database. Standardized principal component analysis (PCA) methods were used to address the data, and the PCA processed data exhibited the best accuracy. In three WWTPs adopting the anaerobic/anoxic/oxic (A2O) process, the ammonia nitrogen removal efficiency of WWTPs was successfully predicted by using five variables: inlet flow rate, pH value, original ammonia nitrogen concentration, Chemical oxygen demand (COD) concentration, and total phosphorus concentration. Importantly, the obtained BPANN model can be effectively used for other widely used treatment processes, such as oxidation ditch (OD), sequencing batch reactor activated sludge process (SBR), membrane bioreactor (MBR), and cyclic activated sludge technology (CAST), by simply optimizing the training data ratios between 50/50 and 90/10. This is the first trial to set up a universal model for predicting the denitrification efficiency of WWTPs adopting common biological processes. The model could be used to choose the optimum treatment process in the new WWTP design or take action in advance to avoid the risk of excessive emissions when the already built WWTPs are subjected to sudden shocks.
Collapse
Affiliation(s)
- Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
111
|
Luan YN, Yin Y, An Y, Zhang F, Wang X, Zhao F, Xiao Y, Liu C. Investigation of an intermittently-aerated moving bed biofilm reactor in rural wastewater treatment under low dissolved oxygen and C/N condition. BIORESOURCE TECHNOLOGY 2022; 358:127405. [PMID: 35660455 DOI: 10.1016/j.biortech.2022.127405] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
An intermittently-aerated moving bed biofilm reactor (MBBR) was proposed for nitrogen and carbon removal from low C/N synthetic rural wastewater. In purposes of low energy consumption and costs, the intermittent aeration modes were changed and the dissolved oxygen was reduced gradually during the operation. The results showed that effluent concentrations of ammonia nitrogen and chemical oxygen demand were lower than 15 and 50 mg/L, respectively, even under microaerobic condition (0.1-1.0 mg/L). Meanwhile, the simultaneous nitrification-denitrification was achieved by intermittent aeration. The activity of functional bacteria was still high and the proportion of autotrophic biomass increased significantly under intermittent micro-aeration mode, which improved the nitrification performance. Aerobic denitrifier Hydrogenophaga, anoxic denitrifier Thiothrix, and heterotrophic nitrifier such as Rhodobacter were enriched in the intermittently micro-aerated MBBR, which will provide an applicable solution for rural wastewater treatment under low C/N and costs.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yuning An
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Fangchao Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China.
| |
Collapse
|
112
|
Deng L, Peng Y, Wu C, Gao R, Li W, Kao C, Li J. Mutual boost of granulation and enrichment of anammox bacteria in an anaerobic/oxic/anoxic system as the temperature decreases when treating municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 357:127336. [PMID: 35618188 DOI: 10.1016/j.biortech.2022.127336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is an important factor affecting the municipal wastewater treatment systems. The aim of this study was tracking the variations in the abundance of anammox bacteria (AnAOB) and the sludge form as the temperature decreased. Mutual boost of granulation and enrichment of AnAOB was achieved even though the temperature dropped from 20.4 °C to 12.9 °C. The average particle size of the sludge increased from 128.5 μm to 245.6 μm. With low dissolved oxygen (DO) aeration (0.2-0.5 mg/L) and short oxic hydraulic retention time (HRT) (5 h), nitritation in the anaerobic/oxic/anoxic (AOA) system was stable enough to provide NO2- for AnAOB. Ca. Brocadia, a type of typical AnAOB, was enriched from 0.03% to 0.24% in the suspended sludge and reached 16.09% in the granular sludge. Overall, this study presents the prospects of anammox and granule technologies when treating municipal wastewater at a low temperature.
Collapse
Affiliation(s)
- Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
113
|
Lu W, Zhang X, Zhang Y, Wang Q, Wei Y, Ma B. Synergistic simultaneous endogenous partial denitrification/anammox (EPDA) and denitrifying dephosphatation for advanced nitrogen and phosphorus removal in a complete biofilm system. BIORESOURCE TECHNOLOGY 2022; 358:127378. [PMID: 35644451 DOI: 10.1016/j.biortech.2022.127378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To achieve simultaneous biological nitrogen and phosphorus removal from municipal wastewater, the endogenous partial denitrification/anammox (EPDA) was combined with denitrifying dephosphatation in a complete biofilm reactor. Advanced nitrogen and phosphorus removal were achieved with effluent total nitrogen (TN) and PO43--P concentrations of 7.77 ± 0.33 mg/L and 0.35 ± 0.10 mg/L, respectively. Anammox took a major role in the system, accounting for 76 ± 7% of nitrogen removal. 16S rRNA high-throughput sequencing results showed that the anammox bacteria co-existed with the denitrifying glycogen accumulating organisms (DGAOs) and the denitrifying phosphorus accumulating organisms (DPAOs). Anammox bacteria were mainly distributed in the inner layer, while DGAOs and DPAOs existed in the outer layer of EPDA biofilms. Furthermore, based on the EPDA biofilm system, a promising advanced nitrogen and phosphorus removal process was suggested to achieve lower requirements for energy and reagent consumption.
Collapse
Affiliation(s)
- Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Xiangyu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
114
|
Shi J, Gao Y, Liu D, Shen Z, Fan J, Yu Y, Bao M, Li P, Yao R. Preparing porous Cu/Pd electrode on nickel foam using hydrogen bubbles dynamic template for high-efficiency and high-stability removal of nitrate from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57629-57643. [PMID: 35355186 DOI: 10.1007/s11356-022-19942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical reduction is a promising technology to remove nitrate from water. The metallic composition and geometry of electrodes usually dominate the nitrate removal property. Based on nickel foam (NF), we prepared Cu/Pd bimetallic electrode using hydrogen bubbles dynamic template according to a two-step electrodeposition method (Pd after Cu). The micromorphology, crystal structure, and metallic composition were analyzed by using the field emission scanning electron microscope with energy dispersive spectroscopy (FESEM-EDS), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) instruments, respectively. 4.4 mg of Cu and 1.4 mg of Pd were detected on the prepared Cu/Pd electrode. The micromorphology of prepared Cu/Pd electrode showed a grape-bunch look with porous structure of two stage sizes (100-500 nm and 200-300 μm). 98% of the initial NO3--N (100 mg/L) was removed under the potential of - 1.6 V vs. Ag/AgCl saturated KCl after 24 h of reaction when using 0.05 mol/L of Na2SO4 or NaCl as electrolyte. But the concentration of produced NH4+-N was higher than 80 mg/L when using Na2SO4 as electrolyte, which was close to 0 mg/L when using NaCl as electrolyte. The cyclic voltammetry curves of 1000 cycles and the long-term continuous flow test of about 200 h suggested that the prepared Cu/Pd electrode showed high stability for nitrate removal from water.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Ya Gao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Daoru Liu
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhanhui Shen
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, People's Republic of China.
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Yating Yu
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Meihui Bao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Panpan Li
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| | - Rui Yao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, NO. 64 Jianshe Road, Xinxiang, 453007, People's Republic of China
| |
Collapse
|
115
|
Dou Q, Zhang L, Lan S, Hao S, Guo W, Sun Q, Wang Y, Peng Y, Wang X, Yang J. Metagenomics illuminated the mechanism of enhanced nitrogen removal and vivianite recovery induced by zero-valent iron in partial-denitrification/anammox process. BIORESOURCE TECHNOLOGY 2022; 356:127317. [PMID: 35595225 DOI: 10.1016/j.biortech.2022.127317] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel strategy of zero-valent iron (ZVI) combined with acetic acid was proposed to optimize partial-denitrification/anammox (PD/A) process, and enhanced nitrogen removal mechanism was elucidated through metagenomics. Results showed that the optimal nitrogen and phosphorus removal were as high as 99.50% and 98.37%, respectively, with vivianite being precipitated as the main byproduct. The occurrence of Feammox was a crucial link for enhanced ammonia removal and vivianite recovery. Metagenomic analysis further certified that long-term acclimation of optimization strategy triggered DNRA-based nitrate reducing genes (narY/Z and nrfA) assigned to Candidatus Brocadia, which allow direct uptake of nitrate by the anammox. Additionally, ZVI might act as a new electron donor to decrease organics dependence of PD by reducing the abundance of genes for electron production involved in carbon metabolism. However, FA addition enhanced the relative abundances of genes involved in anammox including nitrogen reduction and oxidation, thereby accelerating nitrogen removal.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingxuan Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yueping Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd. Shandong, 274200, China
| |
Collapse
|
116
|
Cao S, Du R, Zhou Y. Integrated thermal hydrolysis pretreated anaerobic digestion centrate and municipal wastewater treatment via partial nitritation/anammox process: A promising approach to alleviate inhibitory effects and enhance nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 356:127310. [PMID: 35569714 DOI: 10.1016/j.biortech.2022.127310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Two-stage Partial nitritation/Anammox (PN/A) was firstly performed for recalcitrant organics (RO)-rich thermal hydrolysis pretreated anaerobic digestion (THP-AD) centrate treatment with municipal wastewater (MW) as co-substrate. Results indicated the inhibitory effects of RO was alleviated and high nitrate issue in PN/A effluent was addressed by cotreatment strategy. Stable PN with nitrite accumulation ratio of 95% and N removal efficiency of 97.1% were well maintained at MW of 80%. Nevertheless, nitrate accumulation and anammox activity loss were observed with lowering MW proportion owing to the weakened denitrification activity and aggravated inhibitory effect. Microbial analysis revealed Nitrosomonas was the major ammonium oxidizing bacteria and the ideal PN performance was due to the effective out-selection of nitrite oxidizing bacteria. Candidatus Kuenenia was identified as the primary bacteria for nitrogen removal (82.7%), and the controlled abundance of heterotrophic denitrifiers in anammox system ensured the enhanced nitrogen removal regardless of high COD loading from THP-AD centrate.
Collapse
Affiliation(s)
- Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
117
|
Du R, Cao S, Jin R, Li X, Fan J, Peng Y. Beyond an Applicable Rate in Low-Strength Wastewater Treatment by Anammox: Motivated Labor at an Extremely Short Hydraulic Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8650-8662. [PMID: 35537060 DOI: 10.1021/acs.est.1c05123] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of anammox technology in low-strength wastewater treatment is still challenging due to unstable nitrite (NO2--N) generation. Partial denitrification (PD) of nitrate (NO3--N) reduction ending with NO2--N provides a promising solution. However, little is known about the feasibility of accelerating nitrogen removal toward the practical application of anammox combined with heterotrophic denitrification. In this work, an ultrafast, highly stable, and impressive nitrogen removal performance was demonstrated in the PD coupling with an anammox (PD/A) system. With a low-strength influent [50 mg/L each of ammonia (NH4+-N) and NO3--N] at a low chemical oxygen demand/NO3--N ratio of 2.2, the hydraulic retention time could be shortened from 16.0 to 1.0 h. Remarkable nitrogen removal rates of 1.28 kg N/(m3 d) and excellent total nitrogen removal efficiency of 94.1% were achieved, far exceeding the applicable capacity for mainstream treatment. Stimulated enzymatic reaction activity of anammox was obtained due to the fast NO2--N jump followed by a famine condition with limited organic carbon utilization. This high-rate PD/A system exhibited efficient renewal of bacteria with a short sludge retention time. The 16S rRNA sequencing unraveled the rapid growth of the genus Thauera, possibly responsible for the incomplete reduction of NO3--N to NO2--N and a decreasing abundance of anammox bacteria. This provides new insights into the practical application of the PD/A process in the energy-efficient treatment of low-strength wastewater with less land occupancy and desirable effluent quality.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rencun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
118
|
Zhang M, Wan J, Fan Y, Yong D, Liu Y, Ji J, Wu Q, Sun H, Wu J. Bioaugmentation for low C/N ratio wastewater treatment by combining endogenous partial denitrification (EPD) and denitrifying phosphorous removal (DPR) in the continuous A 2/O - MBBR system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114920. [PMID: 35358845 DOI: 10.1016/j.jenvman.2022.114920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Endogenous partial denitrification (EPD) and denitrifying phosphorous removal (DPR) were combined in a novel A2/O - MBBR (Anaerobic Anoxic Oxic - Moving Bed Biofilm Reactor) system for low carbon/nitrogen (C/N) ratio wastewater treatment. The DPR performance was compared and the nutrient metabolism was elucidated based on the optimization of hydraulic retention time (HRT, 4-12 h) and nitrate recycling (R, 200%-600%). In the continuous-flow, the nitrate (NO3-) denitrification accompanied by nitrite (NO2-, via EPD) accumulation with the nitrate-to-nitrite transformation ratio (NTR) of 35.87%-43.31% in the anoxic zones. At HRT of 12 h with R of 500%, batch test initially revealed the DPR mechanism using both NO3- and NO2- as electron acceptor, where denitrifying phosphorus accumulation organisms (DPAOs) and denitrifying glycogen accumulation organisms (DGAOs) were the main contributors for EPD with incomplete denitrification (NO3- → NO2-). Furthermore, stoichiometry-based functional bacteria analysis displayed that higher bioactivity of DPAOs (NO2-→N2, 57.30%; NO3-→N2, 35.85%) over DGAOs (NO3-→N2, 6.85%) facilitated the anoxic NO3- reduction. Microbial community analysis suggested that Cluster I of Defluviicoccus-GAO group (∼4%) was responsible for stable NO2- accumulation performance via EPD, while increased Accumulibacter-PAO group (by ∼15%) contributed to the advanced nutrient removal. Based on the achievement of NO2- accumulation, the application feasibility of integrated EPD - DPR - Anammox for deep-level nutrient removal was discussed.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China.
| | - Jiajie Wan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou, 225127, PR China
| | - Daming Yong
- Yangzhou Polytechnic Institute, Yangzhou, 225127, PR China
| | - Yizhong Liu
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou, 225002, PR China
| | - Junjie Ji
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Qichao Wu
- Yangzhou Polytechnic Institute, Yangzhou, 225127, PR China
| | - Hongwei Sun
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou, 225002, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| |
Collapse
|
119
|
Cao S, Du R, Yan W, Zhou Y. Mitigation of inhibitory effect of THP-AD centrate on partial nitritation and anammox: Insights into ozone pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128599. [PMID: 35278943 DOI: 10.1016/j.jhazmat.2022.128599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion centrate produced from thermal hydrolysis pretreated sludge (THP-AD centrate) has serious inhibitory effect on ammonium oxidizing bacteria (AOB) and anammox bacteria. This imposes huge challenge to employ partial nitritation/anammox (PN/A) process to treat THP-AD centrate. This study, for the first time, presented an effective strategy, ozone pretreatment, to alleviate such inhibitory effect. The activities of AOB and anammox bacteria increased with increasing ozone dosage, which were likely related to the transformation of organic compounds including humic acid-like and fulvic acid-like substances as well as high molecular weight (HMW) protein. Long-term operation of PN/A system further demonstrated the improved performance in term of nitrogen removal, organics degradation as well as sludge settleability and effluent solids. Nitrogen removal rate (NRR) of 0.64 Kg N/m3/d was achieved (1.38 g O3/ g COD), which was 42.2% higher compared to treating untreated THP-AD centrate. Effluent nitrate, the by-product of PN/A process, was reduced by 39.7% despite of its release in ozonation. This was due to the enhanced denitrification activity, humic acid-like and fulvic acid-like substances as well as HMW protein were significantly reduced. Overall, this study provides a promising method to improve PN/A performance and final effluent quality when treating organic-rich THP-AD centrate.
Collapse
Affiliation(s)
- Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
120
|
Li X, Peng Y, Zhang J, Du R. Multiple roles of complex organics in polishing THP-AD filtrate with double-line anammox: Inhibitory relief and bacterial selection. WATER RESEARCH 2022; 216:118373. [PMID: 35366495 DOI: 10.1016/j.watres.2022.118373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Anammox process has been widely regarded as an energy-efficient method for sludge digestion filtrate treatment. However, the complex high-strength organics in the filtrate, especially of Anaerobic Digestion after Thermal Hydrolysis Pretreatment (THP-AD), brings serious threat to anammox bacteria, and the high nitrate residue in effluent remains another significant barrier in operation. In this study, a novel double-line anammox-mediated system, integrating the Partial Nitrification/Anammox (PNA) with Partial Denitrification/Anammox (PDA) processes in separately sequencing batch reactors (SBRs), was developed to polish the THP-AD filtrate. When the real THP-AD filtrate (1946.5 mg NH4+-N/L, 2076.0 mg COD/L) was fed to the front PNA reactor (SBRPNA) with 5-fold dilution, effluent total nitrogen (TN) remained at 93.0 mg/L. Notably, the final effluent TN was effectively polished to as low as 8.8 mg/L by the following PDA reactor (SBRPDA), which was fed with the SBRPNA effluent and real domestic wastewater (71.0 mg NH4+-N/L, 209.1 mg COD/L). More severe inhibition on anammox activity was observed in SBRPNA rather than SBRPDA by refractory organics in filtrate. Fortunately, it could be alleviated with the enhanced degradability of particulate organics and aromatic protein-like compounds, attributed to the enrichment of class Anaerolineae in both SBRPNA and SBRPDA. This further stimulated the electron donor supply for PDA process with much lower external carbon source demand. 16S rRNA sequencing analysis revealed that Candidatus Brocadia as dominant anammox bacteria were efficiently enriched in both SBRPNA and SBRPDA, indicating its unexpected toughness and adaptability to the complex organic compounds in THP-AD filtrate. Overall, this study suggested that the novel double-line anammox would be a promising alternative for cost-efficient nitrogen removal from high-strength wastewater containing complex organic matter.
Collapse
Affiliation(s)
- Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
121
|
Xiao R, Zhu W, Zheng Y, Xu S, Lu H. Active assimilators of soluble microbial products produced by wastewater anammox bacteria and their roles revealed by DNA-SIP coupled to metagenomics. ENVIRONMENT INTERNATIONAL 2022; 164:107265. [PMID: 35526296 DOI: 10.1016/j.envint.2022.107265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Heterotrophic bacteria grow on influent organics or soluble microbial products (SMP) in wastewater anammox processes, playing key roles in facilitating microbial aggregation and reducing excess nitrate. The overgrowth of heterotrophs represents one of the major causes of anammox process failure, while the metabolic functions of coexisting heterotrophs and their roles in anammox process remain vague. This study aimed at revealing metabolic interactions between AnAOB and active SMP assimilators by integrating 13C DNA-stable isotope probing, metabolomic and metagenomic approaches. Glycine, aspartate, and glutamate with low biosynthetic energy cost were the major SMP components produced by AnAOB (net yield: 44.8, 10.4, 8.1 mg·g NH4+-N-1). Glycine was likely synthesized by AnAOB via the reductive glycine pathway which is oxygen-tolerant, supporting heterotrophic growth. Fermentative Chloroflexi bacterium OLB13, denitrifying Gemmatimonadaceae and Burkholderiaceae bacterium JOSHI-001 were active SMP assimilators, which were prevalent in globally distributed wastewater anammox reactors as core taxa. They likely formed a mutualistic relationship with auxotrophic Ca. Kuenenia by providing necessities such as methionine, folate, 4'-phosphopantetheine, and molybdopterin cofactor, and receiving vitamin B12 for methionine synthesis. For the first time, the identify and metabolic features of SMP assimilators in wastewater anammox communities were revealed. Supplying necessities secreted by heterotrophs could be helpful to the endeavor of AnAOB enrichment. Practically, maintaining active but not overgrown SMP assimilators is critical to efficient and stable operation of wastewater anammox processes.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wanlu Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yuanzhu Zheng
- Wenzhou Institute of Eco-environmental Sciences, Wenzhou, China
| | - Shaoyi Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China.
| |
Collapse
|
122
|
Fan J, Du R, Li C, Liu Q, Peng Y. Inducing high nitrite accumulation via modulating nitrate reduction power and carbon flux with Thauera spp. selection. BIORESOURCE TECHNOLOGY 2022; 354:127188. [PMID: 35452829 DOI: 10.1016/j.biortech.2022.127188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Partial-denitrification (PD, NO3--N → NO2--N) is emerging as a promising approach for application of anaerobic ammonium oxidation (anammox) process. In this study, stable PD with high nitrite (NO2--N) accumulation was achieved by modulating nitrate (NO3--N) reduction activity and carbon metabolism. With the influent NO3--N increasing from 30 to 200 mg/L, specific NO3--N reduction rates (rno3) were significantly improved, corresponding to the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 80.0% within just 70 days. The required COD/NO3--N decreased from 4.5 to 2.0 and the carbon flux was more shared in NO3--N reduction to NO2--N. Notably, Thauera spp. as core denitrifying bacteria was highly enriched with the relative abundance of 70.5%∼82.1% despite different inoculations. This study provided a new insight into inducing high NO2--N accumulation and promoting practical application of anammox technology.
Collapse
Affiliation(s)
- Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
123
|
Schoepflin S, Macmanus J, Long C, McCullough K, Klaus S, De Clippeleir H, Wilson C, Parsons M, Chandran K, Bott C. Startup strategies for mainstream anammox polishing in moving bed biofilm reactors. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10723. [PMID: 35642502 DOI: 10.1002/wer.10723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated startup strategies for mainstream polishing anammox moving bed biofilm reactors (MBBRs) without anammox bacterial (AMX) biomass inoculation. Two types of startups were tested: anammox only (no external carbon addition) and partial denitrification/anammox (PdNA) with glycerol addition. Reactors were started with either virgin carriers or carriers with a preliminary biofilm from a mainstream aerobic integrated fixed-film activated sludge (IFAS) process. Three pilot-scale startups were completed under the following conditions: anammox-only with preliminary biofilm carriers, PdNA with preliminary biofilm carriers, and PdNA with virgin carriers. AMX presence was confirmed via quantitative polymerase chain reaction (qPCR) after 57, 57, and 77 days, respectively. Prior to AMX detection, average influent concentrations of ammonia and nitrite ranged from 1.7-2.7 mg/L and 0.98-1.8 mg/L, respectively. This study demonstrated that AMX can be grown on carriers without AMX seeding under mainstream conditions (temperature 17-29°C, low ammonia and nitrite), regardless of whether nitrite came from upstream or partial denitrification within the reactor. This study also showed that using preliminary biofilm carriers can decrease startup time by approximately 1 month. These results address critical questions for moving mainstream anammox processes to full-scale implementation, and suggest that PdNA MBBRs are feasible and sustainable for full-scale ammonia, nitrate, and nitrite polishing to meet stringent total nitrogen requirements. PRACTITIONER POINTS: This research will help utilities develop methods for starting up mainstream anammox MBBRs without the barrier of anammox biomass seeding. Preliminary biofilm carriers accelerated startup time in a PdNA MBBR, but a virgin carrier reactor started up in a similar timeframe, contrary to expectations. Also, contrary to expectations, high concentrations of ammonia and nitrite are not necessary for startup of an anammox or PdNA MBBR.
Collapse
Affiliation(s)
- Sarah Schoepflin
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, Virginia, USA
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Justin Macmanus
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, Virginia, USA
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Kester McCullough
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
- Civil and Environmental Engineering Department, Cornell University, Ithaca, New York, USA
| | - Stephanie Klaus
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | | | - Chris Wilson
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Mike Parsons
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| |
Collapse
|
124
|
Synergistic Inorganic Carbon and Denitrification Genes Contributed to Nitrite Accumulation in a Hydrogen-Based Membrane Biofilm Reactor. Bioengineering (Basel) 2022; 9:bioengineering9050222. [PMID: 35621500 PMCID: PMC9137978 DOI: 10.3390/bioengineering9050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Partial denitrification, the termination of NO3−-N reduction at nitrite (NO2−-N), has received growing interest for treating wastewaters with high ammonium concentrations, because it can be coupled to anammox for total-nitrogen removal. NO2− accumulation in the hydrogen (H2)-based membrane biofilm reactor (MBfR) has rarely been studied, and the mechanisms behind its accumulation have not been defined. This study aimed at achieving the partial denitrification with H2-based autotrophic reducing bacteria in a MBfR. Results showed that by increasing the NO3− loading, increasing the pH, and decreasing the inorganic-carbon concentration, a nitrite transformation rate higher than 68% was achieved. Community analysis indicated that Thauera and Azoarcus became the dominant genera when partial denitrification was occurring. Functional genes abundances proved that partial denitrification to accumulate NO2− was correlated to increases of gene for the form I RuBisCo enzyme (cbbL). This study confirmed the feasibility of autotrophic partial denitrification formed in the MBfR, and revealed the inorganic carbon mechanism in MBfR denitrification.
Collapse
|
125
|
Technologies for Biological and Bioelectrochemical Removal of Inorganic Nitrogen from Wastewater: A Review. NITROGEN 2022. [DOI: 10.3390/nitrogen3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Water contamination due to various nitrogenous pollutants generated from wastewater treatment plants is a crucial and ubiquitous environmental problem now-a-days. Nitrogen contaminated water has manifold detrimental effects on human health as well as aquatic life. Consequently, various biological treatment processes are employed to transform the undesirable forms of nitrogen in wastewater to safer ones for subsequent discharge. In this review, an overview of various conventional biological treatment processes (viz. nitrification, denitrification, and anammox) have been presented along with recent novel bioelectrochemical methods (viz. microbial fuel cells and microbial electrolysis cells). Additionally, nitrogen is an indispensable nutrient necessary to produce artificial fertilizers by fixing dinitrogen gas from the atmosphere. Thus, this study also explored the potential capability of various nitrogen recovery processes from wastewater (like microalgae, cyanobacteria, struvite precipitation, stripping, and zeolites) that are used in industries. Further, the trade-offs, challenges posed by these processes have been dwelt on along with other biological processes like CANON, SHARON, OLAND, and others.
Collapse
|
126
|
Kirim G, McCullough K, Bressani-Ribeiro T, Domingo-Félez C, Duan H, Al-Omari A, De Clippeleir H, Jimenez J, Klaus S, Ladipo-Obasa M, Mehrani MJ, Regmi P, Torfs E, Volcke EIP, Vanrolleghem PA. Mainstream short-cut N removal modelling: current status and perspectives. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2539-2564. [PMID: 35576252 DOI: 10.2166/wst.2022.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work gives an overview of the state-of-the-art in modelling of short-cut processes for nitrogen removal in mainstream wastewater treatment and presents future perspectives for directing research efforts in line with the needs of practice. The modelling status for deammonification (i.e., anammox-based) and nitrite-shunt processes is presented with its challenges and limitations. The importance of mathematical models for considering N2O emissions in the design and operation of short-cut nitrogen removal processes is considered as well. Modelling goals and potential benefits are presented and the needs for new and more advanced approaches are identified. Overall, this contribution presents how existing and future mathematical models can accelerate successful full-scale mainstream short-cut nitrogen removal applications.
Collapse
Affiliation(s)
- Gamze Kirim
- modelEAU, Université Laval, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: ; CentrEau, Quebec Water Research Centre, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada
| | - Kester McCullough
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Thiago Bressani-Ribeiro
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Carlos Domingo-Félez
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ahmed Al-Omari
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Haydee De Clippeleir
- DC Water and Sewer Authority, 5000 Overlook Ave., SW., Washington, DC 20032, USA
| | - Jose Jimenez
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Stephanie Klaus
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Mojolaoluwa Ladipo-Obasa
- DC Water and Sewer Authority, 5000 Overlook Ave., SW., Washington, DC 20032, USA; Department of Civil & Environmental Engineering, The George Washington University, 800 22nd Street NW, Washington, DC 20037, USA
| | - Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, Gdansk 80-233, Poland; Department of Urban Water and Waste Management, University of Duisburg-Essen, Universit¨atsstraße 15, 45141, Essen, Germany
| | - Pusker Regmi
- Brown and Caldwell, 1725 Duke St. Suite 250, Alexandria, VA 22314, USA
| | - Elena Torfs
- Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9000, Belgium; BIOMATH, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Eveline I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Gent 9000, Belgium; Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, Gent 9000, Belgium
| | - Peter A Vanrolleghem
- modelEAU, Université Laval, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: ; CentrEau, Quebec Water Research Centre, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada
| |
Collapse
|
127
|
Su B, Liu Q, Liang H, Zhou X, Zhang Y, Liu G, Qiao Z. Simultaneous partial nitrification, anammox, and denitrification in an upflow microaerobic membrane bioreactor treating middle concentration of ammonia nitrogen wastewater with low COD/TN ratio. CHEMOSPHERE 2022; 295:133832. [PMID: 35124081 DOI: 10.1016/j.chemosphere.2022.133832] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The rapid start-up and operating characteristics of simultaneous partial nitrification, anammox, and denitrification (SNAD) process was investigated using synthetic wastewater with a low C/N ratio (COD: NH4+-N = 200 mg/L: 200 mg/L) in a novel upflow microaerobic membrane bioreactor (UMMBR). The average removal efficiencies of COD, NH4+-N, and TN in the stable phase were 89%, 96%, and 86%, respectively. Carmine granule, which coexisted with sludge floc, appeared on day 83. The high sludge concentration (12.9-17.2 g/L) and the upflow mode of the UMMBR could establish some anaerobicregions for anammox process. The anammox bacteria and short-cut denitrification (NO2-→N2) bacteria with activities of 4.46 mg NH4+-N/gVSS·h and 2.57 mg NO2--N/gVSS·h contributed TN removal of 39% and 61% on day 129, respectively. High-throughput sequencing analysis revealed that the ammonia-oxidizing archaea (AOA, 49.45% in granule and 17.05% in sludge floc) and ammonia-oxidizing bacterial (AOB, 1.30% in sludge floc) dominated the nitrifying microbial community. Candidatus Jettenia (47.14%) and Denitratisoma (10.92%) mainly existed in granule with positive correlations. Some heterotrophic bacteria (OLB13, SJA-15, 1-20, SBR1031, and SJA-28) in sludge floc benefited system stability and sludge activity and protected Candidatus Jettenia from adverse environments.
Collapse
Affiliation(s)
- Bensheng Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Liang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohua Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology CO., Ltd, Shandong, 250002, China
| |
Collapse
|
128
|
Chen R, Zhou Y. Mainstream nitrogen removal in membrane aerated biofilm reactor at minimal lumen pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151758. [PMID: 34801505 DOI: 10.1016/j.scitotenv.2021.151758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal via anammox is a promising and sustainable solution in mainstream wastewater treatment. To maintain stable anammox process, competitors of anammox bacteria should be suppressed while cooperators need to be favoured. This study demonstrated a synchronous aerobic and anaerobic ammonium removal process in a membrane aerated biofilm reactor (MABR) under minimal lumen pressure. By adjusting the lumen pressure, aerobic and anaerobic ammonium oxidation rate can be synchronized to minimize interference of nitrite oxidizing bacteria (NOB) by limiting NOB's access to both oxygen and nitrite. Long-term performance indicated that PN/A in MABR could be achieved at zero positive aeration pressure. Furthermore, by connecting two MABRs in series, high total nitrogen (TN) removal efficiency of 71.1% ± 5.3% was attained with a TN removal rate of 30.1 ± 3.2 mg-N/L/d. The organic carbon present in the wastewater reduced the nitrate concentration in the effluent while not affecting the overall nitrogen removal efficiency and rate. Real-time qPCR analysis suggested that the abundance of amoA gene was relatively stable while K-strategist Nitrospira 16S rRNA gene did not surge in the long-term operation. High throughput sequencing showed that Candidatus Brocadia and uncultured anaerobic ammonium oxidizing bacteria from Chloroflexi were the most abundant anammox taxa. Denitrifiers, such as Denitratisoma may be responsible to reduce the nitrate in the effluent.
Collapse
Affiliation(s)
- Rongfen Chen
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
129
|
Sun H, Huang K, Zhang X, Ren H, Ye L. Stable isotope probing reveals specific assimilating bacteria of refractory organic compounds in activated sludge. WATER RESEARCH 2022; 212:118105. [PMID: 35074670 DOI: 10.1016/j.watres.2022.118105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge in wastewater treatment bioreactors contains diverse bacteria, while little is known about the community structure of bacteria responsible for degradation of refractory organic compounds (ROCs). In this study, 10 ROCs frequently detected in sewage were investigated, and the potential bacteria degrading these ROCs were analyzed by DNA stable isotope probing and high-throughput sequencing. The results showed that the bacterial communities responsible for degradation of different ROCs were largely different. A total of 84 bacterial genera were found to be involved in degrading at least one of the 10 ROCs, however, only six genera (Acinetobacter, Bacteroides, Bosea, Brevundimonas, Lactobacillus and Pseudomonas) were common to all 10 ROCs. This suggests that different ROCs may have specific assimilating bacteria in the activated sludge. Our results also showed that these ROC-degrading bacteria are difficult to isolate by conventional methods and that most of them have relatively low relative abundance in municipal wastewater treatment bioreactors. Development of new technologies to increase the abundance and activity of these bacteria may significantly improve the removal efficiency of ROCs from wastewater.
Collapse
Affiliation(s)
- Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
130
|
Ladipo-Obasa M, Forney N, Riffat R, Bott C, deBarbadillo C, De Clippeleir H. Partial denitrification-anammox (PdNA) application in mainstream IFAS configuration using raw fermentate as carbon source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10711. [PMID: 35388559 DOI: 10.1002/wer.10711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This research examined the feasibility of raw fermentate for mainstream partial denitrification-anammox (PdNA) in a pre-anoxic integrated fixed-film activated sludge (IFAS) process. Fermentate quality sampled from a full-scale facility was highly dynamic, with 360-940 mg VFA-COD/L and VFA/soluble COD ratios ranging from 24% to 48%. This study showed that PdNA selection could be achieved even when using low quality fermentate. Nitrate residual was identified as the main factor driving the PdN efficiency, while management of nitrate conversion rates was required to maximize overall PdNA rates. AnAOB limitation was never observed in the IFAS system. Overall, this study showed PdN efficiencies up to 38% and PdNA rates up to 1.2 ± 0.7 g TIN/m2 /d with further potential for improvements. As a result of both PdNA and full denitrification, this concept showed the potential to save 48-89% methanol and decrease the carbon footprint of water resource recovery facilities (WRRF) by 9-15%. PRACTITIONER POINTS: Application of PdNA with variable quality fermentate is feasible when the nitrate residual concentration is increased to enhance PdN selection. To maximize nitrogen removed through PdNA, nitrate conversion rates need enhancement through optimization of upstream aeration and PdN control setpoints. The IFAS PdNA process was never anammox limited; success depended on the degree of PdN achieved to make nitrite available. Application of PdNA with fermentate can yield 48-89% savings in methanol or other carbon compared with conventional nitrification and denitrification. Integrating PdNA upstream from polishing aeration and anoxic zones guarantees that stringent limits can be met (<5 mg N/L).
Collapse
Affiliation(s)
- Mojolaoluwa Ladipo-Obasa
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Nicole Forney
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Rumana Riffat
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Christine deBarbadillo
- DC Water and Sewer Authority, Washington, DC, USA
- Black and Veatch, Gaithersburg, Maryland, USA
| | | |
Collapse
|
131
|
Wang H, Guo L, Ren X, Gao M, Jin C, Zhao Y, Ji J, She Z. Enhanced aerobic granular sludge by static magnetic field to treat saline wastewater via simultaneous partial nitrification and denitrification (SPND) process. BIORESOURCE TECHNOLOGY 2022; 350:126891. [PMID: 35217165 DOI: 10.1016/j.biortech.2022.126891] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/12/2023]
Abstract
Saline wastewater poses a threat to biological nitrogen removal. This study investigated whether and how static magnetic field (SMF) can improve the salt-tolerance of aerobic granular sludge (AGS) in two simultaneous partial nitrification and denitrification (SPND) reactors. Results confirmed that the SMF improved the mean size and settleability of granules, stimulated secretion of extracellular polymeric substances with high protein content, in turn enhancing the aerobic granulation. Although high salt stress inhibited functional microorganisms, the SMF maintained better SPND performance with average COD removal, TN removal and nitrite accumulation ratio finally recovering to 100%, 72.9% and 91.1% respectively. High throughput sequencing revealed that functional bacteria evolved from Paracoccus to halotolerant genera Xanthomarina, Thauera, Pseudofulvimonas and Azoarcus with stepwise increasing salinity. The enhanced salt-tolerance may be because the SMF promoted the activity of these halotolerant bacteria. Therefore, this study proposes an economic, effective and environmental biotechnology for saline wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xiaomin Ren
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
132
|
Wang Q, He J. Partnering of anammox and denitrifying bacteria benefits anammox's recovery from starvation and complete nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152696. [PMID: 34974008 DOI: 10.1016/j.scitotenv.2021.152696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The cooperative metabolic activity of anammox and denitrifying bacteria could speed up anammox's recovery and reduce nitrate generated from the anammox reaction. In this study, a laboratory-scale model system containing a defined anammox culture AMX and a simultaneous nitrification and denitrification (SND) bacterium - Thauera sp. strain SND5 was established and investigated. Several lines of evidence revealed that strain SND5 consumed soluble microbial products (SMPs) generated by culture AMX (as high as 1.5 mg/L), stimulating anammox activity after long-term starvation. At low C/N ratios with an optimal C/N of 1, SND5 completely consumed organic carbon first at anoxic condition, storing carbon intracellularly as poly-β-hydroxybutyrate (PHB) (as high as 0.6 mg/L biomass), thereby creating a favorable environment for the growth of anammox bacteria. The anammox reaction and nitrate reduction supported by PHB catabolism could then proceed simultaneously, resulting in enhanced nitrogen removal. Cooperative interactions between anammox and denitrifying bacteria involving SMPs consumption and PHB synthesis may play a significant role in nitrogen cycling at nitrite- and carbon-limited environments.
Collapse
Affiliation(s)
- Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
133
|
Zhao Q, Tang Z, Chen B, Zhu C, Tang H, Meng G. Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu 2O film with predominant (111) orientation. Chem Commun (Camb) 2022; 58:3613-3616. [PMID: 35225303 DOI: 10.1039/d1cc07299d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A (111) predominant cubic Cu2O film terminated with nanopyramids was electrodeposited on copper foam as the cathode for electrocatalytic reduction of nitrate. The nitrate removal efficiency reached 94.3% and the selectivity for nontoxic nitrogen gas was 49.2%, 99% and 64.2% in neutral solution, alkaline solution and spiked actual lake water, respectively.
Collapse
Affiliation(s)
- Qiangsheng Zhao
- Institutes of Physical Science and Information Technology, and School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.,Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Zihui Tang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Bin Chen
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Chuhong Zhu
- Institutes of Physical Science and Information Technology, and School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China
| | - Haibin Tang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Guowen Meng
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China.,University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
134
|
Baideme M, Long C, Chandran K. Enrichment of a denitratating microbial community through kinetic limitation. ENVIRONMENT INTERNATIONAL 2022; 161:107113. [PMID: 35134715 DOI: 10.1016/j.envint.2022.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Denitratation, or the intentionally engineered accumulation of nitrite (NO2-) from selective reduction of nitrate (NO3-), can be combined with downstream anammox to reduce chemical and energy use associated with conventional nitrification and denitrification. This study aimed to enrich a denitratating microbial community capable of significant NO2- accumulation by applying added kinetic limitation to an already stoichiometrically-limited, glycerol-driven denitratation process. Operation at solids residence time, SRT=3.0 d, resulted in optimal denitratation performance and a microbial community dominated by NO3--respirers, noted by one order of magnitude lower total copy numbers of nirS and nirK gene transcripts compared to longer SRTs. Selective NO3- reduction to NO2- was achieved at all SRTs although longer SRTs (less kinetic limitation) supported microbial communities more capable of full denitrification as described by a lower NO2- accumulation ratio (NAR=42±5%) and higher steady-state nitrous oxide (1.5 mg/L N2O-N) accumulation. Shorter SRTs (more kinetic limitation) led to higher observed yields (Y=0.63 mg-COD/mg-COD) with more electrons dedicated for cell synthesis (fs=0.56±0.10), which potentially contributed to the accumulation of NO3-. Enrichment of a denitratating-dominant microbial community by optimizing kinetic limitation operating parameters could support significant NO2- accumulation and reduce chemical and energy use for biological nitrogen removal when combined with downstream anammox.
Collapse
Affiliation(s)
- Matthew Baideme
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA.
| | - Chenghua Long
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, 500 W. 120th St., Columbia University, New York, NY 10027, USA
| |
Collapse
|
135
|
Chen R, Cao S, Zhang L, Zhou Y. NOB suppression strategies in a mainstream membrane aerated biofilm reactor under exceptionally low lumen pressure. CHEMOSPHERE 2022; 290:133386. [PMID: 34952024 DOI: 10.1016/j.chemosphere.2021.133386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Integrating the aeration-efficient membrane aerated biofilm reactor (MABR) with anaerobic ammonium oxidation (anammox) could yield further reduction in energy in wastewater treatment facilities. However, nitrite oxidizing bacteria (NOB) suppression remained challenging due to the absence of intrinsic inhibition factors in mainstream conditions. This study investigated selective NOB suppression strategies in MABR under <5 kPa lumen pressure. Three MABRs were seeded from different seeding sludge, and operated under various ammonium loading rates, aeration pressure, and temporary inhibitory shock conditions. The three reactors were operated for 170-456 days depending on studied parameters. The results showed that higher ammonium loading could create a substrate-oxygen imbalance and quickly contain emergent NOB activity when aeration pressure was not excessive. In addition, lowering of aeration pressure reversed nitrite oxidizing activities without affecting ammonium oxidizing bacteria (AOB). Cultivating partial nitritation biofilm under zero positive aeration pressure slowed down the growth of NOB yet resulted in self-induced anammox activities. With the aid of temporary free ammonia (FA)/free nitrous acid (FNA) treatment, full-nitrifying biofilm could be transformed to stable partial nitritation biofilm. More than 84% nitrite accumulation ratio (NAR) was sustained during stable operation in each reactor together with an ammonium removal rate of more than 100 mg-N/L/d. Microbial analysis revealed that Nitrosomonas was the main AOB taxon in the three reactors while K-strategist Nitrospira showed presence despite low nitrite oxidizing activities. Under zero positive pressure, proliferation of Nitrospira was much slower while Candidatus Brocadia was self-induced. Furthermore, Nitrospira showed downturn after temporary inhibition treatment.
Collapse
Affiliation(s)
- Rongfen Chen
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
136
|
Biological Nitrogen Removal Database: A Manually Curated Data Resource. Microorganisms 2022; 10:microorganisms10020431. [PMID: 35208885 PMCID: PMC8874995 DOI: 10.3390/microorganisms10020431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Biological nitrogen removal (BNR) technologies are the most effective approaches for the remediation of environmental nitrogen pollutants from wastewater treatment plants (WWTPs). Presently, research is going on to elucidate the structure and function of BNR microbial communities and optimizing BNR treatment systems to enhance nitrogen removal efficiency. The literature on BNR microbial communities and experimental datasets is not unified across various repositories, while a uniform resource for the collection, annotation, and structuring of these BNR datasets is still unavailable. Herein, we present the Biological Nitrogen Removal Database (BNRdb), an integrated resource containing various manually curated BNR-related data. At present, BNRdb contains 23,308 microbial strains, 46 gene families, 24 enzymes, 18 reactions, 301 BNR treatment datasets, 860 BNR-associated next-generation sequencing datasets, and 6 common BNR bioreactor systems. BNRdb provides a user-friendly interface enabling interactive data browsing. To our knowledge, BNRdb is the first BNR data resource that systematically integrates BNR data from archaeal, bacterial, and fungal communities. We believe that BNRdb will contribute to a better understanding of BNR process and nitrogen bioremediation research.
Collapse
|
137
|
Li Y, Zhang W, Dai Y, Su X, Xiao Y, Wu D, Sun F, Mei R, Chen J, Lin H. Effective partial denitrification of biological effluent of landfill leachate for Anammox process: Start-up, influencing factors and stable operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150975. [PMID: 34656579 DOI: 10.1016/j.scitotenv.2021.150975] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Partial denitrification combined with Anammox is a promising approach for simultaneous removal of ammonium and nitrate from wastewaters. In this study, the start-up, influencing factors and stable operation of partial denitrification for treating biological effluent from landfill leachate were investigated. High nitrate loads (3.85 kg N m-3 d-1) and short hydraulic retention time (0.66 h) were obtained in the partial denitrification process, yielding a suitable ratio of NO2--N/NH4+-N in the effluent for downstream Anammox process. The study also revealed the importance of carbon sources, COD/NO3--N ratio and salinity in the partial denitrification. Acetate-type carbon source, COD/NO3--N ratio of about 3.0 and salinity lower than 1% favored high-efficient partial denitrification. The endogenous carbon sources from high-rate partial denitrification sludge contributed to low COD consumption in the process. During the partial denitrification, the dominant genus of Thauera was enriched, and shifted to Pseudomonas with the increase of organic removal rates.
Collapse
Affiliation(s)
- Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Wenjia Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yun Dai
- Shenzhen Green Century Environmental Technology Co. Ltd, Shenzhen 518055, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou 515063, China
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
138
|
Zhang X, Ma D, Lv J, Feng Q, Liang Z, Chen H, Feng J. Food waste composting based on patented compost bins: Carbon dioxide and nitrous oxide emissions and the denitrifying community analysis. BIORESOURCE TECHNOLOGY 2022; 323:124524. [PMID: 34974104 DOI: 10.1016/j.biortech.2020.124524] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 05/26/2023]
Abstract
Mature compost and rice bran were used as bulking agents to perform Food Waste Rapid Composting (FWRC) in a patented composting bin. The characteristics of CO2 and N2O emission and the denitrifying community were investigated. The release of CO2 and N2O concentrated in the early composting stage and reduced greatly after 28 h, and the N2O emission peak of the treatment with mature compost was 8.5 times higher than that of rice bran. The high N2O generation resulted from massive denitrifying bacteria and NOx--N in the composting material. The relative abundances of denitrifiers, correspondingly genes of narG and nirK were much higher in the treatment with mature compost, which contributed to the N2O emission. Moreover, the correlation matrices revealed that N2O fluxes correlated well with moisture, pH, temperature, and the abundances of nirK and nosZ genes during FWRC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiahao Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhengwu Liang
- Guangxi Liyuanbao Science and Technology Co., LTD, Nanning 530000, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
139
|
Liao G, Bin L, Tang B, Li P, Qiu B, Huang Z, Huang S, Fu F. Insights into the fouling layer of flat-sheet membrane and its development in an integrated oxidation ditch-membrane bioreactor. BIORESOURCE TECHNOLOGY 2022; 345:126466. [PMID: 34864179 DOI: 10.1016/j.biortech.2021.126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
This work revealed the characteristics of fouling layer on the flat-sheet membranes and its development in an integrated oxidation-ditch membrane bioreactor. During the operation period (130 days), the reactor performed very well in removing pollutants. As the operation proceeded, membrane fouling occurred on the flat-sheet membranes and trans-membrane pressure showed a cyclical variation. The experimental results showed that the process of membrane fouling appeared successively in two different structures: biofilm (BF) and sludge fouling (SF). The substances causing membrane fouling were mainly organic foulants and a small amount of inorganic metal compounds, especially the protein-like and fulvic acid-like substances in loosely bound extracellular polymeric substances (LB-EPS). The analysis of microbial communities revealed that SF and BF had very different microbial properties. Although most membrane foulants could be removed by physical and chemical cleaning methods, the protein-like and fulvic acid-like substances in BF were contribute much to causing irreversible membrane fouling.
Collapse
Affiliation(s)
- Guohao Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bangqiao Qiu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhaole Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
140
|
Jin B, Liu Y, Li X, Hou J, Bai Z, Niu J, Wang L, Zhao J. New insights into denitrification and phosphorus removal with degradation of polycyclic aromatic hydrocarbons in two-sludge system. BIORESOURCE TECHNOLOGY 2022; 346:126610. [PMID: 34954360 DOI: 10.1016/j.biortech.2021.126610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have led to failure of waste water treatment plant operations. In this study, a two-sludge system was used to solve this problem of simultaneously removing phosphorus, nitrogen, and PAHs. The results showed that increasing the maximum PAHs concentration to 15 mg/L did not have any negative effect on the removal rates of total nitrogen (79.68%) and chemical oxygen demand (75.94%); however, the phosphorus removal efficiency decreased to 61.16%. The system exhibited a stronger degradation ability for phenanthrene. Thauera, Hydrogenophaga, and Hyphomicrobium were enriched, which resulted in good denitrification, and contributed to PAHs removal. PAHs mixture promoted PAHs functional genes but restrained denitrification functional genes. However, single naphthalene enhanced denitrification functional genes, which confirmed the feasibility of denitrification coupled with PAHs degradation. In conclusion, for the removal of pollutants from sewage treatment, nitrogen and phosphorus removal coupled with PAHs could be maintained by selecting a two-sludge system.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xia Li
- Huaxin College of Hebei Geo University, Shijiazhuang 050700, China
| | - Jiahui Hou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhixuan Bai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jintao Niu
- Henan Hengan Environmental Protection Technology Co., Ltd, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
141
|
Hu J, Ke X, Wang B, Mei Y, Xiao N, Wan X, Liu G, Hu M, Zhao J. SSThe coexistence and diversity of Candidatus methylomirabilis oxyfera-like and anammox bacteria in sediments of an urban eutrophic lake. Int Microbiol 2022; 25:457-469. [DOI: 10.1007/s10123-021-00230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
|
142
|
Enhanced Nitrogen Removal from Domestic Wastewater by Partial-Denitrification/Anammox in an Anoxic/Oxic Biofilm Reactor. Processes (Basel) 2022. [DOI: 10.3390/pr10010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A partial-denitrification coupling with anaerobic ammonium oxidation (anammox) process (PD/A) in a continuous-flow anoxic/oxic (A/O) biofilm reactor was developed to treat carbon-limited domestic wastewater (ammonia (NH4+-N) of 55 mg/L and chemical oxygen demand (COD) of 148 mg/L in average) for about 200 days operation. Satisfactory NH4+-N oxidation efficiency above 95% was achieved with rapid biofilm formation in the aerobic zone. Notably, nitrite (NO2−-N) accumulation was observed in the anoxic zone, mainly due to the insufficient electron donor for complete nitrate (NO3−-N) reduction. The nitrate-to-nitrite transformation ratio (NTR) achieved was as high as 64.4%. After the inoculation of anammox-enriched sludge to anoxic zones, total nitrogen (TN) removal was significantly improved from 37.3% to 78.0%. Anammox bacteria were effectively retained in anoxic biofilm utilizing NO2−-N produced via the PD approach and NH4+-N in domestic wastewater, with the relative abundance of 5.83% for stable operation. Anammox pathway contributed to TN removal by a high level of 38%. Overall, this study provided a promising method for mainstream nitrogen removal with low energy consumption and organic carbon demand.
Collapse
|
143
|
Zhang X, Zhang X, Wu P, Ma L, Chen J, Wang C, Li X, Liu W, Xu L. Hydroxylamine metabolism in mainstream denitrifying ammonium oxidation (DEAMOX) process: Achieving fast start-up and robust operation with bio-augmentation assistance under ambient temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126736. [PMID: 34333411 DOI: 10.1016/j.jhazmat.2021.126736] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal from mainstream wastewater via DEnitrifying AMmonium OXidation (DEAMOX) is often challenged by undulated actual temperature and high loading rate. Here, we discovered NH2OH addition (HA) and bio-augmentation (BA) tactics on start-up and operation performance of DEAMOXs (R1 and R2) under ambient temperature (11.3-31.7 °C). Over 340-day operation suggested that R2 received 10 mg/L HA and 1:25 BA ratio (v/v, anammox/partial denitrification sludge) achieved desirable nitrogen removal efficiency (NRE) of 97.22% after 145-day, while R1 under higher BA ratio of 1:12.5 without HA obtained lower NRE (90.86%) after 184-day. Batch tests revealed that nitrate-nitrite transformation ratio reached 98.64% at low COD/NO3--N of 2.6 with HA. Significantly, compared with R2, R1 recovered quickly with satisfactory effluent total nitrogen of 4.21 mg/L despite nitrogen loading rate greater than 0.15 kg N/m3/d and temperature decreased to 14.6 °C. The abundant narG represented high nitrate reduction potential, hzsA and hdh were extensively detected as the symbolisation of anammox metabolism. Thauera, Denitratisoma and unclassified f Comamonadaceae dominated nitrite accumulation. Ca. Brocadia as the dominant anammox bacteria, and its population maintained stable against low temperature and load shocks by NH2OH intensification. Overall, this study offers an opportunity for the wide-applications of DEAMOX treating mainstream wastewater.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| |
Collapse
|
144
|
Wu B, Wang X, Wang C, Lu B, Yi J, Dai X, Chai X. Novel micro-granular sludge process for highly efficient treatment of low-strength and low C/N ratio municipal wastewater. CHEMOSPHERE 2022; 287:132322. [PMID: 34560493 DOI: 10.1016/j.chemosphere.2021.132322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
A novel high-concentration powder bio-carrier (HPB) process was developed for the high-load treatment of low-strength municipal wastewater with low carbon/nitrogen (C/N) ratio (∼3). The powder carrier facilitated the rapid micro-granulation of sludge within 20 days and the average particle size increased rapidly from 47 μm to 210 μm. Accordingly, the concentration of mixed liquid volatile suspended solids (MLVSS) increased from 1.8 g/L to 4.3 g/L, which enabled the HPB process to maintain a short hydraulic retention time (HRT) of 3.6 h. Correspondingly, the high volumetric load of 0.4-1.3 kg chemical oxygen demand (COD)/(m3∙d) and 0.12-0.24 kg total nitrogen (TN)/(m3∙d) could be achieved and twice higher than those of conventional activated sludge process, e.g., anaerobic/anoxic/oxic process. The carrier-induced sludge granulation also significantly optimized the microbial structure, and the high-throughput sequencing revealed the increasing abundances of denitrifying bacteria and anammox bacteria, which was consistent with the nitrogen removal efficiency rising from 44.6% to 77.4%. Accordingly, the enhanced nitrogen removal could be achieved with TN of effluent steadily below 5 mg/L. Especially, the mass balance analysis on carbon and nitrogen further indicated the advantage of newly developed HPB process in carbon source saving for nitrogen removal. All the results are believed to suggest a promising strategy for the highly efficient treatment of low-strength municipal wastewater.
Collapse
Affiliation(s)
- Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiuzhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co., Ltd., Changsha, 300072, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
145
|
Li W, Li J, Liu Y, Gao R, Deng L, Kao C, Peng Y. Mainstream double-anammox driven by nitritation and denitratation using a one-stage step-feed bioreactor with real municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126132. [PMID: 34655787 DOI: 10.1016/j.biortech.2021.126132] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
A novel double-anammox process for advanced mainstream nitrogen removal was established using step-feed sequencing batch reactor (SBR) system with integration of suspend sludge and biofilms. Following optimization of influent distribution ratio, the effluent total inorganic nitrogen (TIN) was < 10.2 mg N/L, with influent TIN of 43.4 mg N/L, and anammox contributed 71.4% to TIN removal. Biological processes and batch tests revealed that gradient C/N reduction promoted denitratation/anammox in anoxic stage, and simultaneous nitritation and anammox were achieved in oxic stage. Specially, anammox maintained on biofilms with abundance over 109 copies/ (g dry sludge). High-throughput sequencing revealed that Thauera and Nitrosomonas were enriched in flocs. Furthermore, metagenomic sequencing confirmed that Thauera owns narG and napA (NO3-→NO2-) and Nitrosomonas owns amoA (NH4+→NO2-), support stable NO2- supply for double-anammox. This mainstream anammox-dominant process could potentially be used for stable nitrogen removal in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Liu
- Zhongshan Public Utilities Water Co. Ltd., Zhongshan 528400, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
146
|
Zhang J, Peng Y, Li X, Du R. Feasibility of partial-denitrification/ anammox for pharmaceutical wastewater treatment in a hybrid biofilm reactor. WATER RESEARCH 2022; 208:117856. [PMID: 34826739 DOI: 10.1016/j.watres.2021.117856] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen removal from pharmaceutical wastewater has drawn increasing attention due to biotoxicity and inhibition. In this study, for the first time, a novel approach integrating partial-denitrification with anaerobic ammonia oxidation (PD/A) in a sequencing biofilm batch reactor (SBBR) was proposed and demonstrated to be efficient to treat the bismuth nitrate and bismuth potassium citrate manufacturing wastewater, containing ammonia (NH4+-N) and nitrate (NO3--N) of 6300±50 mg L - 1 and 15,300±50 mg L - 1. The maximum anammox activity was found at the shock effect of influent total nitrogen (TN) of 100 mg L - 1 with NO3--N/NH4+-N of 1.0. Long-term operation demonstrated that the PD/A biofilm was developed rapidly after 30 days using synthetic influent, with TN removal efficiency increasing from 40.9% to 80.8%. Significantly, the key bacteria for PD/A had high tolerance and adapted rapidly to pharmaceutical wastewater, achieving a relatively stable TN removal efficiency of 81.2% with influent NH4+-N and NO3--N was 77.9 ± 2.6 and 104.1 ± 4.4 mg L - 1 at a relatively low COD/NO3--N of 2.6. Anammox pathway contributed to TN removal reached 83.6%. Significant increase of loosely-bound extracellular polymeric substances was obtained with increasing protein of 3-turn helices structure as response to the inhibitory condition. High-throughput sequencing analysis revealed that the functional genus Thauera was highly enriched in both biofilms (9.5%→43.6%) and suspended biomass (15.5%→57.5%), which played a key role in high NO2--N accumulation. While the anammox bacteria decreasing from 7.8% to 1.6% in biofilm, and from 1.8% decreased to 0.1% in the suspended sludge. Overall, this study provides a new method of high-strength pharmaceutical wastewater treatment with low energy consumption and operation cost, as well as a satisfactory efficiency.
Collapse
Affiliation(s)
- Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
147
|
Zhang X, Wu P, Xu L, Ma L. A novel simultaneous partial nitritation, denitratation and anammox (SPNDA) process in sequencing batch reactor for advanced nitrogen removal from ammonium and nitrate wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126105. [PMID: 34695589 DOI: 10.1016/j.biortech.2021.126105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This study presented a novel simultaneous partial nitritation (PN), denitratation and anammox (SPNDA) process for treating ammonium and nitrate wastewater. Results indicated that SPNDA could achieve a great total nitrogen (TN) removal of 97.6 ± 0.5%, leading to effluent TN concentration of only 3.4 mg/L. Mass balance indicated that nitrogen removal rates via anammox, simultaneous nitrification and denitrification were 96.7% and 3.3%, respectively. Extended aerobic duration (12 h) and low dissolved oxygen (DO) concentration (0.15 mg/L) could improve ammonia-oxidizing bacteria (AOB) activity and maintain PN stability. The stable suppression of nitrite-oxidizing bacteria activity was attributed to the low DO (0.15 mg/L) and high free ammonia (3.63 mg/L) in SPND. Besides, the nitrogen conversion mechanisms for SPNDA were revealed based on a typical operational cycle. Microbial analysis showed that AOB (Nitrosomonas) and partial denitrifying bacteria (Thauera and Denitratisoma) coexisted with anammox bacteria (Candidatus Brocadia and Candidatus Anammoxoglobus) in the mixotrophic bio-community.
Collapse
Affiliation(s)
- Xingxing Zhang
- Environmental Microbiome and Biotechnology Lab, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lezhong Xu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liping Ma
- Environmental Microbiome and Biotechnology Lab, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
148
|
Xiao R, Zhu W, Xu S, Chai W, Tong Y, Zheng P, Lu H. Low strength wastewater anammox start-up by stepwise decrement in influent nitrogen: Biofilm formation mechanism and mathematical modelling. ENVIRONMENT INTERNATIONAL 2022; 158:106929. [PMID: 34649049 DOI: 10.1016/j.envint.2021.106929] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The application of mainstream anammox process is hampered by its overlong start-up and instability under disturbance. A lab-scale mainstream anammox moving bed biofilm reactor (MBBR) was successfully started in 120 days with stepwise decrement in influent nitrogen concentration from sidestream to mainstream condition. The initial colonization by Candidatus Jettenia and filamentous fermenter Anaerolineaceae were potentially mediated by hydrophobic interaction and type IV pilus. Ca. Kuenenia with higher substrate affinity outcompeted Ca. Jettenia, and the predominant fermenters shifted to fermentative Ignavibacteriaceae in the mature biofilm. A novel mainstream anammox biofilm development (MABD) model was constructed to describe biofilm growth, population dynamics, and nitrogen removal performance. The simulation results suggested that higher inocula biomass (460-690 mgVSS·L-1), relative abundance of low-affinity AnAOB in the inocula (e.g., Ca. Jettenia, 1.3-2%), and the early-stage solids retention time (45-68 days) were desired to form thicker biofilm and improve effluent quality during 120-day mainstream anammox MBBR start-up. The mechanistic insights into biofilm formation and predictive power of the newly developed MABD model are of importance to the design and operation of mainstream anammox processes towards more biofilm biomass and higher nitrogen removal efficiency.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wanlu Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shaoyi Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yu Tong
- Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
149
|
Liu X, Li X, Peng Y, Zhang Q, Jiang H, Ji J. Synergistic partial denitrification, anammox and in-situ fermentation (SPDAF) process for treating domestic and nitrate wastewater: Response of nitrogen removal performance to decreasing temperature. BIORESOURCE TECHNOLOGY 2021; 342:125865. [PMID: 34536838 DOI: 10.1016/j.biortech.2021.125865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
A synergistic partial denitrification, anaerobic ammonium oxidation (Anammox), and in-situ fermentation (SPDAF) system was established to solve problems of wastewater treatment plants (WWTPs) in combined treatment of domestic sewage, and nitrate wastewater discharged from industrial areas. The SPDAF system was started up at decreasing temperatures (26.8-18.9 ℃), and remained robust at abrupt temperature drop and drastic temperature fluctuations (20.7-14.1 ℃). The influent and effluent total inorganic nitrogen (TIN) were 97.0 ± 3.7 mg/L and 10.3 ± 4.0 mg/L, respectively. In-situ fermentation supplemented electron donors for NO3--N reduction. A high TIN removal efficiency, of 89.5 ± 3.9% was obtained. Specifically, Anammox contributed 90.9 ± 5.2% to TIN removal. Furthermore, the abundances of hydrolysis and acidogenesis bacteria were 14.02% and 29.47% in the low and high zones, respectively, which promoted fermentation and the use of complex organics. This study provided novel insights for actual operation of WWTPs.
Collapse
Affiliation(s)
- Xiping Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
150
|
Wang H, Li Z, Peng L, Tang X, Lin Y, Yang D, Geng J, Ren H, Xu K. Performance evaluation and mechanism of nitrogen removal in a packed bed reactor using micromagnetic carriers at different carbon to nitrogen ratios. BIORESOURCE TECHNOLOGY 2021; 341:125747. [PMID: 34461406 DOI: 10.1016/j.biortech.2021.125747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Advanced nitrogen removal of effluent discharged from secondary treatment systems can avoid eutrophication. However, the lack of biodegradable organics limits biodenitrification. Packed bed reactors filled with carriers with different micromagnetic field (MMF) strengths were used to perform tertiary denitrification. The results showed that MMF significantly improved the denitrification performance, especially at low C/N ratios. Total nitrogen (TN) removal was increased by 4.12% with 0.6 mT MMF when C/N = 4 and increased by 7.06% and 8.06% with 0.3 mT and 0.9 mT MMFs when C/N = 3, respectively. Zooglea, Flavobacterium, and Denitratisoma contributed to the advanced denitrification performance under MMF. In addition, 0.6 mT MMF enhanced nitrogen metabolism and ABC transporter protein and two-component system activities of microorganisms under C/N = 4; 0.3 mT and 0.9 mT MMFs increased nitrogen, carbohydrate, and amino acid metabolism and ABC transporter protein activities under C/N = 3. These findings indicate that MMF has great potential for advanced denitrification from secondary effluent.
Collapse
Affiliation(s)
- Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zhihao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xi Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongli Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|